
PHYSICAL REVIEW E 109, 014611 (2024)

Power laws of natural swarms as fingerprints of an extended critical region
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Collective biological systems display power laws for macroscopic quantities and are fertile probing grounds
for statistical physics. Besides power laws, natural insect swarms present strong scale-free correlations, sug-
gesting closeness to phase transitions. Swarms exhibit imperfect dynamic scaling: their dynamical correlation
functions collapse into single curves when written as functions of the scaled time tξ−z (ξ : correlation length,
z: dynamic exponent), but only for short times. Triggered by markers, natural swarms are not invariant under
space translations. Measured static and dynamic critical exponents differ from those of equilibrium and many
nonequilibrium phase transitions. Here we show the following: (i) The recently discovered scale-free-chaos
phase transition of the harmonically confined Vicsek model has a novel extended critical region for N (finite)
insects that contains several critical lines. (ii) As alignment noise vanishes, there are power laws connecting
critical confinement and noise that allow calculating static critical exponents for fixed N . These power laws imply
that the unmeasurable confinement strength is proportional to the perception range measured in natural swarms.
(iii) Observations of natural swarms occur at different times and under different atmospheric conditions, which
we mimic by considering mixtures of data on different critical lines and N . Unlike results of other theoretical
approaches, our numerical simulations reproduce the previously described features of natural swarms and yield
static and dynamic critical exponents that agree with observations.
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I. INTRODUCTION

The formation of animal flocks presents common features
irrespective of biological details [1–9], and it is a precur-
sor of the major transitions in the evolution of complexity
[10,11] (e.g., changes from single-cell protists to multicellu-
lar organisms, changes from individual ants, bees, and other
insects to their society [10,11]). In particular, many macro-
scopic observables of biological systems obey power laws,
and their critical exponents have been measured [5,12–18].
Mitochondrial networks [16], bacterial colonies [19], bird
flocks [20–22], and insect swarms [23,24] provide examples
of scale-free behavior as their correlation length increases
with the size of the flock, thereby rendering irrelevant in-
trinsic length scales associated to individuals [18]. Since the
scale-free property accompanies phase transitions, there have
been many theoretical studies on the possible phase transitions
responsible for flocking and other collective behavior in dry
active matter [25], starting with the works by Vicsek et al.
[26] and Toner and Tu [27].

*bonilla@ing.uc3m.es

The interaction between swarming midges is acoustic, and
insects interact when their distances are sufficiently small
[23]. The distribution of midge speeds in a swarm is peaked
about some value with heavy tails for large swarms (perhaps
due to the formation of clusters) [28]. The statistics of accel-
erations of individual midges in a swarm is consistent with
postulating a linear spring force (and therefore a harmonic po-
tential) that binds insects together [28]. Swarms of midges in
the wild exhibit long-range correlations [23,24,29,30], which
are absent in laboratory conditions without background noise
and atmospheric variability [31]. Here we are interested in
power laws for correlation length, time, and susceptibility of
natural swarms, which are associated with strong correlations.
Thus we adopt the Vicsek model (VM) metric alignment
of an insect with neighbors within a sphere of influence as
a reasonable choice and ignore variations in the individual
speed. We also include a linear spring force to confine the
swarm [1,28,32]. The effects of a fluctuating speed could be
the subject of future studies.

For starling flocks [20], neighbors are topologically de-
fined, metric-free models may incorporate a distributed
motional bias [33], bird rotations propagate swiftly as linear
waves [18], and a reasonable extension of the continuous-time
VM is the inertial spin model [34]. Furthermore, visual and

2470-0045/2024/109(1)/014611(13) 014611-1 ©2024 American Physical Society

https://orcid.org/0000-0001-9560-5720
https://orcid.org/0000-0002-7687-8595
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.014611&domain=pdf&date_stamp=2024-01-17
https://doi.org/10.1103/PhysRevE.109.014611


R. GONZÁLEZ-ALBALADEJO AND L. L. BONILLA PHYSICAL REVIEW E 109, 014611 (2024)

auditory sensing are compared in [35], the influence of time
delay is studied in [36], the influence of metric and topological
interactions on flocking is studied in [37] and [38], consider-
ing a swarming model based on effective velocity-dependent
gravity. VMs based on social interactions do not account for
features of bird flocks and fish schools based on vortices shed
by flapping. Hydrodynamic interactions theoretically studied
in [39] are important for observed ordered schools and bird
flocks. Noise may induce schooling in finitely many fish
experiencing binary interactions [40]. A modified VM with
varying speeds and an infinite circle of influence exhibits
transitions between migrating and rotating states of the fish
school [41].

An attractive feature of the phase transition analogy is
the notion of universality: different models belonging to the
same universality class have the same scale-free limit and
critical exponents determined by renormalization-group (RG)
flow [42]. Dynamics complicates this picture: different dy-
namic laws may produce the same static critical exponents
but different dynamic critical exponents about an equilibrium
phase transition [43]. Assuming universality, calculations on
simple models can be compared to measurements of critical
exponents of biological systems. This is Cavagna et al.’s
point of view in their study of midge swarms [30]: As-
suming that swarms are close to an ordering transition
between homogeneous phases, the RG flow for sufficiently
rich dynamics produces a dynamical critical exponent close
to the observed one. They explore the RG flow of an ac-
tive model of types E/F and G in Ref. [43] and simulate
numerically the inertial spin model with periodic boundary
conditions [34].

Nonetheless, the origin of power laws in observations of in-
sect swarms remains puzzling. As mentioned before, the long-
range correlations observed in natural swarms [23,24,29,30]
are absent in laboratory conditions without background noise
and atmospheric variability [31]. Measurements of the critical
dynamical exponent z between the correlation time τ and the
correlation length ξ produce values in a range between z =
1.16 and 1.37, depending on sampling and fitting procedures
[24,30]. When written in terms of the scaled time t/ξ z and
measured on natural swarms, the normalized dynamic con-
nected correlation function (NDCCF) collapses into a single
curve only on a finite interval (approximately 0 < t/ξ z < 4)
[24]. However, the same function collapses for all scaled times
according to theories based on standard RG ideas [43,44] for
the ordering phase transition of a complex system of stochas-
tic partial differential equations (PDEs) [30]. Measured and
predicted z values are very close, but static critical exponents
are not [30]. Homogeneous phases in the ordering transi-
tion are invariant under space translations. Natural swarms
are not, because they form over specific darker spots on the
ground (wet areas, cow dung, manmade objects, etc.) called
markers [45].

