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frustrated assemblies: Chain assembly of incommensurate polybricks
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In geometrically frustrated assemblies, equilibrium self-limitation manifests in the form of a minimum in
the free energy per subunit at a finite, multisubunit size which results from the competition between the elastic
costs of frustration within an assembly and the surface energy at its boundaries. Physical realizations—from
ill-fitting particle assemblies to self-twisting protein superstructures—are capable of multiple mechanisms of
escaping the cumulative costs of frustration, resulting in unlimited equilibrium assembly, including elastic modes
of “shape flattening” and the formation of weak, defective bonds that screen intra-assembly stresses. Here we
study a model of one-dimensional chain assembly of incommensurate “polybricks” and determine its equilibrium
assembly as a function of temperature, concentration, degree of shape frustration, elasticity, and interparticle
binding, notably focusing on how weakly cohesive, defective bonds give rise to strongly temperature-dependent
assembly. Complex assembly behavior derives from the competition between multiple distinct local minima
in the free-energy landscape, including self-limiting chains, weakly bound aggregates of self-limiting chains,
and strongly bound, elastically defrustrated assemblies. We show that this scenario, in general, gives rise to
anomalous multiple aggregation behavior, in which disperse subunits (stable at low concentration and high
temperature) first exhibit a primary aggregation transition to self-limiting chains (at intermediate concentration
and temperature) which are ultimately unstable to condensation into unlimited assembly of finite-chains through
weak binding beyond a secondary aggregation transition (at low temperature and high concentration). We show
that window of stable self-limitation is determined both by the elastic costs of frustration in the assembly as well
as energetic and entropic features of intersubunit binding.
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I. INTRODUCTION

Geometric frustration arises when the local preferred or-
dering of a system cannot be realized on a global scale. When
this occurs, individual constituents of a system will often find
complex ways of ordering on a large scale. This concept has
been studied in many contexts such as the frustrated ordering
of magnetic spins on various lattices [1–4], nanoscale pattern
formation on substrates [5,6], bent-core liquid crystals [7–10],
and the ordering of colloids on curved surfaces [11–14].
Recently, there has been great interest in understanding the
influence of geometric frustration on the morphologies as
well as the sizes of self-assembled structures of misfitting
building blocks [15–17]. The concept of geometrically frus-
trated assembly (GFA) has been applied to a range of existing
systems in soft matter from protein bundles [18–23] and chiral
membranes of liquid crystals and surfactants [24–29] to more
recent efforts to design and assemble intentionally misfitting
particles [17,30–36]. When such building blocks assemble
through an attractive interaction, the resulting structure, as
well as the blocks themselves and their interactions, must
deform as the assembly grows. This competition between the
attractions of the building blocks and the build up of strain
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regulates the equilibrium sizes and morphologies of the re-
sulting assemblies, a phenomenon known as self-limiting
assembly [15,37]. Basic questions regarding the fundamen-
tal and. practical importance of GFAs include how does the
self-limiting size depend on shape and interactions of given
building blocks and how large can the self-limiting size be
relative to that subunit size?

Self-limitation in GFA relies on the propagation of intra-
assembly gradients of local strain, whose effects lead to the
accumulation of elastic costs that grow superextensively with
size [16]. Mechanisms that relax or obstruct the propagation
of elastic effects to large sizes, and thus limit the maximal
range of self-limiting sizes, can be broadly grouped into two
categories [15]. The first, dubbed as “shape flattening,” occurs
when the shape of misfitting particles is sufficiently soft that it
is overwhelmed by the strong, interparticle cohesive binding,
deforming the particle assembly into uniform, unfrustrated
motifs, and giving way to unlimited (i.e., bulk) assembly.
Such “soft” mechanisms of frustration escape are controlled
by elastic parameters that control both shape deformation
and intraparticle strains. Alternatively, the second category of
frustration escape mechanisms relies on inelastic defects in
the assembly that, at least partially, mitigate the propagation of
frustration induced stress. For two-dimensional (2D) ordered
assemblies, these may take the form of topological defects,
e.g., disclinations and dislocations, that screen frustration
[12–14,38–41]. More generally, a defect may take the form of
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FIG. 1. Attenuation of stress propagation through broken bonds
and weak binding. An assembly larger than its preferred size N� can
lower its free energy per subunit and relieve strain by breaking into
multiple smaller, weakly bound assemblies.

any partial bond that localizes frustration induced stress, such
as an internal crack or weak bond, but nevertheless acquires
some cohesion (see, e.g., examples in assembly models of
hyperbolic tubules in Refs. [33,36]).

In this article, we study a 1D model of GFA capable of
exhibiting both modes of frustration escape and, in particular,
aim to understand the generic effects of “weak,” defective
binding on the thermal stability of self-limiting assembly.
Our model is inspired by the so-called DNA origami-based
polybrick particle, developed and studied by Berengut and
coworkers [30], shown to exhibit self-limiting chain assem-
bly. Figure 1 illustrates schematically the generic effects of
weak binding in a 1D frustrated assembly on the free energy
per subunit landscape. While the accumulation of frustration
stresses between strongly bound particles leads to a primary
minimum at a well-defined size N∗, it is straightforward to see
that weak binding between two or more strongly bound chains
can lead to additional local minima in the free energy per
subunit at integer multiples of the primary aggregate size. At
zero-temperature, any weak cohesive interaction guarantees
that the ground state is an infinite chain of weakly bound
aggregates, i.e., an unlimited aggregate. At finite temperature,
secondary assembly of primary aggregates is controlled by
the free energy of weak binding, which may be favorable or
unfavorable depending on both the energy gain and entropy
cost of weak binding. In general, this illustrates that geomet-
rically frustrated self-assembly is characterized by multiple
local minimal at distinct sizes which compete for stability.
Based on the exact solution of the ideal 1D assembly behav-
ior of the frustrated polybricks, we illustrate two basic and
generic consequences of weak, defective binding in frustrated
assembly. First, we show that self-limitation is only possible
above a minimal finite temperature. Second, we show that the
competition between the primary aggregation into strongly
bound assemblies and the weak binding of those assembled
chains leads to an exotic type of secondary aggregation
behavior.

Canonical assembly, like the spherical micellization of
surfactants, is marked by a single pseudocritical aggregation

transition between a dispersed state at low concentration and a
micelle-dominated state at high concentration [42,43]. Cases
where there are multiple, nearly degenerate local minima in
the free energy per subunit exhibit more complex scenarios
[37], where there is a primary aggregation transition from
a dispersed state into a finite aggregate state, followed by a
secondary aggregation transition from primary aggregates to
a secondary state of aggregates (of typically higher aggregate
mass) at further higher concentration or lower temperature.
For surfactants, such secondary micellization transitions have
been studied in the context of concentration-dependent transi-
tions from spherical to cylindrical micelles, where the nature
of the transition is controlled by the microscopic energetics of
molecular packing in spherocylindrical aggregates [44–47].

Here we show that the secondary aggregation behavior
is a generic feature of GFAs due to the unavoidable possi-
bility of weak, partial binding between attractive subunits.
In what follows, we introduce an exactly solvable model
of a frustrated polybrick assembly and predict the assembly
behavior as a function of frustration, concentration, and tem-
perature, showing in general that self-limitation is possible
at intermediate regimes of these basic parameters, shown
schematically in Fig. 2. As temperature is decreased (or con-
centration is increased), we predict a sequence of states from
dispersed monomers to self-limiting to defective and unlim-
ited (i.e., weakly bound chains of chains) assemblies. As
frustration is decreased (when below a critical temperature),
we predict a sequence of states from dispersed monomers to
self-limiting to strongly bound, unlimited chains. We relate
these stability windows to microscopic parameters that con-
trol intra-assembly elasticity, as well as entropy and energy
of binding. The paper is structured as follows. In Sec. II,
we introduce our model of an incommensurate chain of
“polybricks” and the finite-temperature corrections to the free
energy per subunit. In Sec. III, we describe the ideal aggre-
gation of linear chains and establish criteria for determining
whether a system is dispersed, self-limiting, or defective. In
Sec. IV, we describe the distinct free energy per subunit
landscapes possible in our model and their correspond-
ing concentration-dependent aggregation and summarize the
equilibrium assembly behavior of frustrated polybricks in the
temperature-frustration plane.

II. Frustrated, incommensurate chain model

To gain insight into the role of temperature on the self-
limiting assembly of GFAs, we start by introducing a simple
solvable model of a linear chain of incommensurate subunits
inspired by recent experiments of DNA origami, incommen-
surate “polybrick” particles [30]. We begin by defining the
(zero-temperature) energetics of strongly bound chain assem-
bly in the model.

