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Enhanced phoretic self-propulsion of active colloids through surface charge asymmetry
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Charged colloidal particles propel themselves through asymmetric fluxes of chemically generated ions on
their surface. We show that asymmetry in the surface charge distribution provides an additional mode of
self-propulsion at the nanoscale for chemically active particles that produce ionic species. Particles of sizes
smaller than or comparable to the Debye length achieve directed self-propulsion through surface charge
asymmetry even when ionic flux is uniform over its surface. Janus nanoparticles endowed with both surface
charge and ionic flux asymmetries result in enhanced propulsion speeds of the order of μm/s or higher. Our
work suggests an alternative avenue for specifying surface properties that optimize self-propulsion in ionic
media.
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I. INTRODUCTION

Many microorganisms exhibit locomotion in viscous fluid
environments typically driven by asymmetric surface ac-
tivity [1,2]. Inspired by such biological systems, micro-
and nanomotors have been developed with a wide range
of functionalities for targeted cargo transport and various
other biomedical or environmental applications [3–5]. Di-
rected motion of colloidal particles has been achieved through
externally imposed fields or gradients, as in electrophore-
sis or diffusiophoresis [6,7]. Alternatively, chemically active
colloids, namely, Janus micro- or nanoparticles, self-propel
by harnessing locally stored chemical energy [8–10]. Their
surface features can be specified to enhance self-propulsion
[11–13].

Phoretic active particles propel themselves through a self-
generated concentration gradient of solute, a process known as
self-diffusiophoresis. Local chemical gradients are generally
mediated by surface reactions that induce a nonuniform flux
of chemical species, which allows for phoretic movement
resulting from the chemical transport in the surrounding fluid
[3,10]. Such particles may also have a certain intrinsic surface
charge, in concurrence with a flux of ionic species being re-
leased or absorbed at the surface. Moreover, the bulk solution
itself may have some background ion concentration. In this
case an electrostatic contribution arises from the interaction
of the charged surface and the mobile ions and couples with
ionic transport and hydrodynamics, leading to a different type
phoretic motion called ionic self-diffusiophoresis [10,14–20].

In recent years self-propulsion of charged colloidal parti-
cles, driven by asymmetric release of ions from their surface,
has been realized with micro- and nanomotors, such as
urease-powered colloids or photoactivated AgCl Janus par-
ticles [13,16,17,21–23]. We demonstrate here that a particle
undergoing ionic self-diffusiophoresis (see Fig. 1) attains di-
rected self-propulsion through an asymmetric distribution of
surface charge, even when the ionic flux on its surface is

uniform. This occurs in regimes where the particle size is
smaller than or comparable to the Debye length. In such
domains, the near-field electrostatic and hydrodynamic con-
tributions resulting from the asymmetry in surface charge
become crucial. Moreover, we find nanosized particles bear-
ing both surface charge and ionic flux asymmetries achieve
enhanced self-propulsion with optimal speeds that persist at
higher ionic concentrations. The significance of such a trans-
port mechanism at the nanoscale regime is highly relevant
to the longstanding efforts in understanding the spatial orga-
nization and functionality of subcomponents existing inside
the cell [24–28]. In particular, recent experiments investigat-
ing bacterial microcompartments (BMCs) have been found to
posses chemically active and heterogeneous surface features.
BMCs are comprised of a protein shell, which is typically
40–200 nm in size, and facilitates local chemical reactions that
produce ionic fluxes at specific sites [29,30]. Their shells are
also patterned with distinct protein species that carry different
charge, resulting in a nonuniform surface charge, as evident
in the icosahedral shells that have been crystallized [31–35].
We hypothesize that the self-propulsion mechanism mediated
by surface charge asymmetry will play a role in the chemo-
tactic transport of such microcompartment systems [36]. The
effects of surface charge asymmetry on phoretic propulsion
speed of active nanoparticles are quantitatively addressed
here.

This article is organized as follows. We describe in Sec. II
the governing equations and the boundary conditions for the
steady state continuum model of ionic self-diffusiophoresis
that we use to quantify the propulsion speed. In Sec. III we
discuss our results for the case of a particle with asymmetric
surface charge but uniform ion flux, and the case of Janus
nanoparticles with different configurations of surface charge
and ion flux asymmetries. Finally, we provide our concluding
remarks in Sec. IV. In addition, we also include supplemental
details of our analytic derivations and numerical simulations
in the Appendix.
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FIG. 1. Schematic of ionic self-diffusiophoresis. A spherical col-
loidal particle of radius R and net negative charge Q that releases
positive and negative ion species at a net rate I from the surface with
diffusivities D±. The particle has asymmetric distributions of surface
charge and ionic flux, and drifts with velocity U in the z direction
inside a solution with bulk ion concentration C∞.

