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Quantitative characterization of run-and-tumble statistics in bulk bacterial suspensions
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We introduce a numerical method to extract the parameters of run-and-tumble dynamics from experimental
measurements of the intermediate scattering function. We show that proceeding in Laplace space is unpractical
and employ instead renewal processes to work directly in real time. We first validate our approach against data
produced using agent-based simulations. This allows us to identify the length and time scales required for an
accurate measurement of the motility parameters, including tumbling frequency and swim speed. We compare
different models for the run-and-tumble dynamics by accounting for speed variability at the single-cell and
population level, respectively. Finally, we apply our approach to experimental data on wild-type Escherichia coli
obtained using differential dynamic microscopy.
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I. INTRODUCTION

A hallmark of many living microorganisms is their ability
to self-propel in liquid environments [1–3]. To optimize their
survival strategies, such as foraging [4] and escaping from
harm [5], many microorganisms employ reorientation mecha-
nisms in addition to their directed swimming motion. During
reorientation events, cells change their swimming direction
through microorganism-specific processes. Examples range
from the “run-reverse(-flick)” patterns employed by several
marine bacteria [6,7] and archaea [8], to the “run-reverse-
wrap” modes of Pseudonmas putida [9], to the random change
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of the swimming direction of the algae Chlamydomonas rein-
hardtii due to the buckling of one of their cilia [10]. The
most widely studied microorganism is probably the bacterium
Escherichia coli, which performs paradigmatic “run-and-
tumble” (RT) motion [11–14].

The motion of E. coli in bulk is characterized by two
alternating phases: a running and a tumbling phase. In the run-
ning phase, bacteria swim persistently with an almost constant
speed. “Running” bacteria stochastically enter a tumbling
phase due to the random unbundling of one or several of their
flagella. During a tumble, bacteria undergo rotational diffu-
sion before they resume swimming in a new direction [15].
In a homogeneous environment, this RT motion resembles a
random walk at large length and time scales [11,12,16,17].
Such an RT motility pattern becomes drastically altered in the
presence of surfaces, which can induce circular motion via
hydrodynamic couplings [18,19] and trap the microorganisms
until a tumbling event allows them to escape [20]. Thus, the
quantitative characterization of the RT dynamics requires a 3D
bulk study, far from perturbing boundaries.

Due to the significant biological importance of the tum-
bling statistics for, e.g., bacterial chemotaxis, the underlying
genetics and biochemistry have been studied extensively [5].
The dynamics of individual flagella have been measured in

2470-0045/2024/109(1)/014612(10) 014612-1 Published by the American Physical Society

https://orcid.org/0000-0002-4801-6285
https://orcid.org/0000-0002-5516-1464
https://orcid.org/0000-0003-1669-1830
https://orcid.org/0000-0002-5743-6927
https://orcid.org/0000-0002-4152-5896
https://orcid.org/0000-0001-7531-2816
https://orcid.org/0000-0002-6204-7192
https://orcid.org/0000-0003-2395-5929
https://orcid.org/0000-0001-6847-3304
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.014612&domain=pdf&date_stamp=2024-01-19
https://doi.org/10.1103/PhysRevE.109.014612
https://creativecommons.org/licenses/by/4.0/


YONGFENG ZHAO et al. PHYSICAL REVIEW E 109, 014612 (2024)

vitro using single-motor experiments [21,22]. A quantitative
characterization in three dimensions and at the population
level, however, has remained a challenge. Tracking single-cell
trajectories in three dimensions requires a low cell concentra-
tion and is limited to short trajectories. The statistical accuracy
is therefore often insufficient to reliably extract the tumbling
statistics.

Differential dynamic microscopy (DDM) is a possible al-
ternative for studying the motion of microswimmers [23]. It
measures the intermediate scattering function (ISF), f (k, τ ),
i.e., the probability density at lag time τ of particle displace-
ments �r in Fourier space:

f (k, τ ) = 〈e−ik·�r(τ )〉. (1)

The ISF is usually computed by averaging over a large number
of agents (�104 for E. coli in Ref. [24]), which provides
reasonable statistics at the population level. Fitting the ex-
perimentally measured ISF to a theoretical model can then
give access to the motility parameters of the microorganisms.
While recent work on catalytic Janus colloids has resolved
the transition from persistent motion to a randomization of
the swimming direction due to rotational diffusion in two
dimensions [25], the swimming properties of microorgansims
in bulk have been measured only up to length scales of a
persistence length [24,26–28].

Although quantifying the tumbling statistics at larger
length scales using DDM may appear to be merely an ex-
tension of previous work [24], it has remained out of reach
so far. Theoretically, the difficulty lies in the nonexistence of
an analytical form of the ISF in three dimensions in the time
domain. Although its Laplace transform is known [29,30],
fitting the ISF in Laplace space to the Laplace transform of
the discrete data is often problematic, due to the significant
integration error introduced by the finite data sequence. Thus,
one has to calculate the ISF in the time domain.