What is going on? Simply put, natural swarms are not
close to an ordering phase transition and their “temperature”
(whatever acts as control parameter) is different during dif-
ferent observations. Here we propose an alternative theory
based on a number of technical discoveries for the har-
monically confined VM (HCVM). The HCVM involves a
number of simplifications (equal speed and isotropy of insect

velocities), while real swarms have speeds distributed about
a maximum value and vertical velocities are smaller than
horizontal ones [28]. More refined models may be explored
on the basis of the present study. In a nutshell, the HCVM has
a scale-free-chaos phase transition with an extended criticality
region on parameter space whose critical lines collapse at the
same rate as the number of insects N goes to infinity. Ob-
servations of natural swarms sample the extended criticality
region for different N and values of the control parameter.
Using the same methodology as in observations, we obtain
dynamic and static critical exponents close to those mea-
sured. Moreover, the NDCCF collapses into a single curve for
0 < t/ξ z < 4.

Harmonically confined Vicsek model. For finite N , the
three-dimensional HCVM on the plane (η, β ) is

xi(t + 1) = xi(t ) + vi(t + 1), i = 1, . . . , N,

vi(t + 1) = v0Rη

⎡
⎣�

⎛
⎝ ∑

|x j−xi|<R0

v j (t ) − βxi(t )

⎞
⎠
⎤
⎦. (1)

Here �(x) = x/|x|, R0 is the radius of the sphere of in-
fluence about particles, v0 is the constant particle speed,
β is the confining spring constant, and Rη(w) performs a
random rotation uniformly distributed on a spherical sector
around w with maximum opening η [46]. Particles align
their velocities with the mean of their neighbors within a
sphere of influence except for an alignment noise of strength
η.

Technical discoveries are as follows. Firstly, the HCVM
exhibits a phase transition characterized by scale-free chaos
and an extended criticality region [46,47]. There are three
critical lines on the noise-confinement phase plane (η, β )
having ξ ∼ N

1
3 that collapse at the same rate to the β = 0

axis as the insect number N → ∞: the single-to-multicluster
chaos line βc(N, η), the line of maximal largest Lyapunov
exponents (LLE) βi(N, η), and the onset of chaos line (zero
LLE) β0(N, η) [46,47]. For finite N , the region comprising
these lines is an extended criticality region. Secondly, as the
noise η → 0, there are power laws connecting critical con-
finement to N and η that involve the critical static exponent
ν. These power laws can be used to estimate ν at fixed
N , a valuable result because the insect number cannot be
increased at will. Thirdly, the same power laws with noise
imply that the measurable perception range (time-averaged
arithmetic mean of the minimal distance between each insect
and its closest neighbor [23]) is proportional to confinement
on the critical lines, a control parameter that cannot be directly
measured. Lastly, the value of the dynamic critical exponent
depends on how it is measured. When the HCVM is simu-
lated for different N , η, and β within the criticality region
on lines β0 and βc (mimicking experimental conditions), we
obtain z = 1.15 ± 0.11 using least-squares (LS) fitting and
z = 1.33 ± 0.10 by reduced major axis (RMA) regression
[30]. However, both methods produce the same values when
calculated on the same critical line at fixed η and variable N ,
e.g., z = 1.01 ± 0.01 on βc [46].

The rest of the paper is as follows. The phase diagram
of different phases on regions of the plane (η, β ) is studied
in Sec. II. There are three critical lines that tend to zero
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FIG. 1. (a) Phase diagram on confinement vs noise plane for N = 500, v0 = R0 = 1, indicating regions of deterministic and noisy chaos,
noisy period-σ (NPσ ) and noisy quasiperiodic (NPQ) attractors, and mostly noise. (b) For N = 500, regions [I] (βc(η; N ), βi(η; N )) (M-
cluster or multicluster chaos), [III] [β0(η; N ), βc(η; N )] (S-cluster or single-cluster chaos), and line [II] β = βc(η; N ). (c) Shrinking of the
criticality region as N increases. (d) βc(η; N ) ∼ CcN−1/(3ν )ηmc , Cc = 1.5 ± 0.2, mc = 1.20 ± 0.04. (e) Curve β0(N ; η) ∼ C0N−1/(3ν )ηm0 , C0 =
0.92 ± 0.22, m0 ∼ mc + a2N−n2 , a2 = 2.36 ± 0.07, n2 = 0.24 ± 0.01, separating chaotic and nonchaotic regions. We have also indicated the
mean-field approximate curve [47]. (f) Collapse of curves of panels (d), (e): β0,c(η; N )N1/(3ν )η−m0,c vs η. (g) Numerical illustration of the
relations βc/β0 ≈ 3.55, βc/βi ≈ 0.48 as N → ∞ for η = 0.5.

confinement as N → ∞ at the same rate. These lines define
an extended criticality region of the phase diagram on which
scale-free behavior is expected. These lines issue forth from
the origin η = β = 0 at finite N as power laws of β in terms
of the noise. These power laws can be used to deduce the
static critical exponent ν using data at a single N . Section III
recalls the definition of static and dynamic connected cor-
relation functions, correlation length, and correlation times,
as well as the dynamic scaling hypothesis and the defini-
tions of the critical exponents, which are calculated on the
different critical lines. We also show that the confinement
control parameter is related to the perception range, which
can be measured in natural swarms. Then the power laws
defining critical exponents can be expressed in terms of the
perception range, as it was done in Ref. [23] for the static
critical exponents. Section IV considers mixtures of data in
the extended critical region as a reasonable model for the
experimental data obtained from natural swarms. We show
that the dynamical correlation function data collapse when
time is scaled as tξ−z on an interval of finite length that begins
at t = 0. We also calculate the dynamic critical exponent
by least squares and by reduced major axis regressions and
show that the obtained values are close to those measured in
natural swarms. Section V discusses our results and contains
our conclusions. Appendix A (adapted from [46] with slight
modifications) explains the algorithms used to calculate the
largest Lyapunov exponent and to reconstruct attractors from
time series.

II. PHASE DIAGRAM AND CRITICAL LINES

For finite N , Fig. 1(a) depicts the phase diagram of the
three-dimensional HCVM on the plane (η, β ). It resembles
the phase diagram of the mean-field (MF) equation for the
swarm center of mass, given by Eqs. (1) with N = 1 [47].
Numerical simulations of the HCVM show that there are
regions in the parameter space where the largest Lyapunov
exponent is positive, indicating the existence of chaotic attrac-
tors. There is a narrow region of deterministic chaos close to
η = 0; for larger η another region corresponds to noisy chaos
followed by a larger region where noise swamps chaos. See
Appendix A and Ref. [46] for the technical definition of noisy
chaos using scale-dependent Lyapunov exponents, calcula-
tions of the LLE, and reconstruction of chaotic attractors from
time series obtained from the numerical simulations of the
HCVM. The regions of positive LLE are bounded by different
curves. For sufficiently large confinement, Fig. 1(a) shows re-
gions of noisy quasiperiodic attractors. For sufficiently small
β, the LLE is nonpositive and attractors are nonchaotic. On
the curve β0(N ; η) separating chaotic and nonchaotic attrac-
tors for fixed N , the LLE is zero. On this curve the correlation
length defined below is proportional to the size of the swarm
and all other length scales are irrelevant, which indicates
scale-free behavior and characterizes the phase transition in
the limit as N → ∞.