II. CONTINUUM THEORY OF IONIC
SELF-DIFFUSIOPHORESIS

We take a continuum approach [17–19,37,38] to charac-
terize the coupling of electrostatics with ionic transport and
fluid flow, and determine the particle’s phoretic velocity. We
consider a spherical particle of radius R with a net charge
Q suspended in a solution with total bulk ion concentration
C∞. Through chemical reactions on the surface [16,17], the
particle produces different ion species i at a finite constant
rate Ii with a sum total rate I = ∑

i Ii (see Fig. 1). We assume
the solution is dilute, that is, the ion volume fraction is low
such that it is taken as an ideal mixture where the ions diffuse
readily with diffusivity Di. Moreover, we consider the solution
to be a linear dielectric medium and treat the interactions
between the particle and ions at a continuum mean-field level.

A. Steady-state approximation

We operate under steady state time regimes when the
particle is moving with a constant phoretic velocity U in
the z direction (see Fig. 1). More specifically, we consider
timescales where the Péclet number Pe ∼ RU/Di is low. This
means that the local concentration of the ions around the par-
ticle adjusts more rapidly than the change in the instantaneous
position of the particle due to its propulsion. However, in this
work we do not study the effects of Brownian fluctuations on
the particle’s motion and orientation, which becomes relevant
at longer times [10,39,40]. Here we focus our analysis on the
propulsive motion during the steady state.

The electrostatic interactions between the charged surface
and the ions that are being produced from its surface, as
well as the existing background ions, is accounted for by the
Poisson equation. Due to the motion of the ions in the
resulting electric field, an additional electrochemical flux
accompanies the chemical diffusion as prescribed by the
Nernst-Planck equations, together written as

∇2ψ = − e

ε

∑
i

ZiCi, ∇2Ci + eZi

kBT
�∇ · (Ci �∇ψ ) = 0, (1)

where ψ is the electrostatic potential, e is the elementary
charge, ε is the permittivity in water, and Ci is the concen-
tration of the ionic species i with ion valency Zi. We have
excluded the advective term in Eq. (1) since we are in the

low-Pe regime. Moreover, based on the typical solution den-
sity and viscosity, and the size and speed of the particles, we
also fall under the low-Reynolds-number regime. Henceforth,
the flow of the solution, considered as an incompressible fluid,
is described using the Stokes equations

�∇p − η∇2�v = ε∇2ψ �∇ψ, �∇ · �v = 0, (2)

where �v is the fluid velocity, with p the pressure and η the vis-
cosity of water. The electrostatic volume force density comes
into Eq. (2) as an applied body force in the fluid maintaining
momentum balance [17,18].

We apply the generalized Lorentz reciprocal theorem for
Stokes flow with nonzero body force [41–44] to directly
calculate the phoretic velocity (see Appendix A). Following
previous works [17,18], we find that the phoretic velocity is
given by

U = ε

6πηR

∫
V

∇2ψ �∇ψ · (v̂ − ẑ) dV, (3)

where V is the entire fluid volume outside the particle, and v̂ is
the solution of the Stokes equations with zero body force for
a sphere drifting with unit velocity in the positive z direction
[17,18]. We note that this general form for U , given by Eq. (3),
captures the contributions arising from a finite Debye length
relevant for nanosized particles.

B. Surface and bulk conditions

We focus our analysis on a particle that is patterned on
its surface with asymmetry in the charge distribution and ion
release defined by charge density σ (θ ) and ionic flux j(θ ),
respectively, which have a polar angle θ dependence with
azimuthal symmetry (see Fig. 1). We consider that two distinct
monovalent ion species are being generated at the surface, one
positive with concentration C+ and one negative with concen-
tration C−, as in the case of urease-powered motors where
ions NH+

4 and OH− are being produced, for instance [17,18].
We assume that both these ions have the same flux pattern
j(θ ) at the surface with the same rate of production such that
I± = I/2; however, they diffuse in the solution with different
diffusivity D±. While in the background of our solution, we
additionally have a 1:1 binary electrolyte, say here Na+ and
Cl− ions with respective concentrations Cb+ and Cb−.

Moreover, given some finite C∞, we assume far away
from the particle’s surface at the bulk, there are many more
of the background ion species compared to the ion species
that were produced by the particle, such that Cb± → C∞/2
and C± → 0, maintaining electroneutrality with ψ → 0 at the
bulk. Furthermore, we have no-slip conditions at the particle
surface-solution interface, and the fluid is stagnant at the
bulk. Effectively, we have the set of coupled Poisson-Nernst-
Planck-Stokes equations (1) and (2) at the steady state, which
are subject to the following boundary conditions: (A) −ε �∇ψ ·
r̂ = σ (θ ), −D±( �∇C± ± eC± �∇ψ/kBT ) · r̂ = j(θ ), ( �∇Cb± ±
eCb± �∇ψ/kBT ) · r̂ = 0, and �v = Uẑ all at r = R, and (B) ψ =
0, C± = 0, Cb± = C∞/2, and �v = 0 as r → ∞.
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C. Small surface charge and ion flux regime

