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Stochastic fluctuations of diluted pedestrian dynamics along curved paths
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As we walk towards our destinations, our trajectories are constantly influenced by the presence of obstacles
and infrastructural elements; even in the absence of crowding our paths are often curved. Since the early 2000s
pedestrian dynamics have been extensively studied, aiming at quantitative models with both fundamental and
technological relevance. Walking kinematics along straight paths have been experimentally investigated and
quantitatively modeled in the diluted limit (i.e., in absence of pedestrian-pedestrian interactions). It is natural to
expect that models for straight paths may be an accurate approximations of the dynamics even for paths with
curvature radii much larger than the size of a single person. Conversely, as paths curvature increase one may
expect larger and larger deviations. As no clear experimental consensus has been reached yet in the literature,
here we accurately and systematically investigate the effect of paths curvature on diluted pedestrian dynamics.
Thanks to a extensive and highly accurate set of real-life measurements campaign, we derive a Langevin-like
social-force model quantitatively compatible with both averages and fluctuations of the walking dynamics.
Leveraging on the differential geometric notion of covariant derivative, we generalize previous work by some
of the authors, effectively casting a Langevin social-force model for the straight walking dynamics in a curved
geometric setting. We deem this the necessary first step to understand and model the more general and ubiquitous
case of pedestrians following curved paths in the presence of crowd traffic.

DOI: 10.1103/PhysRevE.109.014605

I. INTRODUCTION

As we walk towards our destinations, indoor or in open
spaces, we typically prefer to follow the most direct (typ-
ically straight) path. Yet obstacles, infrastructural elements,
or crowd traffic [1,2] make our preferred paths unavoid-
ably curved (cf. Fig. 1). Additionally, trajectories invariably
exhibit fluctuations associated with sway and intersubject
variability.

Since the early 2000s, pedestrian kinematics has been ex-
tensively investigated experimentally [3,4], and the motion of
pedestrians walking along straight paths has been thoroughly
analyzed and modeled (e.g., Refs. [2,5–7]). Especially in di-
luted conditions, i.e., in the absence of pedestrian-pedestrian
interactions, these analyses were capable of successfully
modeling the dynamics, including the stochastic fluctuations
around average motions [8,9]. Swaying motion, shoulder os-
cillations, and intrasubject and intersubject variabilies play
a role in the overall fluctuations which, overall, exhibit a
Gaussian structure with possible long-tails due to rare events
[8]. In the case of paths having curvature radii much larger
than the scale of a single person, we expect models for straight
dynamics to hold locally. In fact, under these conditions, paths
can be reasonably well approximated as being locally straight.
One may thus wonder under which conditions and how the
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known model for straight paths can be adapted to generic
curved paths. Indeed, as paths curvatures increase, one may
expect larger and larger deviations from the assumption of
a locally straight dynamics. No experimental consensus has
yet been reached on how paths curvature affect pedestrians
dynamics. Only few, and partially contradictory, studies are
available on the topic. These report anticorrelation between
velocity and curvature (with linear [1] or power-law trend
[10]) or even an apparent absence of curvature effects [11].

The aim of this work is to understand and to quantitatively
model the dynamics of pedestrians walking along curved pre-
ferred paths, including averages and stochastic fluctuations,
considering a broad spectrum of curvature radii even as small
as few pedestrian diameters. We opt to address this outstand-
ing issue restricting to crowd scenarios in the diluted limit.
Thus, the environment is the only reason pedestrians opt for
curved paths. We deem this setting the necessary first step
towards the goal of understanding the generic case in which
curved paths appear in combination with and as a consequence
of the overall crowd traffic.

Understanding the kinematics of pedestrians is part of
a challenging and broad multidisciplinary scientific effort
with outstanding societal importance due to implications in
crowd management [4] and urban design [12] and sharing
deep fundamental challenges connected with active flowing
matter and statistical physics [3,13]. One of the main ob-
stacles in fully understanding crowd flows is the inherent
technical challenge of obtaining measurements with sufficient
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FIG. 1. Few selected trajectories of pedestrians walking along different curved paths in different real-life locations. The three panels
provide an overview of the measurement sites employed in this work, respectively in Amsterdam south train station (NL) (a), a laboratory
experiment at Eindhoven University of Technology (NL) (where pedestrian were asked to walk along an elliptical path) (b), and at Eindhoven
train station (NL) (c). The tangent circles at several points of the preferred-paths (average path across trajectory bundles, cf. Appendix A) are
displayed with radii R1 = 0.92 m, R2 = 2.17 m, R3 = 5.42 m, R4 = 4.60 m, and R5 = 0.63, respectively.

spatiotemporal accuracy and statistical resolution, fully cap-
turing the large variability and complexity of pedestrian
kinematics. Over the past few years, experimental evidence on
pedestrian behavior has been collected mostly in laboratory
scenarios, allowing us to probe average behavior, typically
studied as a function of the pedestrian density (e.g., Ref. [14]).
Average behavior are usually encoded in so-called funda-
mental diagrams, connecting, e.g., pedestrian density with
average velocity or fluxes [15]. Only more recently, accurate,
and privacy-respectful large-scale measurements in real-life
conditions have become a possibility, either via custom setups
developed in research environments [14,16] or via commer-
cial products [17]. Key have been three-dimensional computer
vision approaches based on stereoscopic vision or LiDar-like
approaches [18,19]. Data acquisition with a 24/7 schedule in
public locations has enabled the collection of highly resolved,
high statistics datasets (millions of trajectories), allowing
statistical analyses up to rare events and opening new pos-
sibilities of model validation [3,20–24].

In this paper, we use high-resolution tracking to collect
wide trajectory datasets to investigate the diluted dynamics of
pedestrians walking along curved paths. We have performed
large-scale data acquisition campaigns in Dutch train stations
(Eindhoven, Amsterdam South) and laboratory experiments
(in the Eindhoven University of Technology campus, NL).
On these bases, we identify the effect of increasing curvature
levels on walking velocities, presenting a curvature-velocity
fundamental diagram, which we enrich with measurements of
the typical fluctuations. This enables us to present a Langevin-
like model reproducing quantitatively the complete statistics
of position and velocity as curvature changes. Our work gen-
eralizes the social forcelike [25] model presented in Ref. [8],
which quantitatively reproduces the diluted walking dynamics
along straight paths. We effectively cast such a model to
a curved geometry: Even in the absence of (social) forces,
pedestrians could follow curved trajectories. For this, we
employ the language of differential geometry (in particular,
through the notion of covariant derivative). On the basis of
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FIG. 2. (a) The average path of the Amsterdam train station measurements, curve x̄(s), indicated in red. The tubular neighborhood of x̄(s) is
parameterized by a coordinate frame consisting of coordinate lines equidistant to x̄(s), defining the longitudinal direction, and coordinate lines
perpendicular to x̄(s), defining the transversal direction. Coordinates s and h represent the coordinates in the longitudinal and transversal
directions, respectively. As indicated, a velocity vector V can be decomposed in a longitudinal and transversal component (v‖ and v⊥).
(b) Trajectories a, in green, and b, in blue, are examples of geodesics [solutions of Eq. (12)]. Geodesics with initial velocity parallel to
x̄(s), such as trajectory a, remain parallel to x̄(s). The velocity magnitudes of the trajectories are plotted in the inset figure. All geodesics,
such as trajectory a and b, conserve kinetic energy. Trajectory c, in black, is a solution of the geodesic equation disturbed by modeling forces
[Eq. (17) without noise]. Therefore, the trajectory is forced to oscillate around the path in a damped way. Furthermore, its longitudinal velocity
converges to a desired value.

our data analysis, we extend the social-force terms to integrate
curvature-dependent effects (with radii down to 0.6 m).