A. Energetics of strongly bound, frustrated chains

The subunits in this system consist of three blocks (i.e.,
rectangular prisms of a honeycomb DNA lattice): a short
block of length (1 − f )a sandwiched between two longer
blocks of length a, as shown in Fig. 3(a). Here the quan-
tity f characterizes the amount of shape mismatch, namely
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FIG. 2. Schematic of example states of frustrated self-assembly. Varying temperature results in (a) dispersed subunits, (b) self-limiting
assemblies, and (c) secondary aggregation of self-limiting assemblies through the formation of broken bonds or defects. Varying frustration
results in (d) dispersed, highly frustrated subunits, (e) self-limiting assemblies, and (f) shape-flattened, unlimited assemblies where frustration
is not enough to overcome binding.

FIG. 3. (a) Incommensurate chain model (left) inspired by experiments [30] (right). (b) Energy per subunit of linear chains of length N
for increasing cohesion (binding energy �0) with ratio of elasticities k f /ku = 100 (k f = 100, ku = 1) and frustration f a = 0.05. Red stars
indicate the local energy minima and the corresponding structures and their strains are shown. (c) Self-limiting size as a function of the
cohesion between subunits.
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the frustration, in a linear assembly of such subunits with
the central blocks preferring a lattice spacing of (1 − f )a
that is incommensurate with the preferred lattice spacing a
of the outer blocks. Within a subunit, our model considers
the central block to be elastically attached to the two outer
blocks with a spring of stiffness ku favoring the middle block
to be centered between the outer two longer blocks and pe-
nalizing lateral (i.e., sliding) displacements u relative to the
centered position. Hence, ku parameterizes the intrasubunit
deformablility. To keep the analysis simple, we assume that
the two outer blocks move together and act as a backbone
along which the central block can slide, although it is pos-
sible for a more complex array of intraparticle deformation
modes to renormalize the effective parameters described here.
Finally, when two subunits are strongly bonded, the central
blocks elastically interact through a spring of stiffness k f .
That is, binding favors a specific face-to-face contact, but
the incommensurate geometry of blocks in general requires
some strain displacement from that contact. In the case of
DNA origami polybricks, the intersubunit stiffness can derive
from the deformation of bound single-stranded DNA bases
that mediate attractions between the particle faces in combi-
nation with the compression of the repulsive brushes that coat
flanking blocks. More generally, the stiffness of specific in-
teractions between frustrated particles can be manipulated via
surface functionalization with complementary single-stranded
DNA sequences [48,49].

The energy of a linear chain of N strongly bound subunits
is

EN [{un}] = − (N − 1)�0 +
N∑

n=1

1

2
kuu2

n

+
N−1∑
n=1

1

2
k f (un+1 − un + f a)2, (1)

where un is the position of the central block relative to the
outer blocks of the nth subunit. Note that while the strains un

are along the chain, the chain itself can live in 3D and behave
like a polymer, which will be important for the later discussion
of orientation entropies at finite temperature (Sec. II B). The
first term describes the effect of cohesive gain of strong bonds
in the system, where �0 is the binding energy of the ideal,
unstrained bond. The second and third terms correspond to the
intrasubunit deformation energy and the intersubunit bond-
stretching energy, respectively. This energy can be minimized
with respect to the displacements {un}, the details of which we
leave for Appendix A. The per-subunit ground-state energy is

EN = EN

N
= −

(
1 − 1

N

)
�0 + E (ex)

N , (2)

where E (ex)
N is the excess energy per subunit built up

from the accumulation of strain due to the incommensurate
lengths of the blocks. The per-subunit ground-state energy
is shown in Fig. 3(b). The excess energy density, indicated
by the orange curve, has a useful continuum approximation
[see Appendix A 2, Eq. (A13)] given by

E (ex)
N ≈ 1

2
k f f 2a2

(
1 − tanh N/

√
4k f /ku

N/
√

4k f /ku

)
. (3)

The quantity
√

4k f /ku can be interpreted as the size scale
over which strains can accumulate. It is also the ratio of the
intrasubunit deformability to the intersubunit deformability.
For small assemblies N � √

4k f /ku, the per-subunit excess
energy grows superextensively as E (ex)

N ∼ ku f 2a2N2 as the
assembly strains more and more to bind new subunits, i.e.,
in this regime the central brick must displace more and more
un ∼ f aN to account for the accumulating length mismatch
between tightly bound units. At large assembly sizes N �
Nflat = √

4k f /ku, the subunits can only internally deform so
much before it is favorable to strain the bonds between them
instead, i.e., they begin to adopted uniformly strained interac-
tions (with the exception of a boundary layer) and the energy
density plateaus to E (ex)

∞ = k f f 2a2/2. As shown in the exam-
ple assemblies in Fig. 3(b), a majority of the strain gradient is
expelled to the boundaries while the bulk subunits remain rel-
atively uniformly strained. This is known as shape flattening.
The frustration and strain accumulation, whose per particle
cost grows as E (ex)

N ≈ ku(a f N )2 for small sizes, competes with
the binding of new subunits as the binding energy density,
indicated by the blue curve, decreases as ∼�0/N and favors
larger assemblies. This competition leads to an energetically
favorable, self-limiting size N�(T = 0) ∼ (�0/ku f 2a2)1/3, as
shown in Fig. 3(c). As one increases the strength of binding
or decreases the frustration, the self-limiting size increases.
However, above a certain threshold binding strength (or below
a threshold frustration), assemblies enter the shape-flattening
regime N∗ � Nflat where the accumulative cost of sliding
strain exceeds the cost to deform the interparticle blocks uni-
formly. As binding becomes more cohesive, or particle shapes
become less frustrated, the energy per subunit no longer has a
minimum at finite N , and the ground-state structure becomes
unlimited in size. This condition can be estimated by equating
the accumulating intraparticle shear energy to the cost of
uniform bond strain. From this condition, we see that shape-
flattening sets an upper limit on the equilibrium self-limiting
size of chains which occurs at a corresponding minimal value
of frustration (see Appendix A 2)

N∗ � Nflat ≈ √
k f /ku; f � fflat (T = 0) ≈ �

1/2
0 k−3/4

f k1/4
u ,

(4)

where here we consider the case of fixed cohesive energy per
strong bond (�0). In general, these conditions suggest that
increasing the value of interaction stiffness k f relative to the
intraparticle stiffness ku favors larger range of self-limiting
sizes.

B. Vibrational and orientational contributions to free energy

At finite temperature, the vibrational and orientational de-
grees of freedom that describe conformational flucutations
of aggregates lead to associated entropic contributions to the
free energy of assembly. A free subunit can access all pos-
sible orientations. However, when strongly bound to another
subunit, its possible orientations relative to its neighbor are
reduced due to a combination of bending and excluded vol-
ume. We model this by assuming that a strongly bound subunit
can freely rotate within a cone with angle θ� relative to its
neighbor [Fig. 4(a)] but cannot exceed that angle due to an

014608-4



THERMAL STABILITY AND SECONDARY AGGREGATION … PHYSICAL REVIEW E 109, 014608 (2024)

FIG. 4. (a) Bound subunits are more restricted in their vibrational and orientational modes, leading to a reduction of vibrational and
orientational entropies. (b) Strongly bound subunits have a binding energy −�0 while weakly bound subunits, which results from broken
bonds or any residue binding, have a binding energy −δ0. The free-energy landscape, F [see, e.g., Eq. (13)], contains infinitely many local
minima corresponding to the primary self-limiting assembly and defective aggregates of weakly bound self-limiting assemblies. Changing
the temperature-dependent weak-binding free energy δT (see Sec. II C) changes whether the defective aggregates are favorable −δT < 0 or
unfavorable −δT > 0.

energy barrier. This reduction in the orientational freedom of
bound subunits and its contribution to the free enegy can be
computed from the partition function,

Zorient =
(∫ 2π

0

∫ θ�

0

d�

4π

)N−1

. (5)

Note that one could explicitly include a relative orientational
strain energy between bound subunits; however, this would
not qualitatively change the resulting orientational contribu-
tion to the free energy as it would simply replace our cone
angle with an orientational modulus (see Appendix A 3). Most
important, the effects of orientational fluctuations (and their
elastic cost) are noncumulative, unlike the frustration from
midblock displacements. The vibrational contribution can be
computed by considering collective sliding modes in a chain
of N strongly bound subunits (i.e., phonons) {δun} about the
ground-state positions of the central blocks. The partition
function is

Zvib =
∫ (

N∏
n=1

dδun

)
e−βEN [{u(ex)

n +δun}]. (6)

The free energy per subunit of the linear chain can be com-
puted as

FN = −kBT

N
ln ZorientZvib = EN + δF (orient)

N + δF (vib)
N , (7)

where EN is the per-subunit ground-state energy [Eq. (2)]
and δF (orient)

N and δF (vib)
N are the orientational and vibrational

contributions to the free energy [see Appendix A 3,
Eqs. (A19a) and (A21)] given by

δF (orient)
N =

(
1 − 1

N

)
kBT ln

2

1 − cos θ�

, (8a)

δF (vib)
N ≈

(
1 − 1

N

)
kBT ln

⎡
⎣1

2

⎛
⎝1 +

√
1 + 4k f

ku

⎞
⎠
⎤
⎦. (8b)

Observe that the forms of these contributions allow us to
rewrite the total per-subunit free energy as

FN = −
(

1 − 1

N

)
�T + E (ex)

N , (9)

where the temperature-corrected binding free energy �T takes
on the form

�T = �0 − T s�, (10)

and for our particular calculation

s� = kB ln

⎡
⎣ 1

1 − cos θ�

⎛
⎝1 +

√
1 + 4k f

ku

⎞
⎠
⎤
⎦. (11)

Note that in general, s� is some positive quantity that cap-
tures the effect of temperature on binding. In essence, the
vibrational and orientational entropy costs of binding effec-
tively weaken the energetic gain of assembling. Note that
T� = �0/s� is the temperature above which (unfrustrated)
bonds are melted and the energetically favorable state is a
single subunit for f = 0. To get a sense for the value of s�,
suppose that θ� ∼ 1◦–10◦ and k f /ku ∼ 1–100, which gives
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s� ∼ (5 − 10)kB. Note that if the full binding energy is of
order 10kBT , then the vibrational or orientational melting of
the bond occurs on order few kBT .