Here we propose two strategies for calculating the ISF
of RT particles in real time, based on a renewal theory: (1)
We solve the renewal equations in Fourier space numerically,
which immediately provides the ISF and (2) we compute the
numerical inverse of the ISF in Laplace space, which is known
analytically. (We note that fitting the data in Laplace space
always proves unpractical.) Both methods can, in principle,
be used equivalently and be applied for various scenarios.
However, in practice, they are suitable for different situations:
For particles with an intrinsic variability of swim speed and
with arbitrary running and tumbling time distributions, option
1 is the only route. For particles with a speed variability
at the population level, the direct inverse Laplace transform
(option 2) is easier to compute, but this strategy is restricted
to exponential running and tumbling time distributions.

The paper is organized as follows: In Sec. II we introduce
the renewal theory and compare the models with speed vari-
ability at the single-cell and population level. In Sec. III we
present a robust protocol for the parameter estimation, which
we validate using simulated data. In Sec. IV we analyze the
data of wild-type E. coli using the model with speed variability
at the population level and compare it to the results from
Ref. [31], where an intrinsic variability of swimming speed
was assumed. Finally we summarize our results in Sec. V.

FIG. 1. Schematic of the run-and-tumble motion of a particle
with mean run and tumbling times, τR and τT , respectively. The
particle moves at velocity v during the run phase. PR and PT are the
probabilities of the swimmer to be in a run or tumbling phase. T and
R denote the probabilities to start tumbling or running, respectively.

II. RENEWAL THEORY

We consider a model of RT bacterium alternating between
persistent runs in quasistraight lines and finite-duration tum-
bles during which the cells fully randomize their directions
[11–14,29] (see Fig. 1). The probability to find a bacterium
displaced by a distance r after a lag time τ is P(r, τ ) =
PR(r, τ ) + PT (r, τ ), where PR(r, τ ) and PT (r, τ ) correspond
to the probability to be at position r after a lag time τ and to be
in a running or tumbling phase, respectively. The ISF of non-
interacting bacteria is then obtained via a Fourier transform:
fRT (k, τ ) = ∫

d3r exp(−i k · r)P(r, τ ). We denote by ϕR(τ )
and ϕT (τ ) the distributions of the durations of the RT phases,
respectively. To allow for generic distributions, which need
not correspond to Markovian processes, we also introduce the
probabilities that a bacterium starts running or tumbling at
displacement r and lag time τ , which we denote by R(r, τ )
and T (r, τ ), respectively. Finally, the propagators PR(r, τ )
and PT (r, τ ) measure the probability that a bacterium travels
a distance r during a time τ in a running or a tumbling phase,
respectively.

To compute the ISF, we describe the RT dynamics as a
renewal process [32–34] for which PR(r, τ ) satisfies

PR = P0
R +

∫ τ

0
dt

∫
d3� R(r − �, τ − t )ϕ0

R(t )PR(�, t ), (2)

where ϕ0
R(t ) := ∫ ∞

t dt ′ ϕR(t ′) is the probability that the run
time exceeds t . Let us define the average times spent running
or tumbling, τR,T = ∫ ∞

0 dt tϕR,T (t ). The probability that a
particle is running at time 0 is then equal to the fraction of
time the cell spends running: pR = τR/(τR + τT ). Further, we
denote the probability that the bacterium arrives in r at time
τ without having tumbled in [0, τ ] by P0

R (r, τ ). It is given
by the probability K (τ ) that the cell is in a running state at
t = 0 and remains in this state for a time t > τ , multiplied by
the propagator PR(r, τ ) and the probability pR. Because the
dynamics is not necessarily Markovian, the computation of
K (τ ) is not straightforward. It is given by the joint probability
that t = 0 falls in a run phase of duration t larger than τ , which
has a probability density tϕR(t )/τR, and that the remaining
time before the next tumble is larger than τ , which has a
probability (t − τ )/t when t > τ (and vanishes otherwise).
This leads to [35]

K (τ ) =
∫ ∞

τ

dt ϕR(t )(t − τ )/τR. (3)
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All in all, we find

P0
R (r, τ ) := pRPR(r, τ )

∫ ∞

τ

dt ϕR(t )(t − τ )/τR. (4)

Intuitively, Eq. (2) states that the probability to be at r at
time τ is the sum of the probabilities of arriving in r without
tumbling in [0, τ ], P0

R , and with at least one tumble. In the sec-
ond case, the last tumble takes place at arbitrary displacements
r − � and lag times τ − t , which should be summed over.
Similarly, the probability that the bacterium starts a new run
at displacement r and lag time τ , R(r, τ ), takes into account
the possibility that this is the first run or that a run has already
finished at τ − t and r − �:

R = R1 +
∫ τ

0
dt

∫
d3� T (r − �, τ − t )ϕT (t )PT (�, t ). (5)