This paper is structured as follows: In Sec. II we introduce
the geometric context of tubular neighborhoods of trajectories,
central for the forthcoming analyses. In Sec. III, we present
the experimental data that we collected for our analyses,
together with relevant technical references on data acquisi-
tion. Based on the measurements, in Sec. IV, we present a
curvature-velocity fundamental diagram, comparing a simple
analytic model with measurements. In Sec. V, we present
our quantitative Langevin-like model, whose comparison with
measurements is reported in the results Sec. VI. A final discus-
sion closes the paper. We opt to postpone most of the technical
and formal details connected with differential geometry to the
Appendixes.

II. KINEMATICS OF CURVED WALKING PATHS IN
TUBULAR NEIGHBORHOODS

We focus on bundles (i.e., sets containing similarly shaped
trajectories) of real-life pedestrian trajectories on the plane
x = (x, y):

{t �→ xν (t ) = xν (t )ex + yν (t )ey, ν = 1, 2, . . .}, (1)

where ν = 1, 2, . . ., serves as a trajectory index, xν (t ), yν (t )
are the horizontal and vertical components of trajectory ν at
time t , and (ex, ey) is the (fixed) orthonormal base associated
with the (x, y) coordinates (cf. examples in Fig. 2). These
trajectories connect predefined origin and destination, which
are separated by, e.g., obstacles or architectural fixtures. The
need of bypassing these elements makes typical trajectories,

and thus the whole bundle, nonrectilinear. Due to sway and
intersubject variability, trajectories exhibit fluctuations. We
analyze such fluctuations in reference with the average path
of the bundle,

x̄ = x̄(s) = x̄(s)ex + ȳ(s)ey,

where the variable s denotes a smooth monotonic parametriza-
tion. We identify x̄(s) with the individual preferred path, i.e.,
the trajectory that each pedestrian aims at following. Exam-
ples of such average paths are reported as thick lines in Fig. 1.
We postpone the technicalities of the formal definition of the
average path, x̄(s) [Eq. (1)], as a function of the trajectory
bundle to Appendix A.

We study fluctuations around x̄(s) considering its neigh-
borhood. We employ coordinate lines parallel and normal to
x̄(s) [Fig. 2(a)], parameterized by the variables s and h, re-
spectively. As mentioned, s increases as we move along x̄(s),
whereas h increases as we move in the orthogonal direction
(towards the local curvature center). We name (e‖, e⊥) the
local orthonormal base parallel to these directions. Note that
curves defined by h = const wrap around x̄(s) while remain-
ing, in a sense, parallel to it. As such the (s, h) parametrization
of the x̄(s) neighborhood is usually named tubular. For
smooth x̄(s) and limited h, (s, h) uniquely parametrize the
tubular neighborhood (e.g., Ref. [26]). We unambiguously de-
compose velocities, ẋ = ẋex + ẏey, applied at a point x in the
neighborhood of x̄(s), in a transversal, v⊥, and a longitudinal
component, v‖, respectively perpendicular and parallel to a
local coordinate line (h = const). In formulas,

ẋ = v‖e‖ + v⊥e⊥. (2)
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Further details on the parametrization of the tubular neighbor-
hood are given in Appendix C.

Our analysis targets kinematic implications on pedestrian
trajectories of the curvature of the preferred path. We consider
the local curvature of x̄(s), k(s). By definition, k(s) is the
reciprocal of the radius of the circle osculating x̄(s) and reads
(e.g., Ref. [27])

k(s) = x̄′(s)ȳ′′(s) − x̄′′(s)ȳ′(s)

[(x̄′(s))2 + (ȳ′(s))2]3/2
, (3)

where x̄′ denotes the first derivative of the x component of x̄(s)
with respect to s (the second derivative and operations on the
y component are written accordingly).

III. MEASUREMENTS

Our study leverages on trajectory datasets acquired via
three large-scale pedestrian tracking campaigns all performed
in The Netherlands. Our campaigns specifically took place
in Amsterdam south train station (AMS), Eindhoven train
station (EHV), and on the university campus in Eindhoven
(TUE). All our data were acquired in a naturalistic condition
(with the exception of the TUE campaign in which pedestrians
have been instructed to roughly follow a given path) and in
a fully privacy-respectful manner. Commercial or research-
grade overhead body-tracking sensors have been employed.
All these sensors hinge on similar principles: They measure
overhead three-dimensional maps of the scene from which
trajectories can be extracted via computer vision approaches
(e.g., Refs. [2,17,18]). Since we are interested in the dynam-
ics of undisturbed pedestrians, we consider trajectories in
low-density conditions (i.e., in absence of other neighboring
pedestrians).

In the following we provide a brief description of the
datasets (for technical details about the average paths and the
selection procedures, see Appendixes A and B).

A. Amsterdam south train station

At this measurement location on platform 2.1, we consider
high-resolution data in the vicinity of the staircase [Fig. 1(a)]
for the period spanning April 2020 to December 2020 (196
days). Pedestrians arriving by train normally leave the plat-
form via the staircase depicted in the middle. Thus we select
some of the many trajectories of pedestrians turning from the
platform towards the staircase. The strict selection criteria
(Appendix B) result in a selection of 2700 measured trajec-
tories in Amsterdam south train station.

The average path has a gradually increasing curvature and
consequently a broad curvature spectrum with a radius of
curvature ranging from 5 to 0.9 m. The length of the average
path is approximately 2 m.

B. Eindhoven train station

At the measurement domain within Eindhoven train station
platform 2.1, measurements have been performed between
April 2021 and September 2021 with a sample frequency of
10 Hz. We have chosen five winding paths in this train station
as preferred paths as these are walked by many pedestrians.
Additionally, all paths span wide curvature ranges. A top

view of the platform with three preferred paths is shown in
Fig. 1(c).

Totally 2700 measured trajectories are selected in the Eind-
hoven train station. The average paths in the Eindhoven train
station have lengths ranging from 4 to 10 m. The minimum
radius of curvature reached by the preferred paths in this
station is 2.1 m.