Finally, we note that our model implicitly excluded the ef-
fects of nonideal interactions between distinct subunits along
the same chain, which could either take the form of excluded
volume interactions or cyclization of chains into rings. Hence,
we assume that orientational fluctuations of subunits is suffi-
ciently small that the persistence length of assembled chains
is much larger than self-limiting size scales.

C. Free-energy landscape of weak binding

As the size of a frustrated assembly grows, it will often
find ways of escaping and relieving frustration through the
formation of defects that attenuate or stop the the propagation
of stresses [15]. In our case, we represent this attenuation
of stress propagation as broken bonds between the central
block of two neighboring subunits [Fig. 4(b)], which we call
weak, or “defective,” bonds. In such a state, we assume that
there can still be some weaker, residual cohesion between
subunits that has a characteristic binding energy −δ0 � −�0.
In a manner similar to the case of fully bound subunits (see
Appendix A 3), the entropic contributions to weak binding
results in a temperature-corrected weak-binding free energy,

δT = δ0 − T sδ, (12)

where just as with strong bonds, sδ is a positive quantity
capturing the finite-temperature effects on weak binding. In
particular, finite temperature has the effect of making weak
binding, or defects, less favorable due to the entropic costs of
reduced rotational freedom of binding together two otherwise
freely rotating chains [see Eq. (A24)]. Hence, above a temper-
ature Tδ = δ0/sδ , they become entropically unfavorable since
−δT > 0. As we illustrate below, the entropic cost of defect
formation plays a critical role in the thermodynamic stability
of self-limiting states.

To construct the free-energy landscape of the incommen-
surate chain model including both strong (stress-propagating)
and weak (defective, stress-attenuating) states of subunit bind-
ing, we start with the free energy FN of a linear chain of
N strongly bound subunits. As the size of the chain grows
from a single subunit, the free energy initially decreases due
to binding until the chain reaches the self-limiting size (a
local minimum at primary aggregate size N = N∗) after which
it increases due to stress accumulation. Eventually, when
enough stress builds up, it becomes energetically favorable
for the linear chain to break into two weakly bound pieces,
the per-subunit free energy of which can be approximated
as FN/2 − δT /N , where the first term is the per-subunit free
energy of each half and the second term is the weak-binding
free energy distributed over the N subunits. This reasoning can
be continued for a linear chain broken up into M � N weakly
bound pieces with an approximate per-subunit free energy
FN/M − (M − 1)δT /N . Finally, for each size N , there will
be some number M � 1 of strongly bound subchains, held
together by M − 1 weak bonds, that is, the thermodynamically
optimal chain to form. Thus, the free energy can be taken to

be

FN = min
1�M�N

{
FN/M − (M − 1)δT

N

}
. (13)

The key result of the hierarchy of strong and weak bonds
is shown in Fig. 4(b) (right), illustrated for series increasing
values weak bond free energies. In general, if N� is the self-
limiting size, then the subsequent local minima (separated
by barriers) of the free energy are roughly 2N�, 3N�, . . . ,
corresponding to multiple self-limiting assemblies weakly ag-
gregating together. This serves as the starting point for a useful
approximation we discuss in Appendix B. The value of −δT

regulates which of these local minima is the global one. When
−δT > 0 the entropy cost of defects leads to a global ground
state at the primary minimum N = N∗, a single strongly bound
self-limiting aggregate, defined by the balance between frus-
tration and cohesion. When −δT < 0 weak binding of strong
aggregates is favored, and the global ground-state transitions
to infinite, defective chains of primary aggregates. In this con-
text, it is clear that as T → 0 any weak cohesion in defective
bonds leads to an unlimited chain of primary aggregates as the
ground state.

III. IDEAL AGGREGATION AND SELF-LIMITING
VS UNLIMITED ASSEMBLY CRITERIA

Beyond the energetics and entropy of internal configura-
tions of assembled chains, equilibrium assembly also depends
on the translational entropy associated with distributing sub-
units among different populations of aggregates at fixed
temperature and concentration. We study this by applying
ideal aggregation theory to a system with a fixed concentra-
tion of subunits [37,43], which assumes that concentrations
are low enough that interactions between different aggregates
have a negligible effect on their free energy. Let 	N be the
volume fraction of subunits in assemblies of size N . The total
free energy of the system is

Ftot =
∞∑

N=1

	N

(
FN + kBT

N
ln

	N

Ne

)
, (14)

where the logarithmic term represents the translational en-
tropy of N subunits sharing a single center-of-mass degree of
freedom. Minimizing the total free energy with respect to the
volume fraction, 	 = ∑

N 	N , yields the law of mass action,
	N = N (	1e−βFN )N . The dispersed subunit volume fraction
	1 can be determined from mass conservation, that is, the
total volume fraction of subunits must remain fixed or

	 =
∞∑

N=1

N
(
	1e−βFN

)N
. (15)

This relation is an equation of state that relates the mass of
subunits in distinct aggregate populations to the total mass of
subunits, requiring that all aggregates are in chemical equilib-
rium. Here the concentration of free monomers parameterizes
the chemical potential of subunits in the system, kBT ln 	1

[43].
To gain intuition into the role of the weak-binding free

energy δT , we consider a simple example shown in Fig. 5
where we vary only the weak-binding free energy while
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FIG. 5. Role of varying the weak-binding free energy. (a) Example free energies for favorable [(i), (ii), and (iii)] δT > 0, neutral (iv)
δT = 0, and unfavorable (v) δT < 0 weak binding for k f /ku = 100 and kBT/�0 = 0.05. The self-limiting size is fixed at N� ∼ 9. (b) Mass
distributions of subunits for case (ii) of favorable weak binding (left) or δT /�0 = 0.5 > 0, which leads to unlimited growth and multiple
aggregation of self-limiting assemblies, and case (v) of unfavorable weak binding (right) or δT /�0 = −0.5 < 0, which leads to the stabilization
of self-limiting assemblies. Insets show mass distributions and sizes on log scales. (c) Average assembly size. (d) Relative size fluctuations.
The black dotted line corresponds to the local maximum or the onset of self-limiting assembly while the colored dotted lines correspond to
local minima or the onset of weakly bound aggregation.

keeping the self-limiting size, excess elastic energy of frus-
tration, and temperature fixed. When the weak-binding free
energy δT is comparable to the full binding free energy
�T , the energy landscape loses the self-limiting minimum
[Fig. 5(a), cases (i) and (ii)] as it is thermodynamically favor-
able to break up strongly bound chains into smaller pieces,
which do not propagate frustration induced stress. As one
lowers the weak-binding free energy, the self-limiting mini-
mum as well as the local minima for weakly bound aggregates
reappear [cases (iii)–(v)], leading to corrugations in F (N )
associated with states of integer numbers of primary aggregate
chains held together by weak, defective bonds. In particular,
depending on the entropic costs of weak binding, it is possible
for the weak-binding free energy to change signs, leading to
weakly bound aggregates whose free energies are higher than
that of the self-limiting state [case (v)].

The temperature-dependent sign change in the weak-
binding free energy plays a crucial role in the stabilization
of self-limiting assemblies, which can be seen by examining
the subunit mass distributions for two examples, shown in
Figs. 5(b). At low concentrations, most of the subunits remain
fairly dispersed as free monomers due to the translational
entropy costs of assembly outweighing the energetic gain
of assembly. As the concentration of subunits is increased,
above the critical aggregation concentration scale, the mass
shifts to larger sized assemblies. In both cases, where defects

are stable or unstable, the primary peak in 	N shifts from
monomers (N = 1) to N 
 N∗ ≈ 9 continuously, which is a
consequence of the lack of a nucleation barrier for 1D as-
semblies [50,51].1 When −δT > 0 as in case (v) and weak
binding is entropically unfavorable, the mass distribution sta-
bilizes around the primary frustration limited aggregate size
N = N∗ at high concentrations [Fig. 5(b), (right)], which is a
defining feature of self-limiting assembly. In contrast, when
−δT < 0 and weak binding is comparably favorable to strong
binding (i.e., δT � �T ) [e.g., case (ii)], defects are stable at
high concentrations, leading to the mass distribution shifting
to higher-N populations corresponding to chains of primary
N∗-mer aggregates held together by weak, defective bonds
[Fig. 5(b) (left)]. Hence, while this scenario corresponds to
assemblies that are composed of locally well-defined sizes
(i.e., frustration-limited chains of size N∗), the overall mass
of aggregates is not well defined and essentially exhibits the
concentration-dependent, exponential distribution character-
istic of one-dimensional equilibrium chain assembly.