Here R1(r, τ ) := (1 − pR)PT (r, τ )
∫ ∞
τ

dt ϕT (t )/τT is the
probability of starting the first run in r at time τ [35]. By
swapping R and T everywhere in Eqs. (2)–(5) we obtain two
other (formally identical) renewal equations for the probabili-
ties PT (r, τ ) and T (r, τ ):

PT =P0
T +

∫ τ

0
dt

∫
d3� T (r − �, τ − t )ϕ0

T (t )PT (�, t ), (6)

T =T 1 +
∫ τ

0
dt

∫
d3� R(r − �, τ − t )ϕR(t )PR(�, t ). (7)

An RT dynamical model is then entirely determined by
the propagators PR,T and by the choice of the reorientation

process specified by the distribution ϕR,T from which P0
R,T ,

R1, and T 1 follow. Since the renewal equations couple all
positions and times, they are hard to solve in r-space. Ex-
ploiting the convolution theorem, a Fourier transform yields
a set of equations that are decoupled in Fourier space. Due
to the isotropy of the system, they depend only on the wave
number k = |k| and can be solved for each k separately.
Equations (2)–(7) lead to

PR(k, τ )=P0
R (k, τ )+

∫ τ

0
dt R(k, τ −t )ϕ0

R(t )PR(k, t ), (8)

R(k, τ )=R1(k, τ )+
∫ τ

0
dt T (k, τ −t )ϕT (t )PT (k, t ), (9)

PT (k, τ )=P0
T (k, τ )+

∫ τ

0
dt T (k, τ −t )ϕ0

T (t )PT (k, t ), (10)

T (k, τ )=T 1(k, τ )+
∫ τ

0
dt R(k, τ −t )ϕR(t )PR(k, t ). (11)

Once a given RT dynamical model is chosen, Eqs. (8)–(11)
permit numerical evaluation of the ISF for RT particles,
fRT (k, τ ) = PR(k, τ ) + PT (k, τ ).

Inspection of Eqs. (8)–(11) suggests that analytical
progress can be made in Laplace space, following [29]. In
particular, a Laplace transform of Eqs. (8)–(11) yields the
propagators, PR and PT , for arbitrary RT distributions, ϕR and
ϕT , and probabilities, PR and PT :

PR(k, s) = P0
R (k, s) + L

[
ϕ0

R(τ )PR(k, τ )
]
(s)

R1(k, s) + T 1(k, s)L[ϕT (τ )PT (k, τ )](s)

1 − L[ϕR(τ )PR(k, τ )](s)L[ϕT (τ )PT (k, τ )](s)
, (12)

PT (k, s) = P0
T (k, s) + L

[
ϕ0

T (τ )PT (k, τ )
]
(s)

T 1(k, s) + R1(k, s)L[ϕR(τ )PR(k, τ )](s)

1 − L[ϕT (τ )PT (k, τ )](s)L[ϕR(τ )PR(k, τ )](s)
, (13)

where L[ f (τ )](s) := ∫ ∞
0 dτ exp(−sτ ) f (τ ) denotes the

Laplace transform of a function f (τ ).

A. Intrinsic speed variability

So far we have introduced the general framework of a
renewal process switching between the running and tumbling
phases. Let us now specify the time distributions ϕR,T and the
propagators PR,T for RT particles. We first consider the case in
which a bacterium changes its swim speed after each tumble,
which we refer to as intrinsic speed variability. This accounts
for the fluctuations of the propulsion speed over time that have
recently been reported experimentally [36]. Alternatively, the
distribution of swimming speed can be accounted for at the
population level, leading to a different model discussed in
Sec. II B.

For simplicity, we here consider exponential distribu-
tions for the run and tumbling times with ϕR,T (t ) =
exp(−t/τR,T )/τR,T , where τR and τT denote the mean run
and tumbling durations, respectively. We note, however, that
our formalism allows discussing more general distributions as
well. We now discuss the propagators PR and PT .

Assuming that tumbling particles diffuse with diffusivity
D, the corresponding propagator is given by

PT (k, τ ) = exp(−Dk2τ ). (14)

For a swimming particle with speed v and thermal
diffusion constant D, the propagator instead reads
exp(−Dk2τ ) sin(vkτ )/(vkτ ). Assuming that, after each
tumble, the particle samples a new swimming speed from a
distribution p(v), the propagator of the swimming particles is

PR(k, τ ) =
∫ ∞

0
p(v) exp(−Dk2τ )

sin(vkτ )

vkτ
dv. (15)

We use the Schulz distribution, which is characterized by a
mean velocity v̄ and standard deviation σv [26],

p(v) = vZ

�(Z + 1)

(
Z + 1

v̄

)Z+1

e−(Z+1)v/v̄, (16)

with Z = v̄2/σ 2
v − 1. Then PR(k, τ ) can be computed analyt-

ically as

PR(k, τ ) = e−Dk2τ

(
Z + 1

Zkv̄τ

)
sin(Z arctan ξ )