To obtain an analytic approximation for the phoretic ve-
locity, we employ a near-equilibrium perturbation expansion
in the Debye-Hückel (DH) limit [17,18]. We consider that the
ions being produced by the particle at a steady time is small
compared to background ions present in the bulk, and also
net charge of the particle is small for a given particle size.
In particular, we have |I| < 2πR(D+ + D−)C∞ and |Q| <

4πRεkBT/e. Under these approximations, we can break our
problem down into two steps. First step, for the passive
ions existing in the background, we treat these background
ions such that they are at equilibrium, taking the form of a
Boltzmann distribution Cb± = C∞e∓eψ/kBT /2. This results in
Eq. (1) being written as the modified DH equation, ε∇2ψ ≈
e(C− − C+) + εκ2ψ , where κ =

√
e2C∞/εkBT . Second step,

for the active ions being produced at the particle’s surface, we
perform a perturbation expansion to approximate an analytical
expression in the leading order of I and Q. By expanding C±
and ψ in orders of I and Q, we solve the perturbed Eq. (1)
with boundary conditions (A) and (B), and we use Eq. (3) to
calculate the leading order U (see Appendix B).

III. RESULTS

A. Self-propulsion through surface charge asymmetry

Based on this continuum model, we quantitatively study
the phoretic velocity for varied cases of surface asymmetries
and bulk ionic strengths. We first examine the scenario in
which a particle releases ions uniformly from the surface but
has a nonuniform surface charge. In particular, we have a
constant flux of j(θ ) = j0, where j0 = I/8πR2 for both the
positive and negative ion species, whereas we assume a sur-
face charge distribution in which the charges are more dense
on one end of the sphere and then become gradually less dense
across the surface towards the opposite end. We consider two
configurations: one σ+ where the charges are more dense on
the front (+ẑ) end, and the other σ− where charges are more
dense on the back (−ẑ) end. Namely, we defined the two
charge densities as σ±(θ ) = σ0(1 ± cos θ ) with σ0 = Q/4πR2

to capture this type of surface charge asymmetry. In this case
(see Appendix C), we get the leading order phoretic velocity
for charge densities σ± as

Uσ± = ∓ IQ
α

R
f (κR) + O(I2Q, IQ2), (4)

with α = e(D+ − D−)/16π2εηD+D− and

f (x) = x2(x2 − 12)exEi(−x) + (x + 3)(x2 − 4x + 2)

144(x2 + 2x + 2)
, (5)

where Ei is the exponential integral function. We observe that
this leading order velocity, that is linear in I and Q, will vanish
if the positive and negative ions being released have rela-
tively similar diffusivity as α → 0. Additionally, we see from
Eq. (5) that if the particle size is much larger than the Debye
length as κR 	 1, f (κR) → 0, also implying a very small
vanishing speed. Conversely, when the size of the particle is
small compared to the Debye length 1/κ , it acquires larger
speeds as κR << 1 with f (κR) → 1/48 (see Appendix D).
This means that the effect of surface charge asymmetry on

propulsion is significant for nanosized particles with a thick
Debye layer.

We show in Fig. 2(a) the analytical DH approximation of
the phoretic speed given by Eq. (4) and numerical results for
our model performed using finite element (FE) simulations
in COMSOL MULTIPHYSICS software (see Appendix E). For
instance, given a particle of size R = 20 nm, the domain
where our DH approximation becomes more accurate is for
values of net charge below |Q∗| ≈ 30 e and values of bulk ion
concentration above C∗

∞ ≈ 1 mM for net ion release rates that
are below |I∗| ≈ 5 × 108/s. In this domain we find agreement
with the FE results that the speed scales linearly with I and
Q, and promptly decreases with an increase in bulk ion con-
centration C∞ for a fixed R, as predicted by Eq. (4). We also
find U > 0 for a particle of net negative charge Q < 0 with
surface charge density σ− that is releasing ions with distinct
diffusivity such that D+ < D−, using Eq. (4), in confirmation
with FE simulations. This implies that in this case the particle
moves in the positive z direction, away from the side with
higher charge density [see Fig. 2(b)]. Furthermore, for such
parameters used in Fig. 2(a), phoretic speeds of U � 1 µm/s
can be predicted within the DH regime for κR � 1, where the
effects of surface charge asymmetry become more prominent.