C. Eindhoven University of Technology

This measurement campaign is conducted as an exper-
iment at a large public area within the university campus
in Eindhoven, the Netherlands, in February 2019. During
1 min, seven participants were asked to walk around two
traffic cones, 3 m apart, resulting in elliptical-like trajecto-
ries [Fig. 1(b)]. The pedestrians kept their distance to create
diluted conditions. The average path has a broad curvature
spectrum with a minimal radius of curvature around 0.6 m.
The measured trajectories are sampled with a frequency of
30 Hz (further technical information on this experimental
setup based on overhead depth sensors are in Ref. [17]).

IV. CURVATURE-VELOCITY FUNDAMENTAL DIAGRAM
AND FLUCTUATIONS

We report here on the effect of the preferred path curvature
on the average velocity in the diluted flow limit. We compare
a closed-form theoretical model with high statistics measure-
ments. These enable us to derive a fundamental diagram-like
relation for average velocity and path curvature.

Consistently with previous research [1,10], we observe that
the walking velocity decreases with the curvature of the path.

We assume that body rotation, necessary to adopt a curved
trajectory, is the key reason for velocity reduction. Let vSP

denote the velocity pedestrians adopt when walking along
straight paths [also straight-path velocity (SPV)]. In each
experimental setup, we observed slightly different (average)
values of the vSP, all within the interval [1.10, 1.36] m/s, in
agreement with literature velocity measurements in the diluted
limit (e.g., Refs. [3,15]). Suppose a pedestrian with body
radius δ (half body width) walking along a curved path with
radius R = 1

k [as in Fig. 3(a)]. We assume the velocity of the
body parts following the outer bend to remain equal to the
straight-path velocity (i.e., no body part moves faster than the
SPV). Considering a rigid body with shoulder line directed
toward the curvature center, the body center velocity (BCV),
vBC, satisfies vBC < vSP, and the following relation among
vSP, vBC, δ, and R holds:

vBC

R
= vSP

R + δ
. (4)

Equation (4) expresses the physical consequence that under
our rigid body and shoulder alignment assumptions, and the
angular velocity is constant. Linearizing Eq. (4) around k = 0
returns a more familiar fundamental diagram-like expression,

vBC(k) = vSP(1 − kδ). (5)

In Fig. 3(b) we compare our model with our experimental
measurements. We factor out the context dependency of the
velocity by scaling the BCV to the SPV, i.e., we consider
the following dimensionless longitudinal velocity at varying
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FIG. 3. (a) Sketch of a person following a curved trajectory indicating the body radius, δ, radius of curvature, R = 1
k , SPV, vSP, and the

BCV, vBC. The linearized velocity of the body center behaves according to Eq. (5). (b) The average dimensionless longitudinal velocity 〈v̂‖〉 as
a function of k, the curvature of the preferred path for the seven different datasets. The error bars indicate the standard deviation. Fits of Eq. (4)
of 100 random data partitions are represented by the pink area. The results are compared with the fit of Eq. (4) (δ = 0.23 m, blue) and the fit
of Eq. (5) (δ = 0.19 m, red).

curvature:

v̂‖(k) =
〈
vBC(k)

vSP

〉
k

= 〈vBC(k)〉k

vSP
, (6)

where the average is taken among measurements having the
same k value (where a binning in k is considered). For
each measurement domain, the SPV is determined separately
by extrapolating the longitudinal velocity versus curvature
relation towards k = 0. In other terms, we compute vSP extrap-
olating the function h(k) = 〈vBC(k)〉k for k → 0. We report
the relation in Eq. (4) with a solid blue line, with body
radius δ fitted to δ ≈ 0.23 m. The pink area represents a
margin of error obtained by fitting Eq. (4) with 100 random
partitions of the data, which are compatible with body radii
δ ∈ [19, 27] cm consistently with expectations. We report in
solid red the linearized relation in Eq. (5) (δ = 0.19). Within
the curvature range explored (k ∈ [0, 1.6] m−1), the complete
[Eq. (4)] and linearized relation [Eq. (5)] appear equally
compatible with the data. For technical simplicity, in our
Langevin-like model proposed in Sec. V we will employ the
linearized model.

As curvature change, pedestrians adapt their average veloc-
ity almost instantly. In Fig. 4(a), we report as a function of the
angular coordinate along the ellipse in the TUE dataset, the

values of average velocity and curvature. Within error bars,
the adaptation time of velocity to curvature value appears neg-
ligible (approximately 0.3 s). In other terms, it is reasonable
to expect that pedestrians move and tune fluctuations in such a
way that effectively they manage an instantaneous adaptation
of their average velocity.

A. Velocity fluctuations

We conclude this section reporting on fluctuations beside
the curvature-dependent averages [Eq. (6)]. Due to statistics
reasons we focus on our richest dataset, AMS. In Fig. 4 we
report the probability density function of longitudinal (v‖) and
transversal (v⊥) velocity fluctuations. In line with the fun-
damental diagram [Fig. 3(b)], the means of the longitudinal
velocity decrease for higher curvature levels. Compensating
for this shift considering

v
‖
SHIFTED := v‖ − vBC(k) (7)

with δ = 19 cm [cf. Fig. 4(b)], it can be seen that fluctuations
in the (shifted) longitudinal velocity are curvature indepen-
dent and have a Gaussian fluctuation structure with standard
deviation σv‖ = 0.19 m/s. Similarly, fluctuations in transver-
sal velocity do not depend on the curvature and have Gaussian
fluctuation, σv⊥ = 0.15 m/s. These measurements, after
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FIG. 4. Curvature (k) of the average path and average velocity magnitude (|ẋ|) for pedestrians walking along an ellipse (TUE dataset).
The error bar on the velocity is computed similarly to Fig. 3(b). The s coordinate parameterizes the phase along the ellipse (s ∈ [0, 2π ]).
High-curvature regions correspond to low-velocity peaks and vice versa. The time offset is approximately 0.3 s and negligible within error bar.
(a) Probability distribution functions of the longitudinal velocity, v‖, and of the shifted longitudinal velocity, v

‖
SHIFTED, (inset) for four curvature

intervals (AMS dataset). The longitudinal velocity fluctuations have different mean. However, the width of the fluctuations is similar for all
curvature levels as the inset figure shows. (b) Probability distribution function of the transversal velocity, v⊥, for the same four curvature
intervals. Transversal velocity fluctuations are indistinguishable across different curvature levels.
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velocity shifts are compatible with experimental campaigns
focusing on straight paths [2,8]. Similarly to Refs. [2,8], the
Gaussian behavior of velocity fluctuations will be crucial in
modeling perspective, forming the bases to our Langevin-like
structure.