Figure 1(b) shows three scale-free lines where swarm
size and correlation length are proportional, β0 < βc < βi.
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FIG. 2. Swarm as depicted from short trajectories of 500 par-
ticles and η = 0.5 for confinements (a) β = 0.0001, (b) β0 =
0.000 65, (c) βc = 0.005, (d) β = 1. See associated videos in the
Supplemental Material [48].

β0(η; N ) separates regions of chaotic attractors (LLE λ1 >

0 in [III]) from nonchaotic regions (negative LLE) [47];
βc(η; N ) (line [II]) separates chaotic single from multicluster
swarms in region [I], whereas the LLE are maximal on the
line βi(η; N ) [46]. Figure 2 shows the shape of the swarm
for increasing values of β as deduced from depicting short
trajectories of its particles. The scale-free lines βc and βi were
found in Ref. [46], whereas the scale-free line β0 was studied
for the MF HCVM in Ref. [47].

Figure 1(c) shows that the extended criticality region be-
tween β0(η; N ) and βi(η; N ) shrinks with increasing N . The
three critical lines collapse into the noise axis at the same rate
as N → ∞; see Fig. 1(g). Finite-size and dynamical scaling
imply ξ ∼ β−ν , χ ∼ β−γ (susceptibility), τ ∼ ξ z (correlation
time) [46]. Figures 1(d) and 1(e) illustrate how βc and β0,
respectively, depend on η for different N . In rescaled coordi-
nates, these curves collapse for fixed η as shown in Fig. 1(f):

β j (N ; η) = CjN
− 1

3ν ηmj , j = 0, c, (2)

where Cc = 1.5 ± 0.2, mc = 1.2 ± 0.04, C0 = 0.92 ± 0.22,
m0 = mc + a2N−n2 , mc = 1.20 ± 0.04, a2 = 2.36 ± 0.07,
n2 = 0.24 ± 0.01. As the static critical exponents are
independent of η [46], the power laws (2) allow calculating
ν = 0.43 ± 0.03 and γ = 0.92 ± 0.13 using one or several
values of N ; see also Sec. III. This is a major result, because
the critical exponents are found from power laws in η without
resorting to numerical simulations for ever increasing particle
numbers. Whether this also occurs for other space dimensions
or phase transitions is a matter for future research.

III. CRITICAL CURVES AND CRITICAL EXPONENTS
FOR FINITE N AS (β, η) → (0, 0)

In MF theory, the zero noise and confinement limits cor-
respond to the scale-free-chaos phase transition, and the
correlation length, time, order parameter, and susceptibility
have to be defined in terms of the swarm center-of-mass
motion [47]. Then ξ = 〈R〉t or ξ = maxR, with R(t ) = |X(t )|,

1/τ = w = � (w and � are the winding number and the max-
imum frequency of the spectrum for the time series X (t ) +
Y (t ) + Z (t ), respectively), w = � plays the role of order pa-
rameter, and the susceptibility is defined by linear response
to an external force H added to Eq. (1) [47]. We now recall
the definitions of static- and dynamic-connected correlation
functions (SCCF and DCCF, respectively), correlation length,
and correlation time. Then we describe our results for the
different critical lines.

A. Correlation functions

The DCCF is [18,23]

C(r, t )=
〈∑N

i=1

∑N
j=1 δv̂i(t0)·δv̂ j (t0+ t )δ[r− ri j (t0, t )]∑N

i=1

∑N
j=1 δ[r − ri j (t0, t )]

〉
t0

,

C(r) = C(r, 0),

δv̂i = δvi√
1
N

∑
k δvk · δvk

, δvi = vi − V,

ri j (t0, t ) = |ri(t0)−r j (t0 + t )|, ri(t0) = xi(t0)− 1

N

N∑
j=1

x j (t0),

〈 f 〉t0 = 1

tmax − t

tmax−t∑
t0=1

f (t0, t ). (3)

In these equations, δ(r − ri j ) = 1 if r < ri j < r + dr and zero
otherwise, and dr is the space binning factor. The averages
are over time and over five independent realizations corre-
sponding to five different random initial conditions during
10 000 iterations [46]. The SCCF is the equal time connected
correlation function C(r) = C(r, 0) given by Eq. (3). Note
that C(∞) ∝ |∑N

i=1 δv̂i|2 = 0. The correlation length ξ can
be defined as the first zero of C(r), r0, corresponding to the
first maximum of the cumulative correlation function [23]:

Q(r) =
〈

1

N

N∑
i=1

N∑
j=1

δv̂i ·δv̂ jθ (r − ri j (t0, 0))

〉
t0

, χ = Q(ξ ),

ξ = argmaxQ(r), C(ξ ) = 0 , with C(r) > 0, r ∈ (0, ξ ),
(4)

where θ (x) is the Heaviside unit step function. For r larger
than the swarm size, Q(r) = 〈|∑N

i=1 δv̂i|2〉t0/N = 0. The sus-
ceptibility χ is the value of Q(r) at its first maximum, as in
Ref. [23]. Alternatively, we can use the Fourier transform of
Eq. (3),

Ĉ(k, t )=
〈

1

N

N∑
i, j=1

sin (kri j (t0, t ))
kri j (t0, t )

δv̂i(t0)·δv̂ j (t0 + t )

〉
t0

, (5)

and define the critical wave number kc = argmaxkĈ(k, 0), the
susceptibility as χ = maxk Ĉ(k, 0), and the correlation length
as ξ = 1/kc [18,24,46]. It turns out that kc ∝ 1/r0 on critical
curves, and we can use either the real space or the Fourier
space SCCF to find correlation length and susceptibility.
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FIG. 3. Deterministic power laws for N = 500 and η = 0 with ξ = r0 and ξ = max(R) vs β. (a) ξ ∼ β−ν yield ν = 0.40 ± 0.05.
(b) Susceptibility χ ∼ β−γ calculated from linear response: γ = 1.09 ± 0.14. (c) Power law for the order parameter given by the winding
number w that equals the frequency � of the maximum spectral function [47]: � = w ∼ βb with b = 0.43 ± 0.01. (d) τ ∼ ξ z: z = 1.08 ± 0.06
for τ = 1/w; z = 0.98 ± 0.04 for Eq. (6). The mean of these values is z = 1.03 ± 0.06. MF values are γ = z = 1, ν = b = ϕ = 0.5 [47].