To gain insight regarding the physical means through
which the self-propulsion is being induced here, we need to
account for near-field effects [16], especially when the Debye
length becomes comparable to particle size. Otherwise, if we
only consider the far-field perspective, the system appears to
have no asymmetries to cause directed movement as the ion
flux is uniform, and consequently, the resulting electric field
is symmetric around the particle in this domain beyond the
Debye region. Hence in this far-field limit, one would con-
clude that the particle will have vanishing velocity insufficient
to self-propel. On the contrary, we find here that nanosized
particles, at bulk ion concentration such that the Debye length
becomes proportionate with its size, can move with signifi-
cant self-propulsion speeds in the order of μm/s or higher,
depending on the amount of ion flux and surface charge. The
basis of this motion can be understood by looking at the
near-field electrostatics that couples to the hydrodynamics.
We find that the nonuniform surface charge density produces
asymmetric electrostatic potential and electric field as shown
in Fig. 2(c). This constitutes an asymmetric electrochemical
flux in addition to the uniform diffusive flux, and thus the
competing net effect results in a nonuniform ionic distribution
around the particle, for instance, as shown in Fig. 2(d) for
the released positive ions. This induced ionic gradient gives
rise to diffusiophoretic fluid flow near the particle, leading to
self-propulsion [3,6,7]. In contrast with propulsion generated
only by asymmetric ionic flux [17,18], this asymmetry in sur-
face charge offers an alternative mechanism through which a
local concentration gradient is created to mediate self-phoretic
motion.

B. Janus nanoparticles with surface charge
and ion flux asymmetries

We next explore the effect of combing surface charge
asymmetry with ionic flux asymmetry on the phoretic veloc-
ity. Firstly, we employ FE simulations to numerically compute
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FIG. 2. Self-phoretic motion induced by surface charge asymmetry. (a) The analytical and numerical phoretic speed U as a function of
C∞/C∗

∞ for I/I∗ ≈ 0.05, and as a function of I/I∗ for C∞/C∗
∞ ≈ 2 (inset), both at the indicated values of Q/Q∗. We use here the leading order

near-equilibrium Debye-Hückel (DH) analytical values given by Eq. (4) and the numerical result are from finite element (FE) simulations done
in COMSOL MULTIPHYSICS (see Appendix E). (b) Schematic of the particle with uniform ion flux and asymmetric surface charge density σ−(θ )
moving in the ẑ direction. The color maps with field lines, from the FE simulations, of (c) the electric potential with electric field and (d) the
ion concentration of the positive ion being released C+ with diffusive (magenta) and electrochemical (white) flux, both for IQ ≈ 0.05 I∗Q∗

and C∞ ≈ C∗
∞. In all panels we use α ≈ −0.45 m2/C, I∗Q∗ ≈ −1.5 × 1010e/s, C∗

∞ ≈ 1 mM, and R = 20 nm.

the phoretic velocity of Janus colloids for varying surface
charge and ion flux configurations. In particular, we examine
four distinct cases of Janus surface charge and ionic flux
asymmetries as shown in Fig. 3(a): (i) “Uniform Charge,
Janus Flux,” where the surface charge density is constant
on the whole sphere while the ionic flux is finite on one
hemisphere and zero on the other, (ii) “Janus Charge, Uni-
form Flux,” where instead the ionic flux is constant on the
whole sphere while the surface charge density is finite on
one hemisphere and zero on the other, (iii) “Janus Charge,
Janus Flux, Opposite Sides,” where on one hemisphere the
surface charge density is finite but ionic flux is zero and vice
versa on the other, and (iv) “Janus Charge, Janus Flux, Same
Side,” where the surface charge density and ionic flux are both
finite on the same hemisphere and both zero on the other.

We set cases (i)–(iv) such that they all have same I and Q.
More specifically, we have the uniform surface charge and
ion flux σ (θ ) = σ0 for case (i) and j(θ ) = j0 for case (ii),
respectively. The Janus ion flux for cases (i), (iii)m and (iv)
is j(θ ) = 2 j0 for θ � π/2 and j(θ ) = 0 for θ > π/2, while
the Janus surface charge for cases (ii) and (iii) is σ (θ ) =
2σ0 for θ � π/2 and σ (θ ) = 0 for θ > π/2, and vice versa
for case (iv).

We compare and contrast the corresponding phoretic veloc-
ities of cases (iii) and (iv) with respect to cases (i) and (ii) at
different bulk ion concentrations to examine the quantitative
differences in phoretic speed resulting from the coupling of
surface charge and ion flux asymmetries, and uncover the op-
timal surface configuration for enhanced self-propulsion. We
find that nanoparticles with sizes of ∼10–100 nm in solutions