V. LANGEVIN-LIKE MODEL FOR CURVED
TUBULAR NEIGHBORHOOD

In this section we show that the walking dynamics
around preferred paths can be modeled quantitatively with a
Langevin-like model defined on the tubular neighborhood of
x̄(s).

A. Fluctuations around straight paths

The model introduced here extends the Langevin-like
model previously proposed by some of the authors and that
addresses the case in which x̄(s) is a straight trajectory [8].
In Ref. [8], the fluctuating motions of pedestrians have been
modeled as a superposition of social forces determining the
individual acceleration, ẍ. Assuming for simplicity a coor-
dinate system (x, y) in which x̄(s) is the path y = 0, thus
x identifies the position along x̄(s), and y is the transversal
coordinate (i.e., x̄(s) = (s, 0), (e‖, e⊥) ≡ (ex, ey), (ẋ, ẏ) =
(v‖, v⊥)), individual accelerations read

ẍ = f (ẋ, vBC)ex + (−2βy − 2μẏ)ey + σẆ

= f (v‖, vBC)e‖ + (−2βy − 2μv⊥)e⊥ + σẆ . (8)

The previous equation models the following effects:
E1 - self-propulsion along x̄(s) driven by f (v‖). At first-

order Taylor expansion f (v‖, vBC) is a relaxation term
towards a desired walking speed for the body center vBC, i.e.,

f (v‖, vBC) = −2α(v‖ − vBC), (9)

where α is inversely proportional to the timescale τ = (2α)−1

for relaxation towards the desired velocity. Note that this term
can be interpreted as an active viscous term with quadratic
velocity potential,

	‖(v‖, vBC) = α(v‖ − vBC)2. (10)

E2 - transversal confinement in the x̄(s) neighborhood,
and transversal velocity damping, which is modeled as a
damped harmonic oscillator. This is parameterized by a linear
stiffness coefficient β and a linear friction coefficient μ.

E3 - random noise, Ẇ := (Ẇ ‖, Ẇ ⊥), to generate fluctu-
ations and recover randomness in behavior. For simplicity,
this is assumed to be δ correlated in time, isotropic, with
components mutually uncorrelated Gaussian distributed (σ is
a scale parameter). This hypothesis quantitatively agrees with
the observed fluctuations in terms of correlation structure and
probability density of velocities and positions.

Note that in Ref. [2], pairwise interactions to reproduce the
statistics of the avoidance behavior have been included in this
model.

xx

ẍ + C (x, ẋ) = 0

ẍ = 0

FIG. 5. A tubular coordinate frame around x̄ with the evolution
of a velocity vector respecting ẍ = 0 and ∇ẋẋ = ẍ + C(x, ẋ) = 0 in
black and blue, respectively.

B. Parallel dynamics in a tubular neighborhood:
Geometric setting

Here we extend model in Eq. (8) to include curvature
effect. When pedestrians follow a path with small curvature,
we do not expect effects due to curvature: The path appears
locally straight. Pedestrians in these conditions would walk
following their curved, preferred path. We incorporate this
aspect in the left-hand side of the equation of motion (8).
Heuristically, we opt to vary the underlying geometry.

First, in absence of forces and noise, Eq. (8) describes a
pedestrian conserving their initial momentum:

ẍ = 0 ⇒ ẋ = const. (11)

This translates into a rectilinear motion (depicted by the black
arrows in Fig. 5).

We generalize the left-hand side of Eq. (11), considering
broader possibilities of force-free curves (typically addressed
as geodesic curves) as solutions of

∇ẋẋ := ẍ + C(x, ẋ, x̄) = 0. (12)

Here we adopt the notation ∇ẋẋ for the covariant deriva-
tive of ẋ. In the field of differential geometry, the covariant
derivative is commonly used to express the change of vec-
tors when transporting them in a (curved) geometry [28].
Additionally, the correction term, C(x, ẋ, x̄), is usually ex-
pressed by so-called Christoffel symbols of the second kind:
C(x, ẋ, x̄(s)) := ∑

i, j,k=1,2 
i
k j ẋ

k ẋ jei [where the indexed nota-
tion satisfies (x1, x2) := (x, y), (e1, e2) := (ex, ey)]. Technical
properties of the covariant derivative and Christoffel symbols
are postponed to Appendix C.

We aim at a minimal definition of a covariant derivative
allowing geodesics that, in heuristic terms, follow the tubular
neighborhood [i.e., solutions of Eq. (12), cf. example blue
arrows in Fig. 5]. To this purpose, we require geodesics to
preserve kinetic energy as well as the velocity in transversal
direction (v⊥). The latter implies that geodesics whose initial
transversal velocity is zero, i.e., that do not depart from the
base path, remain parallel at all times. In formulas, these entail
the following properties:
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(i) geodesic curves conserve the (Euclidean) kinetic en-
ergy, i.e.,

∇ẋẋ = 0 ⇒ d

dt
‖ẋ‖2 = d

dt
(ẋ2 + ẏ2) = 0. (13)

(ii) Geodesic curves preserve the transversal velocity:

∇ẋẋ = 0 ⇒ ḧ(t ) = 0, ∀t > 0. (14)

This implies that geodesic curves initially parallel to x̄(s), i.e.,
with zero initial orthogonal velocity, remain parallel to x̄(s) at
all times, i.e.,{

v⊥(t = 0) = 0

∇ẋẋ = 0
⇒ v⊥(t ) = 0, ∀t > 0. (15)

This means that if x̄(s) is not straight, also geodesics will
not be. Two examples of geodesics are shown in Fig. 2(b)
(curves a and b). It can be seen that the properties of
remaining parallel and conserving mechanical energy are sat-
isfied, which is ensured by the centripetal-like acceleration
C(x, ẋ, x̄(s)) (note that this is not a covariant derivative of
Levi-Civita type for the Euclidean metric). In our forthcoming
simulations we opt to generate trajectories in the physical
(x, y) coordinates. This allows to easily account for forcing
terms and possibly generalize our work to include interac-
tions. On the other hand, the correction term remain defined
via an implicit system of equations. To prevent this sec-
tion from becoming needlessly technical, we opt to postpone
our derivation of the expression of the correction term follow-
ing the two hypotheses above as well as their transformation
in (x, y) coordinates in Appendix C.