For the DCCF, the dynamic scaling hypothesis implies

Ĉ(k, t )

Ĉ(k, 0)
= f

(
t

τk
, kξ

)
= g(kzt, kξ );

g(t ) = Ĉ(kc, t )

Ĉ(kc, 0)
; τk = k−zφ(kξ ). (6)

Here z is the dynamic critical exponent, and the correlation
time τk = k−zφ(kξ ) of the normalized DCCF (NDCCF) (6) at
wave number k obtained by solving the equation [24,46]

tmax∑
t=0

1

t
sin

(
t

τk

)
f

(
t

τk
, kξ

)
= π

4
. (7)

An alternative definition of susceptibility uses linear
response theory [47]. Adding an external field, Eq. (1)

becomes

xi(t + 1) = xi(t ) + vi(t + 1),

vi(t + 1) = v0Rη

⎡
⎣�

⎛
⎝ ∑

|x j−xi|<R0

v j (t ) + H − βxi(t )

⎞
⎠
⎤
⎦. (8)

We now define the vectors X̂ = (x1, . . . , xN ), X̂α =
[(x1)α, . . . , (xN )α], α = 1, 2, 3, V̂ = (v1, . . . , vN ), and so
on. Differentiating the first equation in (8), we obtain

Yt+1 = Yt + Wt+1, where Hαβ =
⎛
⎝ ∂X̂α

∂Hβ

∂V̂α

∂Hβ

⎞
⎠

∣∣∣∣∣∣
H=0

=
(
Y
W

)
, (Yα )β = Y αβ, (Wα )β

= W αβ, (δα )β = δαβ, (9a)

and from the second equation in Eq. (8),

(Wα
t+1)β = {

Rη

(
Aαγ

1,t

[(
σRwα

1,t

)
γ

− β
(
yα

1,t

)
γ

]+ Aαγ

1,t (δα )γ
)
, . . . ,Rη

(
Aαγ

N,t

[(
σRwα

N,t

)
γ

− β
(
yα

N,t

)
γ

]+ Aαγ

N,t (δ
α )γ )

}
, (9b)

Aαβ
j,t = δαβ − [(σRv j (t ))α − β(x j (t ))α] [(σRv j (t ))β − β(x j (t ))β]

|σRv j (t ) − βx j |(t )2
, σRv j (t ) =

∑
|vk (t )−v j (t )|<R0

vk (t ). (9c)

Here sum over repeated indices is understood. To get the last
equation, we have used

δ

(
A
|A|

)
=

(
I − AAT

|A|2
)

· δA
|A| . (10)

The norm of the response matrix at zero field yields the linear
response susceptibility

χ = 〈‖Ht‖〉t , ‖Ht‖ =
√

λM
(
HtHT

t

)
, (11)

where λM (HtHT
t ) is the maximum eigenvalue of the symmet-

ric positive matrix HtHT
t and 〈. . .〉t is a time average. We find

the same results replacing Yt instead of Ht in Eq. (11).

B. Deterministic case η = 0

Figure 3 displays power laws for correlation length ξ

(given either as ξ = r0 where Q(r) is maximum, or as the
maximum swarm size), susceptibility χ , winding number w,
and correlation time τ in the limit as β → 0. The resulting

critical exponents are relatively close to MF values and to
values from numerical simulations in the noisy chaos region
for larger values of N [46].

C. Limit as η → 0

There are three scale-free curves for which correlation
length is proportional to the swarm size. For fixed N and η,
consider the smallest time tm(β, N ) at which Ĉ(kc, t ) = 0.
tm(β, N ) increases abruptly for a certain value βc(N ; η) at
which τkc is minimum [46]. Thus, the first critical curve
β = βc(N ; η) marks the largest possible correlation time
based on the extension of tm(β, N ) for β � βc. As N → ∞,
tm(β, N ) and τkc tend to infinity (critical slowing down) and
βc(N, η) → 0. The susceptibility and the correlation length in
Eq. (4) depend on N , β, and η. For β = βc we have the power
laws

ξ ∼ β−ν, χ ∼ β−γ , (12)
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FIG. 4. Critical exponents on the critical curve βc(N ; η) as (η, βc ) → (0, 0) for N = 500. (a) ξ ∼ β−ν
c : ν = 0.45 ± 0.02 for ξ = max(R),

ν = 0.48 ± 0.05 for ξ = 〈R〉t , and ν = 0.48 ± 0.06 for ξ = r0. The mean of these values is ν = 0.47 ± 0.06. (b) Winding number vs βc:
w ∼ βb

c , b = 0.60 ± 0.03 ≈ zν (b = 0.5 for the MF theory [47]). (c) LLE vs βc: λ1 ∼ βϕ
c , ϕ = 0.62 ± 0.06 ≈ zν. (d) Dynamical critical

exponent z, τ ∼ ξ z: z = 1.35 ± 0.09 for τ = 1/w (w is the winding number [47]), and ξ = max(R), z = 1.25 ± 0.08 for τ = 1/w, ξ = 〈R〉t ,
and z = 1.12 ± 0.07 for Eq. (6). Mean: z = 1.24 ± 0.08.

as N → ∞ for fixed η. Here ν and γ are static critical
exponents [46].

Including the dependence on noise, we have found Eq. (2)
and

r0 j = Djβ
−ν
j η−p j = Dj

Cν
j

N
1
3 η−p j−νmj , j = 0, c, (13a)

χ = Q(r0) = Qjβ
−γ

j ηq j = Qj

Cγ

j

N
γ

3ν ηq j−γ mj . (13b)

Figure 4(a) shows that ξ measured with r0, the maximum
value of the center-of-mass length, R = |X|, or its time av-
erage, 〈R〉t , scale as βc(N ; η)−ν as η → 0, βc → 0. Similarly,
the power laws for winding number and LLE vs β are dis-
played in Figs. 4(b) and 4(c), respectively, where Fig. 4(d)
produces the dynamic critical exponent z using different def-
initions. The values of the critical exponents are similar to
those in Fig. 3. There is little dispersion in the exponent
ν, but the dispersion is larger for z. Using data from N =
100, 500 and Figs. 5(a) and 5(b), we have obtained the param-
eters Cc = 1.5 ± 0.2, Dc = 1.33 ± 0.04, pc ≈ 0 (pc + νmc =
0.55 ± 0.03), qc ≈ γ mc in Eqs. (13). At fixed N = 500, the
critical line βc(N ; η) becomes zero as η → 0; see Fig. 1(b).
Then ξ = r0 → ∞ as η → 0 for fixed N and there are power
laws ξ N− 1

3 ∼ η−pc−νmc and τ ∼ ξ z, but χN− γ

3ν seems to be
independent of noise and Qc/Cγ

c depends on N ; see Fig. 5(b).
The second critical curve corresponds to the inflection

point of the susceptibility, βi(N ; η), for fixed N and η. It turns
out that on this line, the largest Lyapunov exponent (LLE),
reaches a local maximum [46]. Figure 5(c) shows that the
correlation length also has a local maximum at βi. Figure 5(d)
shows that ξ ∼ β−ν

i , same as for the critical line βc. The

critical exponents for βi(N ; η) are different from those of the
other curves and from MF values, as shown in Fig. 6.