1Generic arguments for higher dimensional assemblies, imply a
surface cost that grows faster than N at small sizes (i.e., a nucle-
ation barrier), and in general gives rise to two distinct peaks: free
monomers (N ≈ 1) and primary aggregates (N ≈ N∗).
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It is useful to establish some criteria for determining
whether one has dispersed subunits, self-limiting assemblies,
or unlimited and defective aggregates. We show that this can
be done by considering the mean aggregate size 〈N〉 and,
in particular, the relative size fluctuations of the form 〈δN2〉

〈N2〉
[Figs. 5(c) and 5(d)]. When weak binding is favorable as
in case (i), the average size of assemblies 〈N〉 grows quite
rapidly as expected. However, as one lowers the weak-binding
free energy, a plateau in the average size begins to form.
We associate this slowdown in the growth of the average
assembly size with self-limitation. Note that while case (ii)
does not strictly have local minima, the nonconvexity of free
energy near the self-limiting size is enough to stabilize a local
peak in 	N near to N∗. The range of concentrations over
which the plateau in 〈N〉 persists increases as one reduces
the weak-binding free energy. In particular for case (v), when
weakly bound structures are totally unfavorable, 〈N〉 remains
stable up to a maximum concentration 	max. For our purposes,
we choose an upper limit to concentration 	max = 1, since
ideal-aggregation theory clearly breaks down in this regime,
and it is not possible to have volume fractions that exceed (or
even approach) unity.

Noting that self-limitation corresponds to a mean aggregate
size that is independent of concentration, we can further quan-
tify the concentration range over which self-limiting assembly
occurs by computing the relative size fluctuations 〈δN2〉/〈N2〉.
A useful relation is (see Appendix C)

〈δN2〉
〈N2〉 = d (log〈N〉)

d (log 	)
, (16)

that is, the relative size fluctuations is the same as the
susceptibility of the average size to concentration changes.
Accordingly, as shown in Fig. 5(d), there is a decrease in the
fluctuations when the average size begins to plateau. Based on
this correspondence, we define the onset of self-limiting as-
sembly as the concentration at which there is a local maximum
in the fluctuations (black dotted line). This estimates the con-
centration beyond which dispersed monomers are no longer
the dominant structure in the system and larger structures
begin to form. The growth of larger structures, particularly
self-limiting ones, continues until the local minimum in the
fluctuations.2 This decrease in the fluctuations can be seen
from Fig. 5(b) where 〈δN2〉 of the mass distribution stabi-
lizes while 〈N2〉 increases. We use this local minimum to
define the onset of the formation of defective assemblies
and a rise in size fluctuations. As Fig. 5(d) shows, making
weak binding unfavorable extends the range of self-limiting
assembly. In particular for case (v), there is no local mini-
mum up to the maximum concentration, which indicates the
suppression of larger defective structures. It is useful to note
that for −δT < 0 and sufficiently low temperatures or high
concentrations, the energy landscape is nearly flat for large
assembly sizes (N � N∗) and the distribution will have an

2A strictly self-limiting state would be well-described by a Gaus-
sian peaked around some N∗ � 1, and would have size fluctuations
controlled by the convexity of the minimum in the free energy per
subunit [37].

exponential tail. In those limits, the size fluctuations approach
〈δN2〉/〈N2〉 → 1/2, which is characteristic of equilibrium
1D chain assembly and therefore corresponds to the uncon-
trolled growth of defective aggregates. Hence, these cases
[(i)–(iv) in Fig. 5] exhibit secondary aggregation behavior
according to the size-fluctuation dependent criteria, with a
primary aggregation transition from free monomers to self-
limiting N∗-mers at a lower critical concentration, followed by
a secondary aggregation transition to the unlimited (defective)
state of assembly at an upper critical concentration. Notably,
this self-limiting state at intermediate concentration occurs
when the primary aggregate (N = N∗) is not the global mini-
mum of the free energy per subunit. In general, the dominance
of primary aggregates at intermediate concentration derives
from the generically higher translation entropy per subunit in
smaller N structures that can compensate for the otherwise
higher free energy to assemble those states than the larger N
groundstate. Notably, the width of the intermediate concen-
tration window of self-limiting assembly grows as the gap in
energy between the N∗-mer and the unlimited, defective chain
is reduced (i.e., as δT → 0+).

With these criteria for the onset of self-limiting assembly
and the formation of defective assemblies defined, we turn
to examining the role of temperature and frustration in self-
limiting assembly in the next section.

IV. ROLE OF TEMPERATURE, CONCENTRATION,
AND FRUSTRATION

In this section, we now analyze the assembly behavior of
the incommensurate polybrick model as a function of three
key control parameters—concentration 	, temperature T , and
frustration f —focusing on parameters that control the sta-
bility of the self-limiting state relative to the dispersed and
unlimited states (defective and defect-free).

A. Temperature vs concentration phase diagrams

We start by fixing the physical parameters of subunits—
the frustration f , and the intrasubunit ku, and intersubunit
k f elastic parameters—and consider how temperature T and
subunit concentration 	 influence the resulting assemblies. In
particular, we illustrate the case where frustration at T = 0 se-
lects a finite primary aggregate size of N∗ ≈ 9. As discussed in
Secs. II B and II C, there are two important temperatures: the
temperature Tδ = δ0/sδ at which weakly bound subunits melt
and the temperature T� = �0/s� at which strongly bound
subunits melt. Thus, there are two limits of interest: Tδ <

T� and Tδ > T�. To study these limits, we start by consid-
ering the case where the weak bonds are “slightly sticky,”
δ0/�0 = 0.3. We compare two cases of “conformational stiff-
ness” of the weak bonds (i.e., how much binding restricts
the vibrational and orientational modes and reduced entropy):
Relatively stiff defects, sδ/s� = 1.0, where partial disruption
of strong bonds does not significantly change the vibra-
tional or orientational behavior of the subunits, and relatively
floppy defects, sδ/s� = 0.1, where weak bonds exhibit sig-
nificantly enhanced conformational fluctuations over strong
bonds. These correspond to temperature ratios Tδ/T� = 0.3
and Tδ/T� = 3.0, respectively.
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FIG. 6. (a) Concentration and temperature dependence of the average size and relative size fluctuations for k f /ku = 100, δ0/�0 = 0.3,
k f f 2a2/2�0 = 1, and sδ/s� = 1.0 (sδ = s� = 10kB). The ratio of melting temperatures is Tδ/T� = 0.3 (kBT� = 0.1 �0). Solid white lines are
boundaries representing the onset of self-limiting assembly (upper white line) and the onset of the formation of defective aggregates (lower
white line). Tmin(	) is the minimum temperature below which defective aggregate dominate the system (dashed white line). (b) Free-energy
landscapes as a function of the temperature: (i) T/T� = 1.0, (ii) T/T� = 0.5, and (iii) T/T� = 0.2. In case (iii), −δT < 0 and defective
aggregates are energetically favorable. In case (ii), −δT > 0 and self-limiting assemblies are energetically or entropically favorable. In case
(i), �T > 0 and dispersed subunits are favorable. (c) Average size (dashed) and relative size fluctuations (solid) for cases (i), (ii), and (iii), and
the mass distribution of subunits for decreasing temperatures (iv) T/T� = 0.8, (v) T/T� = 0.3, and (vi) T/T� = 0.15.

In these cases, we consider the necessary conditions for
self-limiting assembly, which in particular requires finite-
temperature fluctuations to destabilize otherwise energetically
favored weak binding. In addition to the nominal free en-
ergy of weak binding, −δT = −δ0 + T sδ , the thermodynamic
stability of defective bonds will also depend on the trans-
lational entropy gain from breaking weak bonds, which we
denote as strans(	). We expect a condition for the thermal
stability of self-limiting assembly T > Tmin(	), defined by
−δ0 + Tmin[sδ + strans(	)] = 0, or

Tmin(	) = Tδ

1 + strans(	)/sδ

. (17)

A more careful treatment that considers the relative mass of
(primary) self-limiting chains versus unlimited, defective as-
semblies (Appendix B) gives the same result with an approxi-
mate expression for the translation entropy gain of weak-bond

breaking, strans(	) = kB ln (2−√
2)N�

	
. This result shows that the

thermal stability of self-limiting assembly occurs above a
critical temperature that is shifted below the nominal melting
temperature of defective bonds (Tδ) by an amount that in-
creases with concentration as well as conformational entropy
cost of weak bonds. We illustrate this effect on the thermal
stability criterion for the regime of self-limitation below.