C. Pedestrian fluctuations in a tubular neighborhood

To model the fluctuating behavior of pedestrians walk-
ing along curved paths, we perturb the force-free dynamics
described by Eq. (12), including counterparts of the effects
E1–E3. We additionally hypothesize, consistently with the
fundamental diagram in Sec. IV, that the body center velocity
depends on the instantaneous curvature following Eq. (5). We
assume that pedestrians (in absence of stochastic fluctuations)
can adjust instantaneously to such velocity as the curvature
changes along the path (i.e., when k̇ �= 0). This is in agreement
with Fig. 4(a) that shows instantaneous velocity adaptations
as curvature changes. In principle, the combination of Eq. (9)
and Eq. (5) would provide a curvature-dependent propul-
sion force f (v‖, vBC(k)). However, such a propulsion force
f (v‖, vBC(k)) built by bare combination of the two terms
would take a time scaling with τ > 0 to relax to changes
in desired velocity due to curvatures changes. This would
yield a modeled dynamics that exhibits a systematic nonzero
delay to adjust to the body center velocity at a given curva-
ture k. To model dynamics without such a delay, we correct
the propulsion term including a contribution of the curva-
ture time gradient k̇. This yields our final propulsion term
f̂ (v‖, vBC(k), k̇) which reads

f̂ (v‖, vBC(k), k̇) = f (v‖, vBC(k)) − vSPδk̇

= −2α

[
v‖ − vSP(1 − δk) + vSPδ

2α
k̇

]
.

(16)

The component −vSPδk̇ ensures that, in absence of other
forces, v‖(t ) ≡ vSP(1 − δk(t )) holds at all times and with no
time delays. Note that f̂ ≡ f whenever the curvature gradient
is zero, e.g., on straight paths or on circular paths with con-
stant radius.

Combining our geodesic flow parallel to the curved pre-
ferred path x̄(s) [Eq. (12)], the effects E1–E3, and the
corrected propulsion term in Eq. (16) yields the following
force balance:

∇ẋẋ = f̂ (v‖)e‖ + (−2βh − 2μv⊥)e⊥ + σẆ . (17)

An example of a trajectory generated by this model is in
Fig. 2(b) (curve c), where the modeling forces confine the tra-
jectory around the preferred path x̄(s). In the next section we
show that Eq. (17) describes quantitatively the statistics of the
fluctuations of pedestrians walking about curved paths. We
simulate Eq. (17) via the numerical procedure in Appendix D.
This procedure is relatively complex requiring the numerical
evaluation of Christoffel symbols. In the idealized case of a
circular preferred path, in which center and radius of curva-
ture do not change, Eq. (17) can be written in explicit form
in Cartesian coordinates. Although our forthcoming analysis
does not employ this simplified setting, we report the related
analytic expressions in Appendix E for the readers desiring a
simple entry point for implementing our model. We deem this
simplified setting a good local approximation whenever the
radius and center of curvature change extremely slowly with
respect to the fluctuation timescale τ .

VI. RESULTS

In this section we compare the stochastic dynamics mod-
eled by Eq. (17) with experimental data. We focus on
trajectories following the curved path at Amsterdam South
station (AMS dataset), as it is the richest in amount of tra-
jectories allowing to fully resolve and compare statistical
fluctuations. We consider the SPV, vSP, and body size radius
δ determined in Appendix F. We estimate the scale parame-
ters (α, β, μ, and σ ) by considering Langevin potentials in
longitudinal velocity (shifted as in Sec. IV),

	
v

‖
SHIFTED

∼ − logP (v‖
SHIFTED), (18)

P (v‖
SHIFTED) here indicates the probability density of v

‖
SHIFTED,

and lateral deviation 	h and transversal velocity 	v⊥ . The
fitting procedure follows the approach in Refs. [2,8], and
technical details are in Appendix F. We report the values of
the model parameters in Table I.

With the estimated parameters from Table I and the sim-
ulation procedure explained in Appendix D, we perform
simulations of 2700 trajectories with a discretization step size
of 0.1 s, comparable to dataset AMS. Figure 6(a) displays
a collection of simulated trajectories, qualitatively indistin-
guishable from the measurements.

Next, we consider stochastic properties by comparing the
empiric and simulated probability distributions of the fluc-
tuations in three observables: shifted longitudinal velocity,
transversal velocity, and lateral deviation. The empiric proba-
bility distribution functions, as well as the ones obtained from
the simulations, are shown in Figs. 6(c)–6(e). It can be seen
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FIG. 6. (a) Top view of Amsterdam south train station platform 2.1 with average path, measured trajectories, and simulated trajectories.
(b) Time correlation of the shifted longitudinal velocity, v

‖
SHIFTED, of the measured trajectories in the Amsterdam train station (red). The fitted

analytic exponential decay [exp (−2αt )] (blue dotted line) is compared with the measurements and simulations. [(c)–(e)] Comparison of the
empirical probability distribution functions of the shifted longitudinal velocity (c), transversal velocity (d), and lateral deviation (e) with the
distribution functions of the simulation in Amsterdam train station.

that the stochastic properties of the velocity fluctuations are
captured by the model. The simulated fluctuations in transver-
sal position are also in good agreement. However, for lateral
deviations larger than 10 cm (|h| > 0.1 m), we observe that
the empirical fluctuations deviate from the Gaussian behavior.
This could potentially be attributed to architectural constraints
within the station (e.g., the entrance of the staircase) which
could impede inward (h < 0) and facilitate outward fluctua-
tions (h > 0).

TABLE I. Estimated parameters of the model for the Amsterdam
train station dataset. α, modulating factor of longitudinal propul-
sion force; β, stiffness coefficient of the transversal linear Langevin
dynamics; μ, friction coefficient of the transversal linear Langevin
dynamics; σ , white noise intensity; vSP, straight-path velocity; δ,
body radius. The parameter estimates and are obtained by fittings of
the fundamental diagram, the v

‖
SHIFTED-time correlation and Langevin

potentials. Further details on the parameter estimation, including
error analysis, are provided in Appendix F.

Parameter Value

α 0.26 s−1

β 1.17 s−2

μ 0.39 s−1

σ 0.19 ms−3/2

vSP 1.33 ms−1

δ 0.192 m

Another important statistical property, also used in the
model calibration, is the correlation of the shifted longitudinal
velocity. In Fig. 6(b), it can be seen that the empiric v

‖
SHIFTED-

correlation is recovered reasonably well by the model.

VII. DISCUSSION

We have investigated the fluctuating dynamics of undis-
turbed pedestrians walking along curved paths with high
statistical, space and time accuracy. Our analysis hinged
on large trajectory datasets acquired in both real-life con-
ditions and in a experimental setup. The trajectories in the
datasets cover a broad range of curvature radii. Thanks to
these, we have shown that in the diluted limit a fundamen-
tal diagram-like relation between the average longitudinal
walking velocity and path curvature exists. Specifically, the
average longitudinal velocity decreases for increasing cur-
vature. Notably this reduction is quantitatively compatible
with a basic rigid-body-like kinematic model. A first-order
expansion of such a model, yield a fundamental diagram-
like relation. Based on the large datasets, we have analyzed
pedestrian motion beyond averages targeting fluctuations in
velocity and lateral deviation. Analogously to the case of
straight paths, these fluctuations display Gaussian statistics,
as swaying motion, and intersubject/intrasubject variabilities
superimpose. Besides, the amplitude of the velocity fluctua-
tions (variance) is independent on the curvature level, at for
the range of curvatures observed (k ∈ [0, 1] m−1).
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Based on these findings, we have extended the quantitative
Langevin-like model by Corbetta et al. [8] to reproduce, in a
statistically quantitative way, the walking dynamics of pedes-
trians along generic, curved, average paths. In our model, we
have considered pedestrians as particle moving according to
a custom geodesic flow shaped after the average path. The
geodesics we consider are characterized by the conservation
of kinetic energy and by the fact that they remain parallel
to the average path (when the initial velocity is). We have
modeled pedestrian dynamics by perturbing this geodesic flow
by (social-like) forces representing (lateral) path adherence,
longitudinal propulsion, and random noisy fluctuations. We
have validated the model by comparing the probability density
functions and the correlation functions generated by repeated
model simulations with our measurements at Amsterdam
South station. Our model successfully captures the stochastic
features of the motion in terms of fluctuations in velocity and
position.