(1 + ξ 2)Z/2
, (17)

with ξ = kv̄τ/(Z + 1).
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FIG. 2. ISFs, fRT (k, τ ), for our RT model. (a), (b) Intrinsic speed variability model for different fractions of run times pR = τR/(τR + τT ).
In (a) we vary the tumbling time with parameter values τR = 1 s and τT = 0, 0.1, 0.5 s, and in (b) we vary the run time, τT = 0.1 s and
τR = 2, 1 s. The other motility parameters are v̄ = 15 µm s−1, σv = 4.5 µm s−1, and D = 0.3 µm2 s−1. (c) Comparison of the ISF for the model
with speed fluctuations at the single cell (S; solid line) and population (P; dashed line) level using identical parameters (τR = 1 s, τT = 0.1 s,
v̄ = 15 µm s−1, σv = 4.5 µm s−1, and D = 0.3 µm2 s−1).

Using Eqs. (14) and (17) as input, we can solve the integral
equations (8)–(11) numerically by time stepping τ for each
wave number separately. This then leads to the intermedi-
ate scattering function (ISF) for the run-and-tumble particle,
fRT (k, t ) = PR(k, τ ) + PT (k, τ ).

We note that the Laplace transform obtained from Eqs. (12)
and (13) involves hypergeometric functions, which makes its
numerical inversion cumbersome and inefficient using Weeks’
method [37,38].

B. Speed variability at the population level

Alternatively, one could consider a model, where the speed
v of a given bacterium is constant, but where v is distributed
over the bacterial population. As we show below, this leads
to a simpler expression in Laplace space but does not account
for temporal fluctuations of v at the single-bacterium level.

Again, the speed distribution p(v) of the population is chosen
to be a Schultz distribution. In particular, within the renewal
framework we replace the propagator for the run phase by
PR(k, τ ) = exp(−Dk2τ ) sin(vkτ )/(vkτ ). Then the ISF is ob-
tained by postaveraging the ISF of a single cell over the speed
distribution, fRT (k, τ ) = ∫

dv p(v)[PR(k, τ ) + PT (k, τ )]. The
two models are not equivalent due to the nonlinearity of
Eqs. (12) and (13) with respect to the propagators PR,T .

For this model, the numerical evaluation of the ISF,
fRT (k, τ ), is expensive within the renewal framework due
to the final integration over p(v). Fortunately, the Laplace
transform, fRT (k, s), is simpler than in the intrinsic-speed-
variability model. Substituting the propagators, PR(k, τ ) and
PT (k, τ ) = exp(−Dk2τ ), and the exponential RT distribu-
tions, ϕR and ϕT , into Eqs. (12) and (13), the ISF in Laplace
space for a population of noninteracting RT particles with
speed distribution reads

fRT (k, s) =
∫ ∞

0
dv p(v)

kvτ 2
T τR + τR[τR + 2τT + τT τR(Dk2 + s)] arctan[kvτR/(Dk2τR + 1 + sτR)]

(τR + τT ){kvτR(1 + τT Dk2 + τT s) − arctan[kvτR/(Dk2τR + 1 + sτR)]} . (18)

Note that for exponentially distributed RT times, the ISF
in Laplace space could also be obtained by generalizing
the method introduced in Ref. [30] for finite-duration tum-
bles. The time-domain ISF fRT (k, τ ) can be computed from
Eq. (18) using the standard Weeks’ method [37,38]. Before
discussing our fitting procedure and its validation using simu-
lated data in Sec. III, we first show below how the ISFs depend
on the ingredients of the RT dynamics and the source of speed
fluctuations.

C. Intermediate scattering functions

Figures 2(a) and 2(b) show the ISFs for the RT model with
intrinsic speed variability evaluated for motility parameters
measured for E. coli (see figure caption). The calculated ISFs
fRT (k, τ ) [Fig. 2(a)] show a clear evolution at short times and
small length scales � = 2π/k as one varies the RT durations
close to their estimated biological values of τT � 0.1 s and

τR � 1 s [11]. For instantaneous tumbles, τT = 0 (pR = 1),
the ISFs display oscillations for large k, which are smeared
and disappear at times τ � τR and at small wave numbers
k � 0.38 µm−1 corresponding to a length scale � ≈ 16.5 µm,
comparable with the persistence length �p = 〈v〉τR = 15 µm
beyond which the motion becomes randomized by tumbles.
As the tumble duration increases (pR decreases), oscillations
fade out until a hump develops (τT = 0.5 s, pR ≈ 0.7) due to
the diffusive motion of tumbling bacteria at small �.