The third critical curve β0(N ; η) separates the region of
single cluster chaos from the nonchaotic region 0 < β <

β0(N ; η); see Figs. 1(a) and 1 of Ref. [47]. While β0 separating
nonchaotic and single-cluster chaotic regions was shown to be
scale-free in the MF approximation, this curve was not studied
in Ref. [46]. Figures 7(a) and 7(b) yield the critical exponents
ν and γ , respectively. They are comparable to those produced
in the deterministic case, the MF approximation, and those
found from numerical simulations in the noisy chaos region
for larger values of N [46]. Note that the linear response
susceptibility produces a power law and critical exponent for
the curve β0(500; η) because the algorithm defining it [47]
converges. Including values with N = 500, 1000, 1500, 2000,
we get Fig. 8 for correlation length ξ = r0 and susceptibility
χ = Q(r0) versus noise. While ξ → ∞ as η → 0 (critical ex-
ponent ν = 0.43), χ → 0 because q0 − γ m0 = 2.4 ± 0.2 >

0, as shown in Fig. 8(d). Why? ξ = r0 → ∞ as η → 0 be-
cause −p0 − νm0 < 0 in Eq. (13a). Then the step function
in Eq. (4) is always 1 and Q(r0) = 0 because

∑N
j=1 δv̂ j = 0.

On the other hand, the linear response susceptibility given by
Eq. (11) goes to infinity as β0 → 0 with the correct critical
exponent γ = 0.92 shown in Fig. 7(b).

The three critical curves do not change if we redefine the
average swarm velocity in Eqs. (2) and (13) by subtract-
ing overall rotations and dilations from V at each time step
[46]. There is another scale-free line obtained by tracking
the local maxima of the susceptibility as a function of β.
On this line, the chaotic swarm comprises several clusters
and rotations, and dilations are noticeable. However, when we
subtract overall rotations and dilations, the local maxima of

FIG. 5. (a) Scaled correlation length ξN− 1
3 and (b) susceptibility χN− γ

3ν vs noise for βc(N ; η), N = 100, 500. (c) For η = 0.5, ξ vs β; the
black curve marks the local maxima and fits ξ ∼ β−ν

i . (d) Rescaled curves ξβν
i vs β/βi show collapse of the curves in (c) to a plateau.
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FIG. 6. Same as Fig. 4 for the critical curve βi(N ; η). (a) ξ ∼ β−ν
i : ν = 0.23 ± 0.05 for ξ = max(R), ν = 0.27 ± 0.07 for ξ = 〈R〉t ,

ν = 0.44 ± 0.06 for ξ = r0. The latter value is close to that for βc(N ; η), but not the other values. (b) Winding number vs βi: b = 0.55 ± 0.05.
(c) LLE exponent: ϕ = 0.68 ± 0.06 ≈ zν. (d) z = 2.07 ± 0.30, z = 2.02 ± 0.09, and z = 2.10 ± 0.11 from (w, max(R)), (w, 〈R〉t ), and
(τk, ξ = 1/kc ), respectively. Mean of values: z = 2.06 ± 0.14.

the susceptibility disappear [46], which is why we do not add
this line to the previous list of three critical lines. Note that
we can find the static critical exponents ν and γ from data
at a fixed N = 500 as in Figs. 7(a) and 7(b) or from rescaled
correlation length and susceptibility for different values of N
as in Figs. 8(c) and 8(d).

D. Perception range and static critical exponents

While confinement or noise are not measurable control
parameters, the perception range x (time-averaged arithmetic
mean of the minimal distance between each particle and its
closest neighbor [23,29]) is. For β0(N ; η) and finite N , x >

xc(η) (the value at N = ∞), whereas x < xc(η) on βc(N ; η);
see Figs. 9(a) and 9(b). In terms of the perception range, static
critical exponents are defined by [23]

ξ ∼ (x − xc)−ν, χ ∼ (x − xc)−γ , (14)

which are similar to Eq. (12). Figure 9(c) shows that there is a
linear relation between rescaled versions of x and β0 or βc:

ηmx0 x = A0 + B0β0η
−m0 , ηmxc x = Ac − Bcβcη

−mc. (15)

Here the critical perception range at zero confinement
is xc(η) = Ajη

−mx j , j = 0, c, and we have found mxc =
0.50 ± 0.03, Ac = 2.00 ± 0.02, Bc = 13.00 ± 0.03, mx0 =
1.6 ± 0.2, A0 = 2.0 ± 0.2, B0 = 219.8 ± 0.2 from numerical
simulations. Equations (2) and (15) imply that ξ ∼ N

1
3 ∼

ηνmj β j (N ; η)−ν ∼ ηνmx j |x − xc|−ν , j = 0, c. Similarly, χ ∼
|x − xc|−γ from Eqs. (12) and (15). Thus the empirical re-
lations (14) have the same static critical exponents as the
relations (12).

IV. MIXTURES OF SIMULATION DATA IN EXTENDED
CRITICALITY REGIONS

Natural swarms experience background noise and variable
atmospheric conditions [31] that may account for their strong
correlations [18,23,24]. The measured power law for macro-
scopic quantities indicates that swarms are close to criticality.
To interpret measurements using the HCVM, we need to
recreate a mixture of results of numerical simulations that
resemble measurements taken from swarms of different N ,
η, and β, all within the extended criticality region [III] of
Fig. 1(a). With such a mixture, we find ν = 0.43 ± 0.03, γ =
0.92 ± 0.13, close to the observed values: ν = 0.35 ± 0.1,
γ = 0.9 ± 0.2 [23].

A. Collapse of NDCCF data and exponent z

We will use a mixture of data from the critical lines
β0(N ; η) and βc(N ; η) but not from the line of maximal
LLE, βi(N ; η). Why? Firstly, at βi(N ; η) the swarm starts
developing several clusters, whereas it comprises a single
cluster on the other critical lines. Secondly, the intervals of
scaled times kz

ct = tξ−z over which NDCCF data collapse
are similar for β0(N ; η) and βc(N ; η), but it is much smaller
for βi(N ; η). Here the correlation length ξ is 1/kc, where
kc = argmaxkĈ(k, 0) for the Fourier transform of the DCCF
in Eq. (5) calculated on the critical curve [46]. Figure 10
illustrates the collapse of NDCCF data for values on the
deterministic line η = 0 as β → 0 and for values on the three
critical curves as η → 0. In all cases, NDCCF data collapse
only for short scaled times kz

ct on intervals (0, δ), where δ

ranges from 0.25 to 4. The critical dynamical exponent z

FIG. 7. Critical exponents on the critical curve β0(N ; η) as (η, β0) → (0, 0) for N = 500. (a) ν = 0.41 ± 0.02, ν = 0.44 ± 0.01, and
ν = 0.43 ± 0.03 for ξ = max(R), ξ = 〈R〉t , and ξ = r0, respectively. Mean of values: ν = 0.43 ± 0.03. (b) Linear response susceptibility
χ ∼ β−γ with γ = 0.92 ± 0.13. (c) Winding number vs β0: b = 0.50 ± 0.01 ≈ zν. (d) z = 1.20 ± 0.06, z = 1.12 ± 0.04, and z = 1.06 ± 0.08
from (w, max(R)), (w, 〈R〉t ), and (τk, ξ = 1/kc ), respectively. Mean of values: z = 1.12 ± 0.08.
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FIG. 8. Critical exponents on the critical curve β0(N ; η)
as (η, β0) → (0, 0) for N = 500, 1000, 1500, 2000. (a) ν =
0.43 ± 0.03; (b) γ = 0.92 ± 0.13; (c) ξN− 1