FIG. 3. Enhanced self-propulsion of Janus nanoparticles. (a) Schematic of Janus surface charge and ionic flux configurations (i)–(iv) as
described in the text, all with net rate of ions released I and net negative charge Q. (b) The corresponding phoretic speeds U , computed with
finite element simulations in COMSOL MULTIPHYSICS (see Appendix E), for the cases (i)–(iv) as a function of bulk ion concentration C∞. The
analytically estimated and numerically computed phoretic speed ratio with respect to case (i), U/U(i), as a function of C∞ for cases (iii) and
(iv) (inset). The color maps and field lines, from FE simulations, of the fluid velocity magnitude and flow direction in the particle’s rest frame
for (c) case (iii) and (d) case (iv), both at C∞ = 1 mM. In all panels we use IQ ≈ −3.6 × 108e/s, α ≈ −0.45 m2/C, and R = 20 nm.
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with bulk ion concentrations of � 5–50 mM can show speeds
that depend on surface configuration. For instance, taking
the estimated values of I ∼ 107/s and Q ∼ −102 e based on
previous works [17,19], we find differences in speeds of up
to ∼10 µm/s or higher at bulk ion concentrations <1 mM
for a particle of size R = 20 nm [see Fig. 3(b)]. In particular,
we find case (iii) produces the largest speed that becomes
substantially larger with respect to cases (i) and (ii) when
κR � 1. We obtain optimally high speeds in this case, which
can reach speeds � 30 µm/s at very low bulk concentrations
� 0.01 mM, while still maintaining speeds ≈1 µm/s at much
higher bulk concentrations, ≈10 mM. In contrast, we find
very low speeds for case (iv), which shows a slight increase
in speed as bulk concentration is increased (see Fig. 3). For
larger nanoparticles, although they move with lower speeds in
a regime of lower bulk ion concentration, we find the same be-
havior with regard to the effect of these surface configurations
(see Appendix F). Taken together, this indicates that surface
properties such as arrangement of surface charge and ion flux
are crucial in regimes where the particle size is below or in the
order of the Debye length.

The shifts in the phoretic speeds arising from the surface
charge and ionic flux coupling in cases (iii) and (iv) can
be realized through analytical estimations of the respective
phoretic velocities based on leading order approximations and
examining the contrast in the induced fluid flow. We estimate
phoretic velocities for the Janus distribution of ionic flux and
surface charge using densities of the form ∼(1 ± cos θ ), as it
accounts for the leading monopolar and dipolar contributions
[17–19]. In the near-equilibrium DH regime, we find that
the speeds of cases (iii) and (iv) can be expressed as U(iii) ≈
[1 + 
(κR)]U(i) and U(iv) ≈ [1 − 
(κR)]U(i), where 
(x) =
2(x + 1)/(x2 + 2x + 2) such that 0 < 
(κR) < 1. These an-
alytical predictions, that are consistent with the numerical
results obtained from FE simulations as shown in Fig. 3(b),
capture the amplifying and diminishing effects in cases (iii)
and (iv), which lead to the respective shifts in speeds. Case
(iii) [case (iv)] has aligning [opposing] leading velocity contri-
butions that amplify [diminish] speed and can be enhanced up
to twofold compared to case (i) or (ii). Furthermore, Figs. 3(c)
and 3(d) show the resulting fluid flow in the particle’s rest
frame for cases (iii) and (iv), respectively. Here we find that
around the particle going from the moving front to the tail
end, the fluid velocity increases in case (iii) and decreases
in case (iv). This indicates the amplifying and diminishing
effects emerging from the ion flux and surface charge inter-
actions that direct the fluid around the particle induce faster
and slower self-propulsion in the respective cases.

IV. CONCLUSION

In this article we show that surface charge asymmetry in
chemically active colloids provides an alternative mechanism
through which a local ionic gradient is generated to induce
self-propulsion. In regimes where the particle size is smaller
than or comparable to Debye length, the near-field electro-
statics and hydrodynamics play a crucial role in facilitating
the self-phoretic motion that arises from surface charge asym-
metry, even when the ionic flux on the surface is uniform.
The coupling of surface charge and ion flux asymmetries in

Janus nanoparticles, with nonvanishing surface charge and ion
flux placed on opposite hemispheres, leads to significantly
enhanced phoretic speeds in the order of μm/s or higher.

Our work focuses on the steady state behavior of the parti-
cle where it maintains propulsive motion. Beyond steady state
regimes at longer timescales, Brownian and stochastic dynam-
ics is expected to affect the particle’s orientation and overall
motion. The propulsion induced by surface asymmetries in
active particles can lead to an enhanced Brownian motion at
longer times [10,12,39,40]. Recent experiments [27,28] report
charged nanomotors that release ions have been observed to
exhibit a momentary burst of directed motion in between
each random reorientation, reaching very fast ballistic speeds.
However, a quantitative description for the long time behavior
of such nanoparticles remains to be seen.