Figure 2(b) shows the ISFs for a fixed tumble duration of
τT = 0.1 s and varying run time τR = 2, 1 s. As the run time
increases, we observe stronger oscillations at short times τ �
τR and large wave numbers k and a more rapidly decreasing
ISF at small wave numbers, which indicates that the regime
of effective diffusion emerges at larger length and time scales.
This pattern of behavior suggests that, in principle, experi-
mentally measured ISFs should contain enough information
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FIG. 3. (a) Snapshot of a RT simulation with the low magnification (see Appendix B). (b), (c) Validation of theoretical predictions with
simulations for nine parameter sets with v̄ = 17 µm s−1, σv = 4.3 µm s−1, D = 0.3 µm2 s−1, α = 0.9, varying the mean run and tumbling times,
τR ∈ [0.5, 1.5] s and τT ∈ [0.1, 0.5] s. (b) Parameter estimates obtained by fitting theoretical predictions of the ISF to agent-based simulations.
The estimates are compared with the true parameters for the nine data sets. They were extracted from a global fit including wave numbers
k ∈ [0.15, 2.21] µm−1. Dark gray regions correspond to fitted parameters within ±10% of the true values (light gray corresponds to ±20%).
(c) ISF, f (k, τ ), for τR = 1.25 s, τT = 0.2 s (data set 8) and different wave numbers k. Theoretical predictions and simulations correspond to
lines and symbols, respectively. The ISFs are shifted w.r.t. the y axis and the gray dotted lines indicate y = 0.

to characterize all features of the RT dynamics of E. coli,
including the tumbling statistics.

Finally, we compare the ISFs for both models; see
Fig. 2(c). In particular, we observe that at short times and
length scales the ISFs of both models are almost indistinguish-
able, and hence the fingerprint of the speed variability on the
ISFs is subtle. The effect, however, becomes visible in our
theory at large length scales, corresponding to k � 0.38 µm−1.
Whether this small difference of the ISFs will be measurable
and identifiable from experiments will be discussed later.

III. NUMERICAL PROTOCOL AND VALIDATION
ON SIMULATED DATA

We next present the numerical protocol that allows us to
estimate the motility parameters of bacteria, such as their
mean RT times and swimming speed, from measured ISFs.
For the sake of completeness, we first recall below how ISFs
are measured experimentally using differential dynamic mi-
croscopy (DDM).

A. Differential dynamic microscopy

DDM is a high-throughput method that provides quanti-
tative information on 3D swimming microorganisms through
their ISF; see Refs. [23,26] for details. Briefly, the differ-
ential image correlation function (DICF), g(k, τ ), i.e., the
power spectrum of the difference between pairs of images
separated by time τ , is obtained via g(k, τ ) = 〈|I (k, t + τ ) −
I (k, t )|2〉t , where I (k, t ) is the Fourier transform of the image
I (r, t ) and 〈·〉t denotes an average over time t . Under suitable
imaging conditions and for isotropic motion, the DICF is
related to the ISF [24,26,39], f (k, τ ), via

g(k, τ ) = 〈g(k, τ )〉k̂ = A(k)[1 − f (k, τ )] + B(k) (19)

with 〈·〉k̂ denoting average over the directions k̂ ≡ k/|k|, and
A(k) and B(k) the signal amplitude and instrumental noise,
respectively. These coefficients are obtained from the plateau

of g(k, τ ) at long and short times, where the ISF approaches
f (k, τ → ∞) → 0 and f (k, τ → 0) → 1, respectively.

B. Fitting procedure

To reliably extract quantitative information from the mea-
sured ISFs using our renewal theory, we implement a fitting
procedure based on the minimization of the squared errors
using a Nelder-Mead optimization algorithm [40]. We apply
a multistart fitting analysis, where several fits are obtained
for various initial values and the parameter set yielding the
smallest error is chosen. In most fitting procedures several
initial values provided the same result, which strengthens the
reliability of our procedure.

We performed a global fit including data for several wave
numbers simultaneously. Using one data set, we tested several
wave-number ranges and found the most adequate should
include length scales of the order of the cell body, up to length
scales resolving the randomization of the swimming direction,
i.e., k�p � 2π . The parameter estimation method has been
validated with simulations (see Sec. III C).

C. Validation of the fitting procedure

Before tackling the experimental data, we have validated
our parameter estimation method with computer simulations
(see Appendix B). To do so, we consider exponentially
distributed RT times with different τR and τT , which are
close to those reported previously [11]. In particular, we set
τR ∈ [0.5, 1.5] s and τT ∈ [0.1, 0.5] s corresponding to pR =
τR/(τR + τT ) ∈ [0.67, 0.91]. We further choose values for the
remaining motility parameters, including the mean velocity,
v̄, its standard deviation, σv , the translational diffusivity, D,
that are typical for E. coli suspensions [24,26]. Following
experimental findings [31], we add a fraction 1 − α of non-
motile cells that undergo Brownian motion with diffusivity D
in the simulations. Thus the ISF obtained from simulated data
should follow

f (k, τ ) = α fRT (k, τ ) + (1 − α)e−Dk2τ . (20)
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FIG. 4. Parameter estimates obtained by fitting theoretical predictions of the ISF to agent-based simulations with speed variability at the
population level. Parameters are the same as in Fig. 3: v̄ = 17 µm s−1, σv = 4.3 µm s−1, D = 0.3 µm2 s−1, α = 0.9. The mean run and tumbling
times are varied within τR ∈ [0.5, 1.5] s and τT ∈ [0.1, 0.5] s. (a) Fitting in lag time τ with numerical inverse Laplace transform of theoretical
ISF. (b, c) Fitting in Laplace time s using the numerical Laplace transform of the data, with s ranging from (b) 1/τmax to 1/τmin and (c) 10/τmax

to 1/τmin. The estimates are compared with their true values for the nine data sets. Outliers with an error such that (fits/true−1) > 1 are not
shown. We used a global fit including wave numbers k ∈ [0.15, 2.21] µm−1. Dark gray regions correspond to fitted parameters within ±10%
error of the true values (light gray corresponds to ±20%).