1. Stiff defects

We start with the Tδ/T� = 0.3 or the case of relatively
stiff defective (weak) bonds. The concentration-temperature
phase diagram is shown in Fig. 6(a). The solid white lines are
the boundaries determined from the size-fluctuation criteria
discussed in Sec. III [i.e., where self-limitation corresponds to
d2(log〈N〉)
d (log 	)2 < 0] that delineates states of dispersed monomers,

self-limiting, and unlimited or defective assembly. Due to the
temperature dependence of binding free energies, the nature
of the total free energy depends strongly on T [Fig. 6(b)],
exhibiting variants of the fixed-�T examples illustrated in
Sec. III. At low temperatures T < Tδ and favorable weak
binding −δT < 0 [e.g., case (iii)], the defective aggregates
states are thermodynamically stable. This means that as the
concentration of subunits increases, the larger defective states
will eventually become occupied and the size of the assem-
blies will grow uncontrollably at large-enough concentration
(i.e., above a secondary critical aggregation concentration).
Similarly to what was described in Sec. III, this can be seen
by the rapid rise of the average assembly size 〈N〉 [Fig. 6(c),
dashed blue line] after it plateaus near the self-limiting size
N� ∼ 9, in addition to the local minimum in size fluctuations
(solid blue line). As the temperature is raised, the defective
aggregates become less favorable until −δT > 0 as in case
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FIG. 7. (a) Concentration and temperature dependence of the average size and relative size fluctuations for k f /ku = 100, δ0/�0 = 0.3,
k f f 2a2/2�0 = 1, and sδ/s� = 0.1 (sδ = 1kB, s� = 10kB). The ratio of melting temperatures is Tδ/T� = 3 (kBT� = 0.1�0). Solid white lines
are boundaries representing the onset of self-limiting assembly and the onset of the formation of defective aggregates. The dotted white
line indicates the transition out of dispersed subunits into either self-limiting assemblies or defective aggregates. In this case, self-limiting
assemblies do not exist at high concentrations. Tmin(	) is the minimum temperature below which weakly bound aggregates dominate the system
(dashed white line). (b) Free-energy landscapes as a function of the temperature: (i) T/T� = 0.8, (ii) T/T� = 0.4, and (iii) T/T� = 0.25.
(c) Average size (dashed) and relative size fluctuations (solid) for cases (i), (ii), and (iii), and the mass distribution of subunits for decreasing
temperatures (iv) T/T� = 1.0, (v) T/T� = 0.25, and (vi) T/T� = 0.1.

(ii). As 	 increases, the system transitions from dispersed
subunits to self-limiting assemblies but not to defective ag-
gregates, at least up to the maximal concentration 	 = 1.
This can be seen in Fig. 6(c) where the average size (dashed
orange curve) begins to plateau and the fluctuations (solid
orange) decrease but do not reach a local minimum for 	 � 1.
Finally, as temperature further increased, we eventually en-
ter the regime where �T � 0 and we have the melting of
strongly bound subunits. When this happens, the dominate
state will obviously be dispersed subunits for any concen-
tration. This of course results in an average size that barely
increases beyond a single subunit (dashed green curve) and
fluctuations that do not reach a local maximum (solid green
curve).

Also shown in Fig. 6(a) (bottom) is the prediction for
Tmin(φ) (dashed white line), which is generally in agreement
with when the boundary defined by where the size fluctua-
tions begin to plateau to 0.5, corresponding to the regime of
uncontrolled growth of defective chains.

2. Floppy defects

We now turn to the opposite limit when Tδ/T� = 3.0 or the
case of relatively floppy weak binding, whose concentration-
temperature phase diagram is shown in Fig. 7(a). This case

is strikingly different from the case of Tδ/T� < 1. In par-
ticular, the self-limiting region terminates before reaching
the maximum concentration. As shown in Fig. 7(b), due to
Tδ/T� > 1, defective and unlimited assembly is stable rela-
tive to dispersed monomers at temperatures well above the
nominal melting of strong bonds, an effect that derives from
the enhanced conformational entropy exhibited by defective
bonding. This results in the system transitioning to the uncon-
trolled growth of defective aggregates at high concentrations
or having a direct transition from dispersed subunits to de-
fective aggregates. As shown in Fig. 7(c) for case (i), the
size fluctuations (green solid line) does not exhibit a local
minimum but rather a simple rise, indicative of dispersed
subunits, followed by a plateau towards 0.5, indicative of
defective aggregates. The direct “transition” between dis-
persed subunits to defective aggregates can be characterized
by the knee of the curve [indicative of a peak in a higher
derivative of 〈N〉(	)], which can be computed by considering

d2

d (log 	)2 ( 〈δN2〉
〈N2〉 ) and locating the minimum or most negative

value. This offers an alternate criteria for determining when
dispersed subunits begin to form larger structures, whether
those structures be self-limiting or defect ridden. Indeed,
as seen in Fig. 7, this criteria matches well with that of
choosing the local maximum in the size fluctuations when
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FIG. 8. Frustration-temperature phase diagrams for k f /ku = 100, δ0/�0 = 0.3, and sδ/s� = 1.0 (sδ = s� = 10kB). The ratio of melting
temperatures is Tδ/T� = 0.3 (kBT� = 0.1�0). (a) Self-limiting size (top) and average assembly size (bottom) as functions of frustration and
temperature. (b) Size fluctuations as functions of frustration f / fflat and temperature T/T�. The solid lines and points indicated the onsets for
the formation of self-limiting assemblies and defective aggregates. (c) Free-energy landscapes FN vs size N corresponding the various regimes
indicated in (b).

there is a transition from dispersed subunits to self-limiting
assemblies.

B. Temperature vs frustration phase diagram

We now turn our attention to the role of frustration. We
consider the maximum concentration, in our case 	 = 1, and
focus on the types of assemblies that can form in the high
concentration. This focus is motivated by the attempt under-
stand if a robust, self-limiting state is possible at sufficiently
large, yet experimentally feasible concentration range. We
focus on the case of stiff weakly bound subunits (Fig. 6) for
which we expect there to be a finite-temperature window for
self-limitation that can persist to high concentrations. For each
value of frustration, the criteria for determining the onset of
self-limiting assembly and defect formation gives us an upper
and lower temperature for self-limitation at the maximum
concentration. These boundaries are shown in Fig. 8 overlayed
with the self-limiting size N�, the average assembly size 〈N〉,
and the relative size fluctuations 〈δN2〉/〈N2〉.

There are essentially three ranges of frustrations that are
important. When frustration is too small, the strain accumu-
lation is not sufficient to prevent the binding of new subunits
and assemblies undergo shape flattening, meaning that there
is no local minimum at any finite N and the assembly results
in unlimited, strongly bound and defect-free chains [as shown
schematically in Fig. 2(f)]. To be more precise, shape flatten-
ing occurs when (see Appendix A 2)

f �
√

2�T

k f a2
√

4k f /ku
≡ fflat (T ). (18)

This is the finite-temperature generalization of the T = 0
energetics considered in Sec. II above. Note that because
�T → 0 as temperature approaches T�, this critical thresh-
old of frustration also vanishes, i.e., fflat (T → T�) → 0, and
more generally decreases as temperature is raised.

In the opposite regime, when frustration is too large, the
cost of frustration completely negates the energetic gains of
subunit binding and so the self-limiting size approaches that
of a single subunit. This maximal value of frustration at which

014608-11



MICHAEL WANG AND GREGORY GRASON PHYSICAL REVIEW E 109, 014608 (2024)

the self-limiting size N� is roughly a single subunit is given by

f �
√

24�T

kua2
≡ fsingle(T ). (19)

Therefore, self-limiting assembly most robustly occurs in the
intermediate range of frustrations fflat � f � fsingle. Note that
the size of this range over which self-limiting assembly can
occur scales with the ratio of elasticities as

fsingle

fflat
∼
(

k f

ku

) 3
4

. (20)

Recall (Sec. II) that k f /ku represents the size scale over which
strain can accumulate before the assembly flattens out. Thus,
increasing this size scale not only expands the regime of
robust self-limiting assembly but also increases the size of
such assemblies.