Taken together, our results suggest an additional mode to
enhance phoretic self-propulsion of active nanoparticles in
ionic media. This alternative avenue for optimization can be
utilized in the design of nanomotors. Moreover, the analysis
we provide here can lend some insight into the underlying
mechanism behind transport and function of subcellular com-
partments with heterogeneous surface properties.
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APPENDIX A: GENERALIZED LORENTZ RECIPROCAL
THEOREM FOR STOKES FLOW

In this section we describe the Lorentz reciprocal theorem
for Stokes flow that connects the solutions of two different
Stokes problems. This method allows us to use the solution
of a different Stokes problem that is already known to obtain
the particle propulsion velocity for our problem at the steady
state. The general Stokes equations are �∇ · σ + �f = 0 and
�∇ · �v = 0, where the fluid stress tensor σ = −pI + η[∇v +
(∇v)†] and the body force density is �f . The Lorentz reciprocal
theorem of Stokes flow when generalized for a nonvanishing
body force states that∫

S
n̂ · σ (1) · �v(2) dS −

∫
V

�f (1) · �v(2) dV

=
∫

S
n̂ · σ (2) · �v(1) dS −

∫
V

�f (2) · �v(1) dV, (A1)

where (�v(1), σ (1)) are the solutions to Problem 1 with body
force �f (1), and (�v(2), σ (2)) are the solutions to Problem 2 with
body force �f (2), as illustrated in Fig. 4, where both problems
share the same geometry but are constrained to different body
forces and drift speeds. In Eq. (A1), n̂ is the unit vector
pointing out of the particle surface S into the fluid domain
of volume V .

Here we take Problem 1 to be the classic Stokes problem
with zero body force �f (1) = 0 for a sphere of radius R moving
with constant velocity U (1) in the ẑ direction [45]. Problem
2 is our problem of ionic self-diffusiophoresis with nonzero

014613-5



AHIS SHRESTHA AND MONICA OLVERA DE LA CRUZ PHYSICAL REVIEW E 109, 014613 (2024)

FIG. 4. Lorentz reciprocal theorem for Stokes flow. Schematic
for Problem 1 of the classic Stokes problem with zero body force (left
panel) and Problem 2 of ionic self-diffusiophoresis with electrostatic
body force (right panel). Both for a spherical particle of radius R
inside a fluid volume V .

electrostatic body force �f (2) for a sphere of radius R moving
at steady state velocity U (2)ẑ. In this setting the second term
on the left-hand side of Eq. (A1) drops out, and using the
no-slip boundary conditions at the surface for each problem
and turning the first term on the right-hand side to a volume
integral through Gauss’s divergence theorem, we find

�F (1) · U (2)ẑ =
∫

V

�f (2) · (U (1)ẑ − �v(1) ) dV, (A2)

where we have for Problem 2 the body force �f (2) =
ε∇2ψ �∇ψ , and for Problem 1 the Stokes drag force �F (1) =
−6πηRU (1)ẑ and the solution of the fluid velocity �v(1) =
U (1)v̂(r, θ ), with

v̂ =
(

3R

2r
− R3

2r3

)
cos θ r̂ −

(
3R

4r
+ R3

4r3

)
sin θ θ̂ . (A3)

We obtain our steady state propulsion speed U (2) = U given
by Eq. (3) in the main text. We write the expression for
U here explicitly in spherical coordinates with azimuthally
symmetric ψ (r, θ ),

U = ε

3ηR

∫ π

0

∫ ∞

R
∇2ψ

[
∂ψ

∂r

(
3Rr

2
− R3

2r
− r2

)
cos θ sin θ

− ∂ψ

∂θ

(
3R

4
+ R3

4r2
− r

)
sin2 θ

]
drdθ. (A4)

We first note here that if ψ has no θ dependence then U = 0,
since in this case all the remaining nonvanishing terms in
Eq. (A4) are accompanied with the integral

∫ π

0 cos θ sin θdθ ,
which is identically zero. This method solves the hydrody-
namic part of our problem and we are now left with having to
solve for ψ , which is coupled to Ci thorough Eq. (1).

APPENDIX B: PERTURBATION EXPANSION
IN THE DH LIMIT

In this section we carry out a perturbation expansion in the
limit of small ion fluxes and small surface charge, and approx-
imate an analytical expression for the steady state propulsion
speed in such a regime. For the ions being produced at the
particle surface, we perturb our system away from equilib-

rium state in the limit of small ion production rate I and
low charge Q. To obtain the dimensionless equations, we first
employ the transformations r → Rr̃ , ψ → kBT ψ̃/e , and
C± → C∞C̃±/2 , and now Eq. (1) reduces to

∇2ψ̃ = κ̄2(ψ̃ − ρ̃ ), (B1)

∇2c̃ + �∇(ρ̃ �∇ψ̃ ) = 0, (B2)

∇2ρ̃ + �∇(c̃ �∇ψ̃ ) = 0, (B3)

where the dimensionless Debye parameter κ̄ = κR, and di-
mensionless fields c̃ = (C̃+ + C̃−)/2 and ρ̃ = (C̃+ − C̃−)/2.
The dimensionless boundary conditions at the particle surface
become