First, we perform simulations of the intrinsic-speed vari-
ability model. We employ a global fitting procedure (as
outlined in Sec. III B) and simultaneously include wave num-
bers k ∈ [0.15, 2.21] µm−1. Fitting our renewal theory to the
ISF extracted from simulated data of particles with intrinsic
speed variability reveals that our fitting protocol reliably re-
produces the true parameter values. In particular, most of the
fitted parameters lie within ±10% error with respect to the
true values [Fig. 3(b)]. Figure 3(c) shows excellent agreement
between the simulated ISF with mean run and tumbling times,
τR = 1.25 s, τT = 0.2 s (data set 8), and the theoretical predic-
tions obtained from the fitting procedure.

We also perform simulations of a mixture of particles with
different speeds, fixing each particle speed during the simu-
lation. We use the inverse Laplace transform of Eq. (18) to
calculate the ISF. Including a fraction α of nonmotile cells,
we follow the same global fitting procedure as introduced in
Sec. III B to fit the data. We find that the fitted parameters
again lie within ±10% error with respect to the true values
[Fig. 4(a)].

Note that fitting the expression (18) directly in Fourier-
Laplace space over the full range s ∈ [1/τmax, 1/τmin] leads to
large, systematic errors for most parameters [Fig. 4(b)]. These
errors are mainly due to the loss of numerical precision during
integration of the discrete data to calculate their Laplace trans-
form. Using a smaller range s ∈ [10/τmax, 1/τmin] [Fig. 4(c)]
slightly improves the fitting results but does not lead to sat-
isfactory estimates, especially for the tumbling and running
durations. We further note that while an optimized s range
may lead to a satisfactory fit in Laplace space, it requires a
priori knowledge of the swimming parameters that makes this
procedure unsatisfactory. This is a major issue for the analysis
of experimental data, which probably explains why DDM has
not been used so far to characterize RT dynamics, despite
the explicit expressions for the propagators in Fourier-Laplace
space [29,30]. For numerics as well as experimental data, we
found that the renewal theory was always a more efficient and
reliable avenue.

IV. EXPERIMENTS

We now demonstrate that our numerical protocol can in-
deed be used to characterize quantitatively experimental data.
To do so, we use the data on the wild-type AB1175 E. coli
strain presented in our joint work [31]. In short, these data
were obtained by imaging swimming cells in sealed capillar-
ies on a fully automated inverted bright-field microscope with
a sCMOS camera. To characterize the RT dynamics we re-
quire access to length scales larger than the cells’ persistence
length, ��p, in 3D. Therefore, a large depth of field at low
k is needed to ensure that bacteria remain in view over large
distances in all directions. To measure the dynamics at all rel-
evant length scales, we consecutively recorded movies at 2×
and 10× magnifications to extract the ISF for k < 0.9 µm−1

and k � 0.9 µm−1, respectively, using standard DDM pro-
cedures [24,26]. The low- and high-magnification data were
recorded at a frame rate of 0.02 s and 0.01 s over 300 s
and 80 s, respectively. We refer to the Supplemental Material
of Ref. [31] for more details on the experimental procedure.
Fitting the ISFs to our renewal theory using the numerical
protocol described here yields RT motility parameters.

We have reported the fitting results from the intrinsic-
speed-variability model in Fig. 4 of Ref. [31]. Here we fit the
same data to the theoretical predictions of the model that in-
corporate speed fluctuations at the bacterial population level,
using the numerical inverse Laplace transform of Eq. (18).
We obtain the following motility parameters: α = 97 ± 0.3%,
v̄ = 16 ± 0.2 µm s−1, σv = 5.80 ± 0.29 µm s−1, D = 0.25 ±
0.04 µm2 s−1, τR = 3.21 ± 0.38 s, τT = 0.50 ± 0.05 s. The
corresponding ISFs are shown in Fig. 5 and display nice
agreement with the experimental data.