Figures 8(b) and 8(c) summarize the high concentration
phases and their corresponding example free-energy land-
scapes. The phase diagram can roughly be divided into
six regions. (i) At sufficiently low frustrations, assemblies
undergo shape flattening where there is a lack of a local
minimum in the free-energy landscape and growth is un-
controlled and unlimited and takes the form of defect-free,
strongly bound chains. Note that the criteria for the onsets
of self-limiting assembly and defect formation extend into
the shape-flattening region. This is due to the small amount
of frustration slowing down the drop in free energy at large
sizes. (ii) At sufficiently high temperatures, it is entropically
unfavorable for subunits to bind, and so the preferred state of
the system is that of dispersed subunits. (iii) As temperature is
lowered but kept above Tδ , the subunits begin to assemble into
stable self-limiting structures since weakly bound subunits
are entropically unfavorable. (iv) As temperature is further
lowered below Tδ , the defective aggregate states become en-
ergetically favorable. As a result, defective aggregates always
dominate at sufficiently low temperatures. (v) At sufficiently
high frustrations, it is too costly to fully bind subunits. Above
Tδ , the favorable state is dispersed subunits. Finally, (vi) below
Tδ , while fully bound subunits may be unfavorable due to
high frustration, weakly bound subunits can be energetically
favorable due to stress attenuation from defect formation. This
will result in the assembly of linear chains made up of all
weakly bound subunits. Note that the boundary separating
the direct transition from dispersed subunits (v) to defective
aggregates (vi) uses the same criteria we discussed in Sec. IV
where the second derivative of the size fluctations can detect
the onset of the plateau of the size fluctuation towards 0.5,
which represents unlimited growth. In fact, this boundary sits
roughly at Tδ (in this case 0.3).

In Appendix B, we derive the minimum and maximum
temperatures [Eqs. (B11) and (B8), respectively] between
which self-limiting assemblies are robust. The minimum tem-
perature Tmin(	 = 1) below which a majority of subunits can
be found in defective aggregates is

Tmin(	 = 1) 
 Tδ

⎧⎨
⎩1 + 1

sδ

ln

[
24(2 − √

2)3�0

ku f 2a2

] 1
3

⎫⎬
⎭

−1

,

(21)

which follows from Eq. (17) and the T = 0 approximation
for the primary, self-limiting size N� 
 (�0/ku f 2a2)1/3. The
maximum temperature Tmax above which the system is dis-
persed (no strong or weak bonds despite being dense) is given
by

Tmax(	 = 1) 
 T�

[
1 − 9

4(4k f /ku)3/2

(
f

fflat

)2
]
, (22)

which follows from considering the frustration-dependent ex-
cess energy cost of forming primary, self-limiting aggregates
and the estimated melting point of strong (i.e., frustrated)
binding. Notably, these two equations show that the upper
and lower temperature limits for self-limiting assembly are
set, to a first approximation, by the nominal melting tempera-
tures of strong and weak bonds, respectively, T� and Tδ . The
maximum frustration before the subunits are too frustrated to
form fully bound assemblies is fmax ∼ fflat (k f /ku)3/4 ∼ fsingle.
Additionally, these results show that the temperature range
of self-limitating assembly narrows with increasing f , due to
both a slight increasing value of Tmin(	 = 1) with frustration
and, more important, a strongly decreasing dependence of
Tmax(	 = 1) on f , which effective closes as f → fsingle.

In Appendix D and Fig. 11, we illustrate these effects by
comparing additional phase diagrams when the weak-binding
δ0/�0 is varied, showing that the stable temperature window
for self-limitation narrows as nominal melting of defects ap-
proaches that of the strong bonds (i.e., as Tδ → T�).

Last, we briefly note the appareance of a peak in the sec-
ondary transition between unlimited and self-limiting states
around f / fflat ∼ 20, independent of the weak binding. This
feature derives from our specific definition of the transition
based on size fluctuations, which exhibit a nonmonotonic de-
pendence on frustration when the size of primary self-limiting
chain approaches small integer values (i.e., N∗ ≈ 1 − 2) and
the minimal energy states of the continuum model are incom-
mensurate with the integer numbers of discrete subunits in the
chain.

V. DISCUSSION AND CONCLUSION

In this article, we have introduced a solvable model of
a frustrated incommensurate chain of “polybricks” to probe
the role of temperature, concentration, and frustration (or
subunit shape) in the process of self-limiting, geometrically
frustrated assembly. This model captures features of geo-
metrically frustrated assemblies, particularly the competition
between subunit binding and the accumulation of strains due
to frustration as an assembly grows. We focused on two cate-
gories of frustration escape: shape flattening, when frustration
is insufficient to overcome subunit binding, and weak binding,
when assemblies can attenuate or stop stress propagation by
breaking bonds or forming defects, which notably controls
the thermal stabilty of self-limiting assembly. The resulting
free energy landscapes with both strong and weak binding
allowed us to determine how temperature, concentration, and
frustration control the stability of self-limiting assembly.

Our main results are summarized in Fig. 9. The key re-
sult is that self-limiting assembly is robust at intermediate
temperatures Tδ � T � T� set by the entropy costs of weak

014608-12



THERMAL STABILITY AND SECONDARY AGGREGATION … PHYSICAL REVIEW E 109, 014608 (2024)

FIG. 9. Schematic of frustration-temperature phase diagram of
GFAs at high concentrations. (a) Low frustration and tempera-
ture: unlimited growth of shape-flattened assemblies without any
defects. (b) High frustration or temperature: dispersed subunits.
(c) Intermediate frustration and temperature: self-limiting assem-
blies. (d) Intermediate frustration and low temperature: unlimited,
defective aggregate of weakly bound self-limiting assemblies. Stable
SLA can exist at low or intermediate concentrations. (e) High frustra-
tion and low temperature: unlimited, defective aggregate of weakly
bound subunits.

and strong binding and frustrations fflat � f � fmax set by
the elastic costs of binding. At low frustration and temper-
ature [Fig. 9(a)], the strain accumulation from frustration
is insufficient for overcoming the strong binding between
subunits, so the assemblies effectively ignore frustration and
grow unlimited. The boundary for the shape-flattening regime
is given by the frustration fflat (T ) [Eq. (18)], which is the
minimum frustration needed to have self-limiting assembly.
At high temperatures or high frustrations [Fig. 9(b)], either
the strong bonds are melted with �T = �0 − T s� � 0 or
T � �0/s� = T� or the subunits are too frustrated to bind,
resulting in dispersed subunits. As the temperature is low-
ered below the weak-binding melting temperature Tδ = δ0/sδ

at high frustrations [Fig. 9(e)], the weak-binding free en-
ergy changes sign to −δT = −(δ0 − T sδ ) < 0, and so while
strong binding is too costly due to being overly frustrated,
the subunits can still weakly bind to form unlimited aggre-
gates of weakly bound subunits. The boundary that describes
the onset of dispersed subunits or unlimited aggregates of
weakly bound subunits is given by Tmax( f ) in Eq. (22), from
which the maximum frustration can be determined to be
fmax ∼ fflat (k f /ku)3/4, where k f /ku is the ratio of inter to
intrasubunit stiffness. Therefore, at intermediate frustrations
fflat � f � fmax where we avoid shape-flattened assemblies
and overly frustrated dispersed or aggregated subunits, we
expect to obtain the target self-limiting assemblies [Fig. 9(c)].
The formation of self-limiting assemblies is most robust at
high concentrations when the temperature is above Tmin( f )
[Eq. (21)], which is the temperature at which weak bonds
entropically (including translational entropy) melt. Below this
temperature [Fig. 9(d)], defective aggregates of weakly bound
self-limiting assemblies become energetically favorable. Note
that while self-limiting assemblies in this regime of frustra-
tion and temperature are unstable at high concentrations, it is

possible to stabilize them at lower concentrations. It can be
shown (see Appendix B) that the transition from dispersed to
self-limiting and self-limiting to defective aggregation occurs
at concentrations 	� ∼ eβF� and 	�� ∼ e−βδT , respectively,
the ratio of which is then 	��/	� ∼ e−β(F�+δT ). The quantity
F� + δT can be interpreted as the difference between the free
energies of a subunit in a self-limiting assembly and one in
an aggregate with all weak bonds. Thus if F� < −δT , then
it is possible to stabilize self-limiting assemblies over a low
concentration range 	� < 	 < 	�� < 1. Note that as temper-
ature is lowered, both 	� and 	�� approach zero exponentially
fast. Thus for any concentration, defective aggregates will
always dominate when the temperature is low enough.

Our analysis offers some potential lessons in designing
robust self-limiting assemblies.

(i) The self-limiting size is controlled by the ratio of inter-
to intrasubunit stiffnesses

√
k f /ku, which sets the size scale

over which strains can accumulate before an assembly under-
goes shape flattening. The maximum self-limiting size can
thus be increased by making intersubunit interactions stiff
while making the subunits themselves floppy.

(ii) The range of frustrations fflat � f � fmax over which
self-limiting assemblies can be stabilized, like the self-
limiting size, is controlled by the quantity k f /ku through
the relation fmax/ fflat ∼ (k f /ku)3/4. Thus, making intersubunit
interactions stiffer while making the subunits themselves flop-
piers has the additional benefit of allowing for a wider range
of frustrations or subunit shapes.