−�∇ψ̃ · r̂ |r̃=1 = δQσ̃ (θ ), (B4)

where the dimensionless parameter quantifying the sur-
face charge δQ = eQ/4πRεkBT . For the ion concentra-
tions, we have −( �∇C̃± ± C̃± �∇ψ ) · r̂ |r̃=1 = δI± j̃(θ ), where
the dimensionless parameter quantifying ion fluxes δI± =
I±/2πRC∞D± of the particle. Writing in terms of c̃ and ρ̃,
we get

−( �∇ c̃ + ρ̃ �∇ψ ) · r̂ |r̃=1 = δI j̃(θ ), (B5)

−( �∇ρ̃ + c̃ �∇ψ ) · r̂ |r̃=1 = δIβ j̃(θ ), (B6)

where β = (D− − D+)/(D− + D+) and δI = I (D− +
D+)/8πRC∞D+D−. We now have the perturbation
expansions in the order of δI and δQ as

ψ̃ = δQψ̃0 + δI ψ̃1 + O[δ2
I , δ

2
Q, δIδQ], (B7)

c̃ = δI c̃0 + O[δ2
I , δIδQ], (B8)

ρ̃ = δI ρ̃0 + O[δ2
I , δIδQ]. (B9)

This corresponds to an expansion of the dimensionless
speed as

Ũ = δIδQŨ0 + δ2
I Ũ1 + δ2

QŨ2 + O[δ2
I δQ, δIδ

2
Q],

such that U = εk2
BT 2Ũ/6πηRe2 and the leading order contri-

butions as given by

Ũ0 = κ̄2
∫

Ṽ
((ψ̃1 − ρ̃0) �∇ψ̃0 + ψ̃0 �∇ψ̃1) · (v̂ − ẑ) dṼ, (B10)

Ũ1 = κ̄2
∫

Ṽ
(ψ̃1 − ρ̃0) �∇ψ̃1 · (v̂ − ẑ) dṼ, (B11)

Ũ2 = κ̄2
∫

Ṽ
ψ̃0 �∇ψ̃0 · (v̂ − ẑ) dṼ. (B12)

We now plug in the expansion equations, Eqs. (B7)–(B9), into
Eqs. (B1) and (B3), as well as into the boundary conditions,
Eqs. (B4) and (B6). Then, by collecting the terms with same
coefficients, we find that ψ̃0, ρ̃0, and ψ̃1 satisfy the following
equations:

∇2ψ̃0 = κ̄2ψ̃0, (B13)

∇2ρ̃0 = 0, (B14)

∇2ψ̃1 = κ̄2(ψ̃1 − ρ̃0), (B15)
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and boundary conditions

−�∇ψ̃0 · r̂ |r̃=1 = σ̃ (θ ), (B16)

−�∇ρ̃0 · r̂ |r̃=1 = β j̃(θ ), (B17)

−�∇ψ̃1 · r̂ |r̃=1 = 0. (B18)

In this limit we find that the leading order phoretic speed can
be obtained by solving, firstly, Eqs. (B13) and (B14), which
are the DH and Laplace equations in spherical coordinates,
respectively.

APPENDIX C: ANALYTICAL SOLUTIONS TO THE DH
AND LAPLACE EQUATIONS IN SPHERICAL

COORDINATES

In spherical coordinates with azimuthal symmetry, through
the separation of variables method [46] we find the general
solution to Eq. (B13),

ψ̃0(r, θ ) =
∞∑

n=0

An kn(κ̄r) Pn(cos θ ), (C1)

where kn are the modified spherical Bessel functions and Pn

are the Legendre polynomials. Applying boundary condition
Eq. (B16) gives the coefficients,

An = 1

κ̄ kn+1(κ̄ ) − n kn(κ̄ )

∫ π

0
σ̃ (θ )Pn(cos θ ) sin θdθ.

(C2)

Similarly, we get the general solutions for Eq. (B14),

ρ̃0(r, θ ) =
∞∑

n=0

Bn r−(n+1) Pn(cos θ ) (C3)

with

Bn = β

(n + 1)

∫ π

0
j̃(θ )Pn(cos θ ) sin θdθ. (C4)

Using the solution Eq. (C3), we can solve Eq. (B3) with
boundary condition Eq. (B18). We focus here on the case of
asymmetric surface charge σ̃ (θ ) = 1 ± cos θ and uniform ion
flux j̃(θ ) = 1, which reduces Eq. (C1) to the monopole (n =
0) and dipole (n = 1) terms and Eq. (C3) to only the monopole
term (n = 0). In this case we find that the contribution of
the order δ2

I as well as δ2
Q vanishes, that is, we get Ũ1 = 0

and Ũ2 = 0. Thus, in this case only δIδQ order contribution
remains as the leading term. We arrive at the leading order
velocity given by Eqs. (4) and (5) in the main text.