The estimates for the motility parameters are largely con-
sistent with those reported in Ref. [31], although they were
obtained from fitting a slightly different model. We note the
fraction of running time τR/(τR + τT ) = 0.866 agrees with
the well-cited results from Berg and Brown [11] and the
fits in Ref. [31] (τR/(τR + τT ) = 0.863). This suggests that
the origin of the speed variability is indistinguishable under
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FIG. 5. ISFs for different wave numbers k. Symbols represent
experimental results for E. coli bacteria (same as in Fig. 3 of
Ref. [31]), and lines are the theoretical predictions obtained by
considering speed variability at population level. The data are fit-
ted to the numerical inverse of Eq. (18) including wave numbers
k ∈ [0.04, 1.89] µm−1.

the spatiotemporal scales measured in the experiments. To
show this, we used the measured experimental parameters
to produce simulation data using both models. We then fit-
ted the intrinsic-speed-variability simulation data with the
population-level-speed-variability ISFs, and vice versa. In
both cases, the “wrong” models fit the data rather well. A natu-
ral question then arises regarding the conditions under which
the two models could be distinguished using ISF measured
with our experimental setup. As shown in Fig. 6, a wider speed
distribution would make the ISF distinguishable at small k.
Indeed, the fits lead to a smaller error when the data are fitted
to the “correct” model (see insets of Fig. 6). Nevertheless, the
differences are small and may be hard to disentangle in real
biological systems.

In the experiments, the run and tumbling times obtained
from the model with speed variability at the population level
are both slightly larger than that from the intrinsic-speed-
variability model, with an uncertainty of ∼10% which is
also slightly larger than that of the intrinsic-speed-variability
model (∼5% [31]). We note that in real biological systems,
both types of fluctuations are expected; they do not lead to
major differences as far as displacement statistics are con-
cerned. We note that implementing the speed variability at the
population level allows to work with explicit expression for
f (k, s), which, however, have to be inverted numerically.

V. SUMMARY AND CONCLUSION

In this paper, we developed a numerical protocol to quanti-
tatively characterize the tumbling statistics of run-and-tumble
bacteria from DDM measurements. First, we showed how to
use the renewal theory to calculate the intermediate scatter-
ing function of run-and-tumble particles. We proposed two
slightly different models, which account for the speed fluc-
tuations at either the intrinsic or the population level. Then
we demonstrated a robust protocol to extract parameters from
experimental data. The protocol was validated using agent-
based simulations and then applied to the experimental data

FIG. 6. ISFs obtained from simulations for parameters taken in
the regime where the two models are distinguishable. We use the pa-
rameters measured for wild-type E. coli [31] except for an extremely
large σv: v̄ = 15.95 µm s−1, σv = 15 µm s−1, D = 0.24 µm2 s−1, α =
0.96, τR = 2.39 s, τT = 0.38 s. Dots represent simulation data. Solid
curves are the fits to the right model, and the dashed curves are fits
to the wrong model. We note that the deviation is more significant
at small k values. The inset shows the mean relative error

∑
i |ei|/6

of the fitted parameters, where ei = (pi,fit − pi,input )/pi,input, and p =
(v̄, σv, τR, τT , D, α).

of a wild-type E. coli AB1157 strain, which was reported
in an accompanying paper [31]. At the spatiotemporal scales
accessible experimentally, the two models seem to be indistin-
guishable and the bacteria may in fact exhibit both: intrinsic
speed variations and a speed variability at the population level.
In [31], we also show how our method can be employed
to characterize a transition between perpetual tumbling and
smooth swimming in an engineered bacterial strain whose
tumbling statistics is under the (now-quantitative) control of
a chemical inducer.

The framework of renewal processes is not limited to the
RT motion of bacteria and can be extended to other multimode
motility patterns, such as the “run-reverse(-flick)” [6–8] or
“run-reverse-wrap” [9] motion. In future work, our method
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may thus allow for a quantitative characterization of a large
variety of microorganisms. Furthermore, the numerical pro-
tocol proposed in this paper has vast potential applications,
ranging from quantitatively studying the tactic response of
individual cells to investigating complex collective bacterial
organizations.

In particular, to gain a complete picture of bacterial chemo-
taxis on the cell level, the regulation of the tumbling statistics
due to the presence of spatially varying, external chemical
fields [41,42] may be established experimentally by using
spatially resolved DDM [39]. The “run-and-tumble” motion
has been proposed as a paradigmatic model not only for E.
coli, but also for many other microorganisms, such as Euglena
gracilis [43]. The latter can direct its motion in the presence of
light sources and its phototaxis has rich features because the
cell can sense both the intensity and the polarization of light
[44]. Our framework may allow for a quantitative description
of this intricate behavior and the associated tumbling statis-
tics.

Finally, the regulation of the tumbling statistics of en-
gineered bacterial strains [31,45] may be exploited for
creating complex self-organizations [46,47]. There our high-
throughput method could both help validate the design of
the engineered strains as well as allow for their quantitative
characterization.
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APPENDIX A: JACKKNIFE RESAMPLING METHOD

We obtain an estimate of the standard deviation SE( p̂) of
the fitted parameters p̂ ∈ {v̄, σv, τR, τT , D, α} using the jack-
knife resampling method [48]. In our fitting procedure we fit
data sets corresponding to N wave numbers k = {k1, . . . , kN }
simultaneously. The standard jackknife resampling method is
based on estimating parameters pi by omitting the data set
corresponding to wave number ki and thus fitting data sets cor-
responding to k = {k1, . . . ki−1, ki+1, . . . , kN } only. Repeating
this procedure for all wave numbers permits to estimate the
jackknife standard deviation as

SD( p̂) =
[

N − 1

N

N∑
i=1

( p̄ − pi )
2

]1/2

, (A1)

where p̄ = ∑
i pi/N denotes the average over all parameters

pi. The errors of the fitted parameters are then obtained by
SD( p̂).