(iii) The minimum temperature needed to stabilize self-
limiting assemblies Tmin( f ) [Eq. (17)] is primarily determined
by the weak-binding melting temperature Tδ = δ0/sδ , which
accounts for the energy and entropy of weak binding. Low-
ering this temperatures requires either weakening the weak
binding or increasing the entropy costs of weak binding.
When subunits are not strongly bound, they should be as re-
pulsive as possible or as restricted as possible in, for example,
their orientational degrees of freedom. In experiments [30],
for instance, while poly-t extensions were used to change
the frustration, they can be also thought of as creating some
repulsion between the subunits if they are not fully bound.

We can estimate where experiments [30] lie with respect
to our model and analysis. In experiments, it was found that
the central blocks thermally fluctuated distances of roughly
u ∼ 2 nm. The resulting intrasubunit stiffness is roughly ku ∼
kBT
u2 ∼ 1 pN/nm. The intersubunit interation resulted from the

binding of multiple two base pair sites on the surface of
the central blocks with binding energies of roughly �0 ∼
60 pN nm. Given that base pairs have a size of roughly
0.34 nm, we arrive at a stiffness of k f ∼ 100 pN/nm, resulting
in a stiffness ratio of k f /ku ∼ 100. The length of each subunit
is roughly 30 nm with frustrations of roughly f ∼ 0.01–0.1.
When subunits are (strongly or weakly) bound, the angle
of rotational motion is roughly θ ∼ 1◦–10◦, which results
in an entropic contribution s� ∼ sδ ∼ 10kB. The estimated
self-limiting size is N� ∼ 3–15, consistent with the assembly
lengths observed in experiments. The minimum and maxi-
mum frustrations are fflat ∼ 0.01 and fmax ∼ 1.0. The weak
binding energy is difficult to estimate (see below), so we
assume a crude range of values δ0/�0 ∼ 0.1–0.5. The melting
temperatures are T� ∼ 1–1.5T and Tδ ∼ 0.1–0.7T , where T
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refers to room temperature. It is thus reasonable to conclude
that the experiments are likely within the self-limiting regime
but can also be tuned to dispersed and unlimited or defec-
tive assembly regimes with suitable adjustments of binding
affinity.

Our results point to the need to model the energetic and
entropic effects of different states of binding in 1D frustrated
assembly as key control factors for their emergent behavior.
We note that while we have motivated our study with the
1D polybrick model, the features of 1D frustrated assembly
are generic consisting of (1) elastic accumulation of frustra-
tion up to an elastically controlled length scale in strongly
bound chains and (2) the possibility of weak-bonds (defects)
that attenuate the accumulation of frustration strain along the
chain. Hence, we expect any 1D frustrated assembly can be
mapped onto the key ingredients of this model. Indeed, in
Ref. [30], oxDNA simulations of polybricks were used to
study the strain accumulation of bound chains, although the
molecular scale features of the simulations limited the scale of
simulations to �10 bricks. These results found roughly linear
accumulation of strain in weakly frustrated subunits, and hints
of shape flattening emerging at the large sizes, consistent with
the present elastic model. For assemblies at higher frustration,
a single defect forms above a critical size, which is shown
to attenuate strain accumulation across the defective bond.
Notably, the microscopic structure of that defect differs from
the simple model illustrated in Fig. 1 and instead takes the
form of a localized splaying of the outer blocks. Nevertheless,
the nature of strain accumulation, and the expected form of
the free-energy dependence on size (see Fig. 5 of Ref. [30]) is
captured by the nature of weakly bound defects incorporated
into the present model. What then remains to be understood
is how the microscopic design of the DNA polybrick (or any
other frustrated building block for 1D assembly) influences
the types of defect structures that can form as well as the
relative energy and entropies of both strong and weak bonds.
As these quantities will depend sensitively on the shape, in-
teraction, and deformability of subunits in different states of
binding, they are particularly well suited to simulation studies.

While our model and analysis captures some generic fea-
tures of the process of at least 1D frustrated, self-limiting
assembly, there are numerous broad open questions about
self-limiting states of GFA at finite temperature. In partic-
ular, an interesting question is what aspects of our analysis
carry over to examples of geometrically frustrated assem-
blies of dimensionality [23,31–36,41] and which permit
more complex states of long-range order and defect types
[11–14,36,40,41]. This includes understanding how the di-
mensionality of assemblies may affect the thermodynamics
(e.g., there is a nucleation barrier in higher dimensions [50])
and defects such as disclinations and dislocations in these
higher dimensional assemblies changes the strain accumu-
lation and free-energy landscapes. Additionally, it is clear
that higher-dimensional aggregates have a thermodynamically
stable condensate phases which is separated from dispersed
subunit or aggregate phases by a true phase transition [41].
Hence, what appears as a secondary aggregation transition
in frustrated 1D assembly will more likely take the form of
a concentration- and temperature-dependent phase transition.
What the nature of these phase transitions and how features of

the phase transition between self-limiting and bulk condensed
states depend on nonuniversal features of GFA in higher di-
mensions remains a broadly open question.
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APPENDIX A: EXACT SOLUTION OF LINEAR CHAIN

We here derive the main results for the excess-energy and
finite-temperature corrections for the incommensurate chain
model.

1. Discrete limit

The excess energy of a linear chain of N subunits with
central block displacements {un} is

Eex =
N∑

n=1

1

2
kuu2

n +
N−1∑
n=1

1

2
k f (un+1 − un + f a)2. (A1)

In mechanical equilibrium, the equilibrium positions {u(eq)
n }

satisfy

N∑
n=1

Kmnu(eq)
n = k f f a(δm,1 − δm,N ), (A2)

where the tridiagonal matrix of spring constants Kmn is given
by

K =

⎡
⎢⎢⎢⎢⎣

ku + k f −k f . . . 0 0
−k f ku + 2k f . . . 0 0

...
...

. . .
...

...

0 0 . . . ku + 2k f −k f

0 0 . . . −k f ku + k f 1.0

⎤
⎥⎥⎥⎥⎦.

(A3)

Using the equation for mechanical equilibrium [Eq. (A2)], we
can rewrite the ground-state excess energy in terms of the
equilibrium displacements as

Eex
[{

u(eq)
n

}] = 1

2
k f f a

[
u(eq)

N − u(eq)
1

]+ N − 1

2
k f f 2a2. (A4)

So we only need to determine the positions of the end subunits
u(eq)

1 and u(eq)
N . By symmetry, we have u(eq)

1 = −u(eq)
N . Inverting

Eq. (A2), we have

u(eq)
N = k f f a

(
K−1

N,1 − K−1
N.N

)
. (A5)

Using properties of certain tridiagonal matrices [52], we have

K−1
N,1 = kN−1

f

det(K )
, (A6a)

K−1
N,N = 1

det(K )

N−1∏
n=1

[
ku + 4k f sin2 (2n − 1)π

2(2N − 1)

]
, (A6b)

014608-14



THERMAL STABILITY AND SECONDARY AGGREGATION … PHYSICAL REVIEW E 109, 014608 (2024)

where

det(K ) =
N∏

n=1

[
ku + 4k f sin2 (n − 1)π

2N

]
. (A7)

Using these results, the excess energy can be written as

Eex = k f f 2a2

N

[
N − 1

2
+ k f

(
K−1

N,1 − K−1
N,N

)]
. (A8)

2. Continuum limit

In the continuum limit, which can be obtained by taking
un+1−un

a ≈ du
dx and approximating the sums as integrals, the

excess energy becomes

Eex =
∫ L

2

− L
2

dx

[
1

2
Yuu2 + 1

2
Yf a2

(
du

dx
+ f

)2
]
, (A9)

where Yu = ku/a and Yf = k f /a are the elasticities per unit
length and L = Na is the length. Minimizing with respect to
the displacement field u(x) yields

d2u

dx2
= 1

λ2
u, (A10)

where λ = √
Yf a2/Yu = a

√
k f /ku is the length scale over

which strains accumulate, and the free boundary condition

du(±L/2)

dx
= − f . (A11)

The solution for the displacement field is

u(x) = − f λ
sinh x/λ

cosh L/2λ
, (A12)

and the excess energy density due to stain accumulation is

Eex = 1

2
Yf f 2a2

(
1 − tanh L/2λ

L/2λ

)
. (A13)

The full energy including the strong binding energies is

E = −�0 + �0

L
+ 1

2
Yf f 2a2

(
1 − tanh L/2λ

L/2λ

)
. (A14)

A key observation is that the minimum vanishes when

�0

Yf f 2a2λ
� 1. (A15)

3. Vibrational and orientational entropies

The finite-temperature orientational contributions to the
free energy can be computed by assuming that while a free
subunit can orient anywhere on the unit sphere, a bound
subunit is restricted to a cone with angle θ�. The partition
function is

Zorient =
(∫ 2π

0

∫ θ�

0

d�

4π

)N−1

=
(

1 − cos θ�

2

)N−1

. (A16)

The vibrational contribution can be obtained from the par-
tition function by summing over all displacements {un}. By

considering displacements {δun} about the equilibrium posi-
tions {u(eq)

n }, we can write the partition function as

Zvib =
∫ (

N∏
n=1

dδun

)
e−βEN [{u(eq)

n +δun}]]