We have opted to operate in Cartesian coordinates within
a curved geometry, embedding curvature effects in a custom
covariant derivative. We believe this choice is instrumental
towards further generalization of the model to include, e.g.,
interactions with other pedestrians and/or different types of
forces or noise. All these are typically addressed in Cartesian
coordinates. Within the geometric framework we propose, in
fact, no coordinate transformations of the forces are required,
but only a computation of a correction term (i.e., a Christoffel
symbol). Mapping interaction forces in the local coordinate
system of each pedestrian would rapidly turn prohibitively
complex and computationally expensive.
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APPENDIX A: DEFINITION OF PREFERRED PATH x̄(s)

For the definition of the preferred path, we consider a
bundle with N trajectories,

{xν (t ) | ν = 1, 2, . . . , N}.
Due to the variability in the velocity of pedestrians, we
parametrize each trajectory by the relative time,

s := t − t1
t2 − t1

,

where t1 and t2 are the times that a trajectory enters and leaves
the measurement site, respectively. The preferred path, x̄(s),
is defined as an ensemble average over the bundle at each
relative time instance s ∈ [0, 1]:

x̄(s) = 〈xν (s)〉ν = 1

N

N∑
ν=1

xν (s). (A1)

APPENDIX B: DATA SELECTION PROCEDURE

1. Temporal filters

High-frequency fluctuations (i.e., with frequency greater
than 1.2 Hz) do not correspond to typical fluctuations in
pedestrian dynamics. These high-frequency fluctuations are
presumably connected to experimental errors. To diminish the
effect of these high frequencies, we use a Butterworth filter
(cut-off frequency 1.2 Hz, order: 5 [29]).

2. Trajectory selection AMS

To ensure that the data only contains trajectories under
diluted conditions, we restrict to trajectories tracked when no
other pedestrian is tracked on the platform. We, furthermore,
restrict our study to walking speed by removing trajectories
with average velocity outside [0.5, 2.5] ms−1.

We consider the bundle with trajectories starting near the
railroad [i.e., (x, y) ∈ [0.6, 1.3] × [1.6, 2.3] m2] and finishing
at the staircase [i.e., (x, y) ∈ [−3.0,−0.2] × [0.7, 3.5] m2]
depicted by the two rectangles in Fig. 7(a). We determine
an average path, x̄(s), according to Eq. (A1) and parametrize
its tubular neighborhood with coordinates s and h as in Ap-
pendix C. Note that h represents the normal deviation from
x̄(s). For a trajectory x(t ), we use the evolution of its h coor-
dinate, h(t ), to determine the distance from x̄(s):

‖x̄ − x‖ := 1

t2 − t1

∫ t2

t1

|h(t )| dt,

where the trajectory is defined for time t ∈ [t1, t2]. We
improve the bundle by filtering out the 5% most deviating tra-
jectories. That is ‖x̄ − x‖ > 24.6 cm, as depicted in Figs. 7(a)
and 7(b).

3. Trajectory selection EHV

In contrast with the measurements at Amsterdam train sta-
tion, nearly always more than one pedestrian is measured at
the measurement domain in Eindhoven train station. There-
fore we employ a rectangular grid consisting of 3 m × 3 m
cells. We define the local density as the number of pedestrians
in a grid cell. To ensure diluted conditions, we only consider
trajectories where the local density does not exceed one during
their course. Furthermore, we ensure walking trajectories by
applying the same velocity restriction as in AMS trajectory
selection.

We group trajectories that originate and terminate in the
same areas of the train station into bundles. Five bundles are
suited for our analysis as they contain many (curved) paths.
Average paths are determined as before. In a similar fashion
to AMS trajectory selection, we improve each bundle by dis-
carding the most deviating 10%. The average paths of three
bundles are displayed in Fig. 1 (paths in red, blue, and green
correspond to bundles 1, 2, and 3, respectively). The average
paths of bundles 4 and 5 are displayed in Fig. 7(c).
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FIG. 7. (a) Collection of trajectories at Amsterdam south train station platform 2.1 including the origination and termination rectangles.
Trajectories among the 95% least deviating trajectories are colored green. The 95-percentile of average absolute deviation (‖x̄ − x‖ = 24.6 cm)
is indicated with the dotted line. The green trajectories are selected. (b) Probability distribution function of the trajectory deviation from the
preferred path (‖x̄ − x‖). The 95-percentile, indicated with the red line, is used for trajectory selection. (c) The average paths of measurement
bundle 4 (blue) and bundle 5 (red) with some selected trajectories in Eindhoven train station.

APPENDIX C: CONSTRUCTION OF TUBULAR
NEIGHBORHOOD AND DERIVATION OF THE

COVARIANT DERIVATIVE

1. Covariant derivative

A covariant derivative (a.k.a. affine connection) is a map-
ping that describes how vectors change when transporting
them in a smooth collection of tangent spaces. The concept
of covariant derivative can be understood as an generalization
of the ordinary derivative towards curved surfaces. For u and
v vectors in a tangent space of a curved surface, the covariant
derivative of u along v is denoted as ∇vu and respects the
following properties (e.g., Refs. [28]):

(i) ∇ f1v1+ f2v2 u = f1∇v1 u + f2∇v2 u,
(ii) ∇v(u1 + u2) = ∇vu1 + ∇vu2,
(iii) ∇v( f u) = f ∇vu + v( f ) · u,
for u, u1, u2, v, v1, v2 in a tangent space and f , f1, f2

smooth functions.
We can define the covariant derivative by defining Christof-

fel symbols of the second kind, 
k
i j . These coefficients

determine how basis vectors in different spaces are connected
via


k
i jek := ∇e j ei. (C1)

Note that from now on, we will use the Einstein summa-
tion convention (e.g., 
k

i jek ≡ ∑
k 
k

i jek). Using the properties
above, we could write the covariant derivative in terms of
Christoffel symbols:

∇vu = ∂u
∂v

+ uku j
i
k jei, (C2)

where u = uiei.
The covariant derivative can be pushed forward to other co-

ordinate charts using the coordinate transformation φ = ψβ ◦
ψ−1

α , which maps from chart ψα to chart ψβ . This induces a
relation between Christoffel symbols in different coordinate
charts:


k
i j = T k

�

(
Sm

j Sn
i 
̄

�
nm + ∂ jS

�
i

)
, (C3)

with T = Jφ and S = Jφ−1 = [Jφ]−1 the (inverse) Jacobian of
φ and 
k

i j and 
̄k
i j the Christoffel symbols in the coordinate

charts ψα and ψβ , respectively.