3 vs η; (d) χN− γ
3ν vs

η. Parameter values: D0 = 0.76 ± 0.08, p0 + νm0 = 1.24 ± 0.11
(p0 = 1.24 − νmc − νa2N−n2 = 0.72 − νa2N−n2 ). Q0 = 0.003,
q0 − γ m0 = 2.39 ± 0.17 (q0 = 2.39 + γ mc + γ a2N−n2 = 3.5 + γ

a2N−n2 ).

is near 1 for β0 and βc, and the interval width δ is similar
for these curves. However, the critical curve βi(N ; η) has
z ≈ 2.1 and the smallest value of δ, which indicates different
dynamics and may correspond to different length scales in
the multifractal chaotic attractors associated to βi(N ; η) [46].
The LLE is greatest on βi. Moreover, the swarm may start
splitting into different clusters for this stronger confinement,
but it is formed by a single cluster for β0 and βc. As the swarm
shape, z value, and width δ are similar for curves β0 and βc,
we select values for mixtures of data only on these curves of
the extended critical region.

The observed dynamical critical exponents are z = 1.2
[24], and, with more data points, zLS = 1.16 ± 0.12 [30] (Sup-
plemental Material [48], calculated using LS regression; see
below). Using HCVM numerical simulation data with η =
0.5 and particle numbers 100 � N � 5000 on βc(N ; η), the
NDCCF occurs on the same interval of scaled times (Fig. 4
of [46]), and z = 1.01 ± 0.01. Fixing N = 500, a mixture of
HCVM data on β0(N ; η) for noises between 0.3 and 0.7 yields
z ≈ 1, whereas a similar mixture for noises between 0.1 and
0.5 on βc gives z ≈ 1.1; see Fig. 10. A wider noise interval

FIG. 9. Perception range. (a) x vs β0 for 100 � N � 500 and η

as marked. (b) Same for βc. (c) ηmx j x vs η−m j β j , j = 0, c, for 100 �
N � 5000 and 0.1 � η � 1.

0.1 � η � 1 on the critical curve βc(N ; η) for 100 � N �
300 produces the data collapse shown in Fig. 11, and the
exponent z = 1.09 ± 0.02.

B. Dynamical critical exponent z

We use data extracted from numerical simulations of the
HCVM for the critical curves β0 and βc for different noise
values and particle numbers. Figure 12 shows the results of
using a variety of data from numerical simulations of the
HCVM to determine z. Figure 12(a) depicts correlation time
vs correlation length for points on the scale-free curves β0 and
βc. Using LS regression, z ≈ 1 for β0 and βc. The standard de-
viation σ is larger for 0.1 � η � 0.5 than for larger η and so is
the difference �β = βc − β0; see Fig. 12(b). Natural swarms
have relatively small sizes (the largest observed swarm has
N = 781) and data are inevitably noisy [24,30]. Thus we
select data points on scale-free curves β0(N ; η) and βc(N ; η)
for 0.1 � η � 0.5 (critical region [III] in Fig. 1) to calculate z
in Fig. 12(c).

As explained in [30], fitting a straight line by RMA re-
gression takes into consideration both the errors in τ and ξ ,
whereas LS regression considers only the error in τ , thereby
underestimating z. If we take data points on a single critical
line, as in Figs. 10 and 11, the values of the dynamic criti-
cal exponent are the same whether we calculate z using LS
or RMA regression. However, for a mixture of data on the
lines β0 and βc with 0.1 � η � 0.5 and 100 � N � 2500, we
find zLS = 1.15 ± 0.11 and zRMA = 1.33 ± 0.10 with proba-
bility distributions shown in Fig. 12(d). A different mixture
of data with N = 500 and 0.1 � η � 0.5 yields the values
zLS = 1.24 ± 0.11 and zRMA = 1.37 ± 0.10, shown in Fig. 13.

All these values are very close to measurements on natu-
ral swarms: zLS = 1.16 ± 0.12 and zRMA = 1.37 ± 0.11 [30].
They are also close to the RG prediction z = 1.35 for the
ordering transition of the active version of models E/F and G
in Ref. [43]. Numerical simulations of the ordering transition
of the inertial spin model (ISM [34]) with periodic boundary
conditions yield zLS = zRMA = 1.35 ± 0.04 [30].

V. DISCUSSION

For finite N , the HCVM scale-free-chaos phase transition
has an extended criticality region in the noise-confinement
phase plane bounded by two critical scale-free lines β0(N ; η)
and βc(N ; η), which separate nonchaotic-chaotic attractors
and single-multicluster chaos, respectively. On these lines,
macroscopic quantities exhibit power laws in the control pa-
rameter (confinement or perception range) and in noise. We
compute critical exponents by exploiting these power laws,
either by fixing noise and increasing N or by decreasing noise
at fixed N .

Power laws for natural midge swarms are obtained using
data from different numbers of insects and species under
variable environmental conditions [23,24,30]. We mimic these
conditions by using a mixture of η and N values on the
critical lines β0,c(N ; η) of the extended criticality region of
the HCVM scale-free-chaos phase transition [region III of
Fig. 1(c)]. Applying to our numerical simulations the same
tests used to extract critical exponents from observations, we
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FIG. 10. Collapse of the NDCCF g(t ) using mixtures of simulation data with N = 500. (a) Mixture of deterministic data (η = 0) with the
values of β listed in the inset yielding z ≈ 1. (b) Mixture of data on the critical line β0 with the values of η listed in the inset yielding z ≈ 1.
(c) Mixture of data on the critical line βc with the values of η listed in the inset yielding z ≈ 1.1. (d) Mixture of data on the critical line βi with
the values of η listed in the inset yielding z ≈ 2.1.

predict static and dynamic critical exponents in agreement
with those observed in natural swarms within the uncertainty
range of the data. Furthermore, observed qualitative features
such as the collapse of the NDCCF only at short scaled
times t/ξ z [24] or the swarm shape in Figs. 2(b) and 2(c)
(condensed core surrounded by insect vapor [49]) agree with
HCVM simulations and with HCVM mean-field theory [47].
Collapse of g(t ) only for short scaled times suggests [46] that
several timescales are involved in HCVM simulation data near
the scale-free-chaos phase transition and in measurements on
natural swarms [24].