= e−βEN [{u(eq)
n }]

∫ (
N∏

n=1

dδun

)
e−β 1

2

∑
m,n δumKmnδun

= e−βEN [{u(eq)
n }]
√

(2π )N

βN det(K )
, (A17)

where Kmn is the matrix of spring constants given by Eq. (A3)
and EN [{u(eq)

n }] is the ground-state energy. The determinant
if given by Eq. (A7). Taking the logarithm of these partition
functions and shifting the free energy so that FN=1 = 0, we
arrive at the total free energy per subunit,

F = EN + δFvib + δForient, (A18)

where

δForient =
(

1 − 1

N

)
kBT ln

2

1 − cos θ�

, (A19a)

δFvib = kBT

2N

N∑
n=1

ln

[
1 + 4k f

ku
sin2 (n − 1)π

2N

]
. (A19b)

In the limit of large assemblies (N → ∞), the vibrational
free energy becomes

lim
N→∞

δFvib = kBT
∫ 1

2

0
dz ln

(
1 + 4k f

ku
sin2 πz

)

= kBT ln

⎡
⎣1

2

⎛
⎝1 +

√
1 + 4k f

ku

⎞
⎠
⎤
⎦. (A20)

A useful approximation for our purposes is

δFvib ≈
(

1 − 1

N

)
kBT ln

⎡
⎣1

2

⎛
⎝1 +

√
1 + 4k f

ku

⎞
⎠
⎤
⎦. (A21)

This approximation is illustrated in Fig. 10.
For weak binding, we can compute, for example, the orien-

tational free energy as follows. Given an assembly of length N
that is made of M weakly bound structures, there are N − M
strong bonds and M − 1 weak bonds. Assuming that strong
bonds and weak bonds can rotate about angles θ� and θδ ,
respectively, we can write the partition function as

Zorient =
(∫ 2π

0

∫ θ�

0

d�

4π

)N−M(∫ 2π

0

∫ θδ

0

d�

4π

)M−1

. (A22)

The free energy is then

δForient = (N − M )kBT

N
ln

2

1 − cos θ�

+ (M − 1)kBT

N
ln

2

1 − cos θδ

. (A23)

The first term can be combined with the N − M strong bonds,
resulting in the temperature-corrected strong binding energy
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FIG. 10. 1 − 1
N approximation (solid black line) for the finite-

temperature vibrational contribution to the free energy [Eq. (A19b)].

�0 − T s�, while the second term can be combined with the
M − 1 weak bonds, resulting in δ0 − T sδ , where for the case
of the orientational contribution

sδ = kB ln
2

1 − cos θδ

. (A24)

APPENDIX B: MULTIPLE MINIMA APPROXIMATION

As discussed in Sec. II C, the free-energy landscape of the
incommensurate chain with weak binding can have multiple
local minima associated with the weak binding of multiple
self-limiting assemblies. We here describe a useful approxi-
mation where we assume that the subunits in the system are
either dispersed, in self-limiting assemblies of size N�, or in
defective weakly bound aggregates of self-limiting assemblies
of size mN� (for m > 1). The free energy of a structure made
up of m weakly bound self-limiting assemblies is

FmN�
= F� − (m − 1)δT

mN�

. (B1)

To determine N� and F�, note that in the strain accumulation
regime (N �

√
4k f /ku) the free energy per subunit is

FN 
 −
(

1 − 1

N

)
�T + 1

6
k f f 2a2

(
N√

4k f /ku

)2

. (B2)

Minimizing with respect to N , we find the self-limiting size

N�√
4k f /ku



(

3�T

k f f 2a2
√

4k f /ku

) 1
3

. (B3)

Substituting this in to the free energy, we have

F� 
 −�T + 1

2
k f f 2a2

(
3�T

k f f 2a2
√

4k f /ku

) 2
3

. (B4)

Applying ideal aggregation theory to a system of dispersed
subunits and assemblies of size mN�, we have for the total

subunit volume fraction

	 = 	1 +
∞∑

m=1

mN�

[
	1e−βF�eβ

(m−1)δT
mN�

]mN�

= 	1 + N�

(
	1e−βF�

)N�[
1 − (	1e−βF� )N�eβδT

]2 . (B5)

The second term can be split into the volume fractions of
subunits in self-limiting structures 	sl(	1) = N�(	1e−βF� )N�

and defective aggregates 	agg(	1) = 	(	1)−	1 − 	sl(	1).
We can use this approximation to determine the conditions

under which dispersed subunits transition to self-limiting as-
semblies and self-limiting assemblies transition to defective
aggregates. For the transition between dispersed subunits to
self-limiting assemblies, note that the concentration scale 	�

1
at which 	�

1 = 	sl(	�
1) is given by

	�
1 =

(
eN�βF�

N�

) 1
N�−1

. (B6)

Assuming that the mass of defective structures is negligible at
this concentration scale, we can write the total concentration
of subunits as 	 = 2	�

1. Taking the maximum concentration
	tot = 1 and rearranging, we arrive at

eβF� =
(

N�

2N�−1

) 1
N�

. (B7)

Note that the right-hand side weakly depends on N� and is
bounded between 1/2 and 1. Therefore, as an estimate, the
transition from dispersed subunits to self-limiting assemblies
occurs roughly when F� changes sign. This corresponds to
when the self-limiting assemblies between energetically fa-
vorable over the dispersed subunits. From Eq. (B4), we have
the relation between temperature T and frustration f

T

T�

≈ 1 − 9

4(4k f /ku)3/2

(
f

fflat

)2

. (B8)

This temperature is the maximum temperature Tmax above
which the system will remain dispersed (see Sec. IV B).

For the transition between self-limiting assemblies and de-
fective aggregates, we note that the concentration scale 	��

1 at
which 	sl(	��

1 ) = 	agg(	��
1 ) satisfies

(
	��

1 e−βF�
)N�eβδT = 1 − 1√

2
. (B9)

This can be substituted back into the total volume fraction to
obtain the equation of state

	 = (2 −
√

2)N�( f , T )e−β(δ0−T sδ ), (B10)

which relates the temperature T , frustration f , and con-
centration 	 at which defective aggregates dominate over
self-limiting assemblies. For simplicity, if we assume that the
self-limiting size N� is fixed or does not vary significantly
over some range of temperatures and frustrations, then we can
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FIG. 11. (a) Boundaries for the onsets of self-limiting assembly and weakly bound aggregation for varying weak binding energy with
k f /ku = 100, s� = 10, k f f 2a2/2�0 = 1, and T� = 0.1. (b) Frustration-temperature phase diagrams for varying weak binding energy for stiff
defects (sδ/s� = 1). Increasing the weak binding energy δ0 shifts the onset of defective aggregate formation (lower boundary) towards higher
temperatures, reducing the regime of self-limiting assembly at high concentrations.

solve for the minimum temperature above which self-limiting
assembly occurs. This temperature Tmin is given by

Tmin = δ0

[
sδ + kB ln

(2 − √
2)N�

	

]−1

= Tδ

1 + strans(	)/sδ

, (B11)

where strans captures the effect of translational entropy.

APPENDIX C: RELATION BETWEEN AVERAGE SIZE
AND RELATIVE SIZE FLUCTUATIONS

The distribution of assemblies of size N is defined as
ρN = 	N/N = (	1e−βFN )N . The average size is therefore

〈N〉 =
∑∞

N=1 NρN∑∞
N=1 ρN

=
∑∞

N=1 N (	1e−βFN )N∑∞
N=1(	1e−βFN )N

. (C1)

Using dρN/d	1 = NρN	−1
1 , we have

d〈N〉
d	1

= 	−1
1

∑∞
N=1 N2ρN∑∞

N=1 ρN
− 	−1

1

(∑∞
N=1 NρN∑∞

N=1 ρN

)2

= 	−1
1 (〈N2〉 − 〈N〉2), (C2)

and

d	

d	1
= d

d	1

∞∑
N=1

NρN = 	−1
1 〈N2〉

∞∑
N=1

ρN = 〈N2〉	
〈N〉	1

. (C3)

Therefore,

d〈N〉
d	

= d〈N〉
d	1

d	1

d	
= 〈δN2〉

〈N2〉
〈N〉
	1

, (C4)

which can be rewritten as

d (log〈N〉)

d (log 	)
= 〈δN2〉

〈N2〉 . (C5)

It is useful to note that for an exponential distribution
〈δN2〉/〈N2〉 → 1/2, which in our case is what happens at
large sizes.

APPENDIX D: EFFECT OF WEAK BINDING ENERGY
ON THE TRANSITION BETWEEN SELF-LIMITING

ASSEMBLIES AND DEFECTIVE AGGREGATES

Figure 11 shows how varying the weak binding en-
ergy δ0 affects the onset of the transition from self-limiting
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assemblies to defective aggregates. As the weak binding
energy is increased and weak binding becomes more energet-

ically favorable, the self-limiting regime becomes more and
more narrow.
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