APPENDIX D: LIMITING CASES OF κR

Additionally, we look at the two limiting case of the
phoretic speed. First, when the size of the particle is small
compared to the Debye length 1/κ , i.e., the thick Debye layer
limit, and then conversely, when the size of the particle is large
compared to the Debye length, i.e., the thin Debye layer limit.
On one hand, if we expand our leading order velocity given
by Eqs. (3) and (4) in the main text for small κR << 1, we

FIG. 5. Schematic of the COMSOL simulations for ionic self-
diffusiophoresis. (a) The 2D axisymmetric cross-sectional geometry
with a circle for the particle of radius R placed at the center of
a L × L rectangle enclosing the fluid solution region. The dashed
line indicates the axis of symmetry, and we use L ≈ 100 R in our
simulations. (b) Mesh size variation near the particle surface (right
side) and the corresponding solution of the electric potential that is
shown in Fig. 2 of the main text (left side). We vary the mesh from a
finer size of 0.0001 R to a sparser size of 0.1 R progressing radially
outwards.

find

|Uσ±| ≈ |αIQ|
48R

(
1 − 8

3
κR + 2[1 − γ − ln(κR)](κR)2

)
,

(D1)

where γ is the Euler-Mascheroni constant. We see that in
this limit it acquires larger speeds, and the magnitude of the
propulsion speed scales as |Uσ±| ∼ |IQα|/48R in the DH
approximation. On the other hand, if we expand our leading
order velocity given by Eqs. (3) and (4) in the main text for
large κR 	 1, we find |Uσ±| ≈ |αIQ|/3R(κR)4. In this limit
we instead see that the particle approaches zero speed.

APPENDIX E: NUMERICAL SIMULATIONS IN COMSOL

In this section we detail the setup of our numerical
simulations done in COMSOL. The finite element numerical
simulations are carried out via COMSOL MULTIPHYSICS soft-
ware [47] performed in the particle’s rest (or comoving) frame
of reference at steady state. Due to the azimuthal symme-
try of the particle-solution system, our simulations entail a
2D axisymmetric setup in COMSOL with a cross-sectional
geometry consisting of a circular region of radius R at the
center of a rectangular region of dimensions L × L where
we set L ≈ 100 R [see Fig. 5(a)]. We employ a Multiphysics
interface coupling in COMSOL between the Electrostatics (es)
and the Transport of Diluted Species (tds) interfaces provided
by the Chemical Reaction Engineering module, in conjunction
with the Creeping Flow (spf) interface provided by the Com-
putational Fluid Dynamics module. This setup amounts to
numerically solving the fully coupled Poisson-Nernst-Planck-
Stokes equations at steady state, namely, Eqs. (1) and (2), in
the fluid region enclosed between the circle and the rectangle.
We implement the particle surface boundary conditions (A) at
the circumference of the circle, and the bulk conditions (B)
are applied at the edges of the rectangle. However, since we
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FIG. 6. Phoretic speed as a function of bulk ion concentration
for the different surface charge and ion flux configurations, cases
(i)–(iv), as in Fig. 3 of main text but for a larger particle size of
R = 100 nm.

are in the particle’s rest frame, the boundary conditions given
in (B) are transformed into �v |r=R = 0 and �v |r→∞ = −Uẑ,
respectively.

Near the particle-solution boundary, that is, closer to the
circle in our simulation, a finer mesh is required. In accor-
dance with the geometry of our system, we radially vary our
mesh size, increasing from 0.0001 R to 1 R in our bounded

domain, with the finer mesh near the circumference and the
sparser mesh away from it until the edge [see Fig. 5(b)].
Such a meshing yields a convergent solution of the electric
potential, ion concentration, and fluid velocity for the relevant
ranges of parameter values. We then iteratively solve for the
value of U such that the net force on the particle is zero and
obtain the plot data for the phoretic speed as a function of the
adjustable parameters such as bulk ion concentration.

APPENDIX F: LARGER NANOPARTICLE SIZE

We illustrate here in Fig. 6 speeds for the four scenarios of
the surface charge and ion flux configurations as discussed and
shown in Fig. 3 of the main text but for a larger particle size.
In contrast to smaller nanoparticles, we find that larger ones
move with lower speeds and maintain directed propulsion
at a regime of lower bulk ion concentration. For instance,
compared to the particle of R = 20 nm in the main text, a
particle with R = 100 nm obtains optimal speeds of up to
∼10 µm/s but at much lower bulk concentrations ∼0.001
mM and sustains nonvanishing speeds only up to ∼1 mM.
Although prevalent in a very low bulk concentration regime,
we preserve the same behavior in larger particles with regard
to the effect of surface configurations, as the case (iii) still
yields the largest propulsion speeds. Hence the particle size
plays a critical role here, as our results indicate that smaller
nanoparticles maximize transport speeds that span a larger
range of bulk ion concentrations.
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