Contrastingly, numerical simulations near ordering scale-
free transitions produce collapse of the NDCCF for all scale
times kz

ct ; see Figs 2(c) and 2(d) of [24] for the periodic
VM and [30] (Fig. 20 of the Supplemental Material [48]) for
the ISM, also with periodic boundary conditions. Collapse
of the NDCCF for all scaled times indicates that a single
correlation time is involved in the ordering phase transition of
these models. Despite being models of active matter far from
equilibrium, the ordering phase transition involves spatially
homogeneous phases that are invariant under translations.
This facilitates using RG theory to calculate critical exponents
of the active E/F and G models as a control parameter tends
to the critical point of the transition [30]. In fact, in the
absence of noise, phases are constant solutions of the gov-
erning equations of the model, which are nonlinear stochastic
partial differential equations with space-independent coeffi-
cients. RG calculations are based upon perturbation theory
about these simple phases [30,42–44]. The theories based
on the ordering phase transition predict accurately the

FIG. 11. Normalized dynamic connected correlation function
(NDCCF) g(t ) = Ĉ(kc, t )/Ĉ(kc, 0) with kc = argmaxkĈ(kc, 0) = 1/ξ

[46] for β = βc(N ; η), 0.1 � η � 1, and 100 � N � 300. (a) g(t ).
(b) Visual collapse of the NDCCF as a function of kz

ct for z ≈ 1.2;
zLS = zRMA = 1.09 ± 0.02.

dynamical critical exponent (z = 1.35) but fail to predict the
static critical exponents (they predict ν = 0.748, γ = 1.171
instead of the observed values ν = 0.35 ± 0.10 and γ =
0.9 ± 0.2 [23]) [30], the limited collapse of the NDCCF [24],
or the shape of the swarm [23,49]. To belong to the same uni-
versality class, theories and experiments should yield the same
critical exponents. A satisfactory explanation of insect swarms
should reproduce qualitative features such as the shape of
the swarm and the limited collapse of the NDCCF. In view
of its negative features, inasmuch as the symmetries of the
ordering transition do not respond to the qualitative features
observed in insect swarms (markers, collapse of NDCCF only
for scaled times on a finite interval, etc.), we conclude that
the ordering transition between homogeneous phases does not
belong to the hypothetical university class of insect swarms.
Since it describes qualitative features and provides static and
dynamical critical exponents close to measured ones, we think
our scale-free-chaos phase transition has a better chance to
describe natural swarms.

To check whether natural swarms are close to a scale-free-
chaos phase transition, time series from measurements should
be used to calculate the largest Lyapunov exponent [46]. If
the data are not sufficient, calculating the scale-dependent
Lyapunov exponent could test whether noisy chaos is con-
sistent with observations [46]. Random motion observed in
experiments [50,51] may point to midge swarms being in the
vicinity of chaotic attractors.

From a theoretical standpoint, a future RG theory of the
HCVM would ascertain the class of universality of its scale-
free-chaos phase transition. Numerical simulations indicate
that the RG flow should include a line of critical points
comprising the point of zero noise and confinement in Fig. 1
[46,47]. This feature is absent from the RG flow of the order-
ing transition of active stochastic PDEs [30].

Coming back to the question of whether biological systems
are close to criticality [12], our results may introduce a new
twist to the analogy with phase transitions. Sometimes it is
difficult to identify a control parameter of the biological sys-
tems and ascertain how far they are from the critical point. In
particular, this is the case if the measurements involve obser-
vations under different external conditions or the data refer to
systems comprising different numbers of entities [23,24,30].
In these cases, a mixture of data over the critical region of
a given theory may explain observations, as we endeavor to
show here for natural midge swarms.
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FIG. 12. Mixtures of simulation data. (a) Correlation time vs length for data on scale-free curves β0(N ; η) and βc(N ; η) for 0.1 < η < 1
and 100 < N < 2500. Note that the standard deviation σ is larger for smaller noise values. (b) Scale-free curves for N = 500 showing the noise
intervals with smaller and larger σ . �β = βc − β0 increases as η decreases. (c) Same as panel (a) for 0.1 < η < 0.5 showing LS and RMA
fittings to straight lines for β0 and βc data: the corresponding dynamical critical exponents are zLS = 1.15 ± 0.11 and zRMA = 1.33 ± 0.10.
(d) Probability distribution of the LS (blue) and RMA (orange) critical exponent z from the resampling method consisting of randomly drawing
107 subsets with half the number of points from numerical simulations. Then we determine z in each subset using LS and RMA [30].
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APPENDIX A: CHAOTIC AND NOISY DYNAMICS
(ADAPTED FROM REF. [46])

We calculate the LLE in different ways that are comple-
mentary to each other: (i) directly from the equations by using
the Benettin et al. algorithm (BA) [52], and from time traces
of the center-of-mass motion or the NDCCF to reconstruct
the phase space of the chaotic attractor by means of (ii) the
scale-dependent Lyapunov exponent (SDLE) algorithm [53]
and (iii) the Gao-Zheng algorithm [54]. Using the BA requires
knowing the equations of the model, whereas time traces can
be obtained from numerical simulations of equations or from
experiments and observations. The SDLE algorithm is useful
to separate the cases of mostly deterministic chaos from noisy
chaos and mostly noise even in the presence of scarce data
and a reconstruction of the attractor that is not very precise
[53], whereas the Gao-Zheng algorithm requires more data
points [54]. We now describe these different algorithms and
illustrate the results they provide for the HCVM. In all cases
we eliminate the effects of initial conditions by leaving out the
first 30 000 time steps before processing the time traces.
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FIG. 14. Scale-free chaos. (a) Phase diagram β vs η exhibiting regions of deterministic and noisy chaos, and of noisy disorder. The vertical
lines at η = 0.2 and 0.9 correspond to the maximum correlation length observed in experiments and to the noise for which the dynamic
correlation function ceases to be flat near t = 0, respectively. Noise swamps chaos for η � 1. The three lines of critical points in the noisy
chaos region correspond to critical confinement βc(N, η) for N = 100, 150, 200. They separate multicluster (M-cluster) from single cluster
(S-cluster) chaos. (b) Largest scale-dependent Lyapunov exponent as a function of the scale parameter ε for N = 100, different values of η,
two lagged coordinates m = 2 and β = βc(N, η). The LLE is the value of λ(ε) at a plateau (ε1, ε2) whose width satisfies log10(ε2/ε1) � 1/2.
The vertical lines mark the width of the critical plateau at which log10(ε2/ε1) = 1/2 and correspond to the vertical dot-dashed lines in panel
(a). The black line and arrow mark the very small slope of the SDLE for noise values close to deterministic chaos. By convention [53],
noise swamps chaos when log10(ε2/ε1) < 1/2. (c) Largest scale-dependent Lyapunov exponent as a function of the scale parameter ε for
N = 100, different values of η, and β = βc(N, η) with m = 6, instead of m = 2 as in panel (b). The averages of the oscillations corresponding
to the plateau region in panel (b) increase with the noise η, indicating that so does the LLE: λ1(0) ∼ 0.003, λ1(0.25) ∼ 0.0075, λ1(0.5) ∼
0.0165, λ1(0.75) ∼ 0.03, λ1(1) ∼ 0.0476. Reproduced from Fig. 3 of Ref. [46].