APPENDIX B: AGENT-BASED SIMULATIONS

We have performed agent-based simulations of noninter-
acting particles in continuous space and time to validate

our theoretical predictions and parameter estimation method
following previously developed protocols [24,26]. First, we
define two types of particles: active agents, which perform
run-and-tumble motion, and passive particles, which only dif-
fuse. The active particles alternate between run and tumbling
phases. The particles in a run phase move along their swim-
ming direction at constant speed and undergo translational
Brownian motion with diffusivity D. The Langevin equa-
tion for the ith running particle reads

dri

dt
= viui +

√
2Dξi, (B1)

where the components ξi,α are uncorrelated Gaussian white
noise such that 〈ξi,α (t )ξ j,β (t ′)〉 = δi jδαβδ(t − t ′) and ui is the
swimming direction of the ith particle with unit length, |ui| =
1. The swimming speed vi of the ith particle after each tum-
bling event is sampled according to the Schultz distribution
in Eq. (16). We note that accounting for a speed variability at
the population level corresponds to keeping vi fixed for each
cell throughout the simulation, but attributing different vi to
different active particles according to Eq. (16). The tumbling
and passive particles perform only translational diffusion with
corresponding Langevin equation for the jth tumbling or pas-
sive particle, dr j/dt = √

2Dξ j , where D corresponds to the
same diffusion coefficient as for running particles. The run
time τi is distributed according to an exponential distribution
with mean run duration τR, ϕR(τi ) = e−τi/τR/τR, and the tum-
bling time τ ′

j is distributed according to ϕT (τ ′
j ) = e−τ ′

j/τT /τT ,
with mean tumbling duration τT . The mean run and tumbling
durations, τR and τT , are the same for all particles.

We randomly suspend NατR/(τR + τT ) running particles,
NατT /(τR + τT ) tumbling particles, and (1 − α)N passive
particles in a cuboid container of size L × L × H with pe-
riodic boundary conditions. We sample the switching time
between run and tumbling phases using a Gillespie stochastic
algorithm for all the particles. Then by keeping track of the
run and tumbling states of each individual particle, we up-
date the positions of the particles according to the Langevin
equations. We generate snapshots at time interval �t by
taking a region −l/2 < x, y < l/2, −h/2 < z < h/2 in the
container, where l < L is the size of the image and h < H
is the depth of field, and by selecting all particles suspended
in this volume. The snapshot is an image of Np × Np pixels,
with pixel size δl = l/Np. Then the particle at position (x, y, z)
appears in the pixel (nx, ny) = (
x/δl�, 
y/δl�) and its eight
neighborhoods, if any of the nine pixels are in the range
[0, Np − 1] × [0, Np − 1]. Denoting δx = x/δl − nx, δx′ =
min{δx, 1 − δx}, δy = y/δl − ny, and δy′ = min{δy, 1 − δy},
the intensity of a single particle is spread out over the nine
adjacent pixels as

Inx+m,ny+l = C(z)Im(δx)Il (δy), (B2)

where m, l = 0,±1, C(z) = 1 − 4z2/h2 is the contrast func-
tion, and

Im(δx) = δm,−1(1 − δx) + δm,0(1 + δx′) + δm,1δx

2 + δx′ ,

(B3a)

Il (δy) = δl,−1(1 − δy) + δl,0(1 + δy′) + δl,1δy

2 + δy′ . (B3b)

014612-8



QUANTITATIVE CHARACTERIZATION OF … PHYSICAL REVIEW E 109, 014612 (2024)

Finally, we sum the image intensities corresponding to
all the particles to generate a snapshot [see Fig. 3(a) for an
example]. Similarly to the experimental setup described in
Ref. [31], we generate snapshots from data measured at
two different magnifications. In particular, we sample low-
magnification data with pixel size δ� = 6.5 µm, time step
�t = 0.02 s over a total time of 640 s, and depth of field h =
400 µm using a simulation box of size 4000 µm×4000 µm×

500 µm. The small-length-scale data are measured at a
higher magnification: The corresponding parameters are δ� =
1.4 µm, �t = 0.01 s over a total time of 65 s, and h = 80 µm
using a simulation box of size 1000 µm×1000 µm×160 µm.
In both cases the number of pixels is Np × Np = 512 × 512.
To mimic the experimental procedure, we then apply the
DDM analysis described in Sec. III A to extract the ISFs from
the generated simulation snapshots.
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