2. Tubular neighborhood

We construct a coordinate chart, ψx̄, that covers the tubular
neighborhood of a generic curve x̄ : R → R2 : s �→ (x, y) by
using the tangent and normal vectors,

e‖ = x̄′(s)

|x̄′(s)| and e⊥ =
(

0 1
−1 0

)
e‖, (C4)

as basis vectors. The coordinate lines are parallel and normal
to x̄(s) with coordinates s and h representing the parallel and
transversal direction, respectively. The coordinate transforma-
tion form ψx̄ to the Cartesian coordinates is given by

φ(s, h) = x̄(s) + h e⊥(s). (C5)

3. Energy-conserving connection

Geodesics are generally defined as parallel transport of
velocity vectors in their own direction [28],

∇ẋẋ = ẍ + 
i
k j ẋ

k ẋ jei = 0, (C6)

analogously to Eq. (12) with correction term C(x, ẋ, x̄(s)) =

i

k j ẋ
k ẋ jei. We derive our affine connection (i.e., derive the

Christoffel symbols) such that geodesics respect the physical
properties:

(i) geodesic curves conserve kinetic energy;
(i) geodesic curves preserve the transversal velocity,
as explained in Sec. V. These properties fully describe

geodesics in flat space nearby straight paths as ẍ = 0 (
i
k j =

0 ∀i, j,k). However, this simple connection does not hold for
curved paths or curvilinear coordinates.

Energy conservation is ensured by conserving the physical
velocity,

‖v‖2 = g̃i j q̇iq̇ j, (C7)
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where trajectory (q1(t ), q2(t )) is in generic coordinate chart
ψq with metric g̃. By defining the metric tensor in the Carte-
sian coordinate chart as gi j = δi j , we define the physical
velocity to be the Euclidean velocity (||v||2 = ẋ2 + ẏ2). We
define coordinate chart ψx̄ as in Appendix C 2. Then the
metric in ψx̄ is given by [28]:

ĝkq = gi j
∂φi

∂sk

∂φ j

∂sq
, (C8)

where φ denotes the coordinate transformation to the Carte-
sian coordinates [Eq. (C5)] and (s1, s2) = (s, h). Note that
ĝsh = ĝhs = 〈e‖, e⊥〉 = 0 since e‖ ⊥ e⊥. Furthermore, ĝhh =
‖e⊥‖2 = 1 by definition. Therefore the metric in coordinate
chart ψx̄ can be written as

ĝi j =
[

(∂sφx )2 + (∂sφy)2 0
0 1

]
. (C9)

Because the metric is diagonal, the physical velocity can be
separated into two orthogonal parts,

v‖ =
√

ĝssṡ and v⊥ =
√

ĝhhḣ, (C10)

which are the longitudinal and transversal velocity compo-
nents, respectively. To meet the properties, both velocity
components need to be conserved, meaning

d

dt
v‖ = d

dt
(
√

ĝssṡ) = 0,

d

dt
v⊥ = ḧ = 0, (C11)

which can be elaborated to

s̈ + ∂sĝss

2ĝss
ṡ2 + ∂hĝss

2ĝss
ḣṡ = 0,

ḧ = 0. (C12)

Using Eq. (C2), the Christoffel symbols in ψx̄ can be deter-

mined such that Eq. (C12) is respected:


̄s
i j =

[
∂sĝss

2ĝss

∂hĝss

2ĝss

∂hĝss

2ĝss
0

]
, (C13)

and


̄h
i j = 0. (C14)

Hence, the minimum connection that respects the given phys-
ical properties is fully described by the Christoffel symbols
in Eq. (C13) and Eq. (C14). Note that we can obtain the
Christoffel symbols in the Cartesian coordinate chart by ap-
plying Eq. (C3).

APPENDIX D: NUMERICAL SIMULATIONS

We integrate Eq. (17) by using the Runge-Kutta SRI2 al-
gorithm [30] (via the PyPI library sdeint [31]). We choose
a discretization step size of 0.1 s, similar to the sampling
frequency of our measurements. We initialize our simulations
at the beginning of our preferred path x̄(s) with s(t = 0) = 0
and h(0), v⊥(0) and v

‖
SHIFTED(0) distributed according to the

Fokker-Planck equilibrium distributions (see Appendix F).

(x, y) (s, h)

x, y s, h

e‖, e⊥
ĝij

Γ
i
jk

Γi
jk

FIG. 8. A schematic overview of the calculation steps for deter-
mining the Christoffel symbols. (1) Estimation of tubular coordinates
using the Newton-Raphson method. (2) Calculation of tubular
neighborhood-dependent variables such as the longitudinal and
transversal directions, e‖ and e⊥, and the metric ĝi j . (3) Computation
of the Christoffel symbols in the coordinate chart ψx̄. (4) Push-
forward of the Christoffel symbols to the Cartesian coordinates.

The Christoffel symbols, needed every time step during
the integration of Eq. (17), are obtained by the computa-
tional steps shown in Fig. 8. For step (1), the computation
of the tubular coordinates, we use the two-dimensional
Newton-Raphson method [32]. This iterative method solves
equations of the form f (s) = 0. If s0 is an approximate solu-
tion, then the sequence

sp+1 = sp − J−1(sp)f (sp)

for p = 1, 2, . . . and J Jacobian of f , converges to a solution.
Given x, the tubular coordinates are represented by the roots
of function f (s) = φ(s) − x̂. The roots of f are estimated with
the Newton-Raphson method with the tubular coordinates of
the previous time step as an approximated solution. With our
typical simulation duration and discretization step size, two
iterations of the Newton-Raphson method give a sufficient
accurate estimation of coordinates s and h.

In step (2), we use Eqs. (C4), (C5), and (C9) to calcu-
late the metric in tubular coordinates, ĝss, and the derivatives
with respect to s and h (∂sĝss and ∂hĝss). We compute the
Christoffel symbols in the tubular coordinate chart in step (3)
using Eq. (C13) and (C14). Finally, in step (4), we push the
Christoffel symbols to the Cartesian coordinate chart using
Eq. (C3).