1. Benettin algorithm

We have to simultaneously solve Eqs. (1) and the linearized system of equations

δx̃i(t + 1) = δx̃i(t ) + δṽi(t + 1), i = 1, . . . , N,

δṽi(t + 1) = v0Rη

[⎛
⎝I3 −

[ ∑
|x j−xi|<R0

v j (t ) − βxi(t )
]T [ ∑

|x j−xi|<R0
v j (t ) − βxi(t )

]
∣∣∑|x j−xi|<R0

v j (t ) − βxi(t )
∣∣2

⎞
⎠·

∑
|x j−xi|<R0

δṽ j (t ) − βδx̃i(t )∣∣∑|x j−xi|<R0
v j (t ) − βxi(t )

∣∣
]
, (A1)

in such a way that the random realizations Rη are exactly the same for Eqs. (1) and (A1). The initial conditions for the distur-
bances, δx̃i(0) and δṽi(0), can be randomly selected so that the overall length of the vector δχ = (δx̃1, . . . , δx̃N , δṽ1, . . . , δṽN )
equals 1. After each time step t , the vector δχ(t ) has length αt . At that time we renormalize δχ(t ) to χ̂(t ) = δχ(t )/αt and use
this value as initial condition to calculate δχ(t + 1). With all the values αt and for sufficiently large l , we calculate the Lyapunov
exponent as

λ1 = 1

l

l∑
t=1

ln αt ,

αt = |δχ(t )| = |(δx̃1(t ), . . . , δx̃N (t ), δṽ1(t ), . . . , δṽN (t ))|. (A2)

See Figs. 17 and 18 of [46] for convergence of the BA.

2. Scale-dependent Lyapunov exponents

We use scale-dependent Lyapunov exponents (SDLEs)
from the CM motion to characterize deterministic and noisy
chaos as different from noise [53]. Adding the components of
X(t ), we form the time series x(t ) = X1(t ) + X2(t ) + X3(t ).
To calculate the SDLE, we construct the lagged vectors: Xα =
[x(α), x(α + τ̃ ), . . . , x(α + (m − 1)τ̃ )]. The simplest choice
is m = 2 and τ̃ = 1 (other values can be used, see below).
From this dataset we determine the maximum εmax and the
minimum εmin of the distances between two vectors, ‖Xα −
Xβ‖. Our data is confined in [εmin, εmax]. Let ε0, εt , and εt+�t

be the average separation between nearby trajectories at times
0, t , and t + �t , respectively. The SDLE is

λ(εt ) = ln εt+�t − ln εt

�t
. (A3a)

The smallest possible �t is, of course, the time step τ̃ = 1, but
�t may also be chosen as an integer larger than 1. Gao et al.
introduced the following scheme to compute the SDLE [53].
Find all the pairs of vectors in the phase space whose distances
are initially within a shell of radius εk and width �εk:

εk � ‖Xα − Xβ‖ � εk + �εk, k = 1, 2, . . . . (A3b)

We calculate the Lyapunov exponent (A3a) as follows:

λ(εt ) = 〈ln ‖Xα+t+�t − Xβ+t+�t‖ − ln ‖Xα+t − Xβ+t‖〉k

�t
,

where 〈〉k is the average within the shell (εk, εk + �εk ). The
shell-dependent SDLE λ(ε) in Fig. 14(b) displays the dynam-
ics at different scales for τ̃ = 1 and m = 2 [53]. Using two
lagged coordinates produces plateaus having a value of λ(ε)
equal to the LLE of deterministic chaos. This value differs
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from the LLE calculated using the BA or a more appropriate
reconstruction of the phase space involving more lagged coor-
dinates (see below). However, the SDLE with m = 2 yields a
qualitative idea of the effects of noise on chaos. In determinis-
tic chaos, λ(ε) > 0 presents a plateau with ends ε1 < ε2 � 1;
in noisy chaos this plateau is preceded and succeeded by re-
gions in which λ(ε) decays as −γ ln ε, whereas it shrinks and
disappears when noise swamps chaos. As η increases, λ(ε)
first decays to a plateau for η = 0.1. A criterion to distinguish
(deterministic or noisy) chaos from noise is to accept the
largest Lyapunov exponent as the positive value at a plateau
(ε1, ε2) satisfying

log10
ε2

ε1
� 1

2
. (A3c)

For η = 0.5, the region where log10(ε2/ε1) = 1/2 is marked
in Fig. 14(b) by vertical lines. Plateaus with smaller values
of log10(ε2/ε1) or their absence indicate noisy dynamics [53].
This occurs for η = 1. The ends of the interval (0.1,1) of noisy
chaos are marked by two vertical dashed lines in Fig. 14(a).

3. Largest Lyapunov exponent from high-dimensional
reconstructions of CM motion

The previous reconstruction of the phase space for CM
motion used to calculate SDLE considers two-dimensional
lagged vectors (m = 2). This produces useful qualitative

phase diagrams with flat plateaus, but the dimension of this
vector space is too small to faithfully reconstruct the attractor.
More realistic CM trajectories in higher dimension contain
self-intersections in dimension 2. This explains the different
values of the LLE found in the SDLE plateaus of Fig. 14(b)
as compared with those found by the BA of Eq. (A2). To
safely reconstruct a chaotic attractor, the dimension of the
lagged vectors should surpass the fractal dimension D0 twice
[55]. For the HCVM, m = 6 is sufficient in view of Fig. 6
of Ref. [46]. However, the SDLE λ(ε) presents oscillations
as indicated in Fig. 14(c), and their average values replace the
plateaus in Fig. 14(b). In contrast with Fig. 14(b), the averaged
oscillations produce LLEs that increase with noise. Averaging
oscillations is not going to produce precise values of the LLE.
Thus we calculate the LLE from the lagged coordinates with
m = 6 using the Gao-Zheng algorithm [54]. This requires
constructing the quantity �(k) whose slope near the origin
gives the LLE [54]:

�(k) =
〈
ln

‖Xi+k − Xj+k‖
‖Xi − Xj‖

〉
. (A4)

Here the brackets indicate ensemble average over all vector
pairs with ‖Xi − Xj‖ < r∗ for an appropriately selected small
distance r∗. Figure 20 of [46] displays the graph of �(k) given
by Eq. (A4). The slopes of �(k) for different values of N at
βc(N ) equal the LLEs, increase with β, and agree with the
averaged oscillations marked in Fig. 14(c).
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