APPENDIX E: MODEL SIMPLIFICATION FOR CIRCULAR
PREFERRED PATHS

In the idealized case in which the preferred path has cir-
cular shape, the equations for our covariant derivative and
our complete Langevin-like model [Eq. (17)] can be writ-
ten in explicit form. This can serve as a simplified model
for conditions in which the preferred path is characterized
by long portions of constant curvature (e.g., with respect to
the relaxation timescale τ ). In this Appendix, we derive the
equations for this case. We report this as a practical example
that allows to work with our model bypassing the technical
challenges. We stress however that in our results Sect. VI,
we employ our complete model (via the numerical approach
in Appendix D) allowing the curvature center and curvature
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FIG. 9. (a) The empiric potentials, 	exp = − ln (Pexp), of (a) the transversal velocity, (b) the lateral deviation, and (c) the shifted
longitudinal velocity obtained from the Amsterdam train station data (red) compared with the fitted model potentials (blue).

radius of the preferred path to change as it happens in our
study cases.

As curvature center and curvature radius of the preferred
path do not change, certain terms conveniently cancel or
simplify. Hence both sides of our model in Eq. (17) can be
derived in analytic form and written in Cartesian coordinates.
This means that simulations do only require time discretiza-
tion, while the coordinate transformations in Fig. 8 are not
necessary.

Considering a preferred path conveniently centered in the
origin and of radius R, its equations are

x̄(s) = R cos(s)ex + R sin(s)ey, (E1)

where the variable s indicates the phase along the circumfer-
ence. We can parametrize the tubular neighborhood of this
path as

φ(s, h) = (R + h) cos(s)ex + (R + h) sin(s)ey. (E2)

The quantity ρ = R + h is the distance between the origin and
the point considered. For the sake of notation, we shall use
the symbol ρ when convenient. In this tubular neighborhood,
the longitudinal and transversal velocity component can be
written using the polar coordinate local base:

e‖ = R90
x
ρ

e⊥ = x
ρ

, (E3)

where R90 is a matrix yielding a 90-degree counterclockwise
rotation, and which gives

v‖ = ẋ · R90
x
ρ

= ẋy − ẏx

ρ
v⊥ = ẋ · x

ρ
= ẋx + ẏy

ρ
.

(E4)

In (s, h) coordinates, the Euclidean metric reads

ĝi j =
(

ρ2 0
0 1

)
. (E5)

On this basis, we can write our geodesic equation in (s, h)
coordinates using Eq. (C12) that reads

s̈ + ḣṡ

ρ
= 0,

ḧ = 0. (E6)

The same equations can be mapped in Cartesian coordinates
by computing the second time derivative of Eq. (E2) and

replacing Eq. (E6). This yields

ẍ + xṡ2 + y
ρ̇ ṡ

ρ
= 0,

ÿ + yṡ2 − x
ρ̇ ṡ

ρ
= 0, (E7)

where

ρ =
√

x2 + y2,

ṡ = yẋ − ẏx

ρ2
= v‖

ρ
. (E8)

Equation (E7) is the left-hand side of Eq. (17). The right-hand
side of Eq. (17) can be written immediately considering the
components in Eq. (E4), and that k̇ = 0 and h = ρ − R.

APPENDIX F: MODEL CALIBRATION

The model is calibrated by estimating the model parame-
ters, {α, β, μ, vSP, δ, σ }. We use the Amsterdam train station
measurements to estimate the parameters. The “straight-path
velocity” vSP is estimated by linearly extrapolating the v‖ − k
relation towards k = 0. For the Amsterdam train station this
results in vSP = 1.33 ms−1. The body size radius, δ, repre-
sent the slope of the fundamental diagram [Fig. 3(b)]. The
estimation of δ is obtained by a linear fit: δ = 0.19 m. The
remaining four parameters are estimated by applying fits to
empirical Langevin potentials and a correlation function. The
first fit is applied to the transversal velocity potential. In the
stationary regime, the model produces probability distribu-
tion of the transversal velocity and lateral deviation from the
preferred path, P (h, v⊥), according the well-known Fokker-
Planck equation [33] with solutions

P (h, v⊥) = N exp

[
−2μ

σ 2
(v⊥)2 − 4βμ

σ 2
h2

]
, (F1)

where N denotes a normalization constant. A Langevin poten-
tial can be constructed according to 	(·) = − ln (P (·)). The
analytical potentials of the transversal dynamics should agree
with the empiric potentials such that

− ln (Pexp(v⊥)) ≈ 2μ

σ 2
(v⊥)2 + K1 (F2)
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and

− ln (Pexp(h)) ≈ 4βμ

σ 2
h2 + K2. (F3)

The constants K1 and K2 are normalization constants and
Pexp(·) denotes the empiric probability distribution function.
The fitting can be observed in Figs. 9(a) and 9(b) where the
resulting estimated ratios are given by

2μ

σ 2
≈ 21.77 and

4βμ

σ 2
≈ 51.08. (F4)

The same can be done for the longitudinal dynamics. In the
stationary regime, the probability of the shifted longitudinal
velocity is distributed according to

P (v‖
SHIFTED) = N exp

[
2α

σ 2
(v‖

SHIFTED)2

]
, (F5)

where N is a normalization constant. The ratio 2α
σ 2 is com-

pared to the empirical distribution function of the shifted
longitudinal velocity according to

− ln (Pexp(v‖
SHIFTED)) ≈ 2α

σ 2
(v‖

SHIFTED)2 + K3. (F6)

Constant K3 again represents normalization. The fit [Fig. 9(c)]
results in the estimation of the ratio:

2α

σ 2
≈ 14.36. (F7)

To complete the parameter estimation, a time correlation func-
tion of the shifted longitudinal velocity is used. Using Eq. (9)
and the definition of v

‖
SHIFTED, the deterministic shifted longitu-

TABLE II. Estimated parameter values with associated
uncertainty intervals.

Parameter Value Uncertainty interval

α 0.26 [0.22, 0.28] s−1

β 1.17 [0.80, 1.67] s−2

μ 0.39 [0.31, 0.46] s−1

σ 0.19 [0.17, 0.20] ms−3/2

vSP 1.33 [1.29, 1.35] ms−1

δ 0.192 [0.187, 0.195] m

dinal dynamics can be described by

d

dt
v

‖
SHIFTED = −2αv

‖
SHIFTED. (F8)

Therefore, the time correlation of v
‖
SHIFTED should decay as

exp (−2αt ). An estimated value of α follows from the fit
[Fig. 6(b)]:

−2α ≈ −0.51. (F9)

The estimates obtained by the fitted values result in the pa-
rameter values reported in Table II. To determine uncertainty
intervals for our estimates, we repeat the fitting procedure
five times using randomly selected, equally sized partitions
of the data. We then use the fitted values from each of the five
partitions to estimate the minimum and maximum values for
each parameter. We set these as the lower and upper bounds
of the respective intervals.
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