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Modeling ultrasonic metafluids: The significance of discrete oscillators
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Significant changes in the acoustic response of a fluid can be induced by the suspension of tiny, subwavelength-
size discrete micro-oscillators in the fluid. We investigate how the topological properties of these oscillators,
such as the mass distribution and connectivity of the oscillator parts, influence the effective dynamic density and
compressibility of the fluid in which they are embedded. We demonstrate a superior, metamaterial-like response
of the suspension when using micro-oscillators with a high density of low-frequency modes. Such low-frequency
modes occur in loosely connected microstructures and make the system much more experimentally feasible due
to the larger ultrasonic attenuation length at these frequencies. In addition, the absence of need for an intricately
designed structure brings experimental implementation within reach.
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I. INTRODUCTION

In metamaterials the interaction between waves and matter
leads to unusual wave-propagating properties of the medium,
which can be used in a wide array of applications: from
electromagnetic absorbers [1] and cloaking devices [2] to de-
signing perfect lenses, capable of beating the difraction limit
in subwavelength imaging [3]. In acoustic metamaterials, the
parameters that determine sound propagation, i.e., the effec-
tive compressibility χ and density ρ of the wave-carrying
medium, can become simultaneously negative in certain fre-
quency windows due to resonance effects of subwavelength
inclusions [4,5]. Metafluids are a special class of acoustic
metamaterials, in which the inclusions are suspended in a
host fluid. In existing practical realizations, the inclusions
acting as micro-oscillators are typically symmetrically shaped
or periodically arranged to achieve negative χ and ρ [4–17].
In such systems, monopolar resonances (breathing modes)
affecting the compressibility of the system can be achieved
relatively easily by the inclusion of bubble-like or vesicle-
like objects [6–10,18–21]. Such hollow (gas-filled) objects
are highly compressible and, together with the effective mass
load of the surrounding fluid, produce resonances at ultrasonic
frequencies despite their small size. Conversely, a region of
the host fluid exhibits resonance—a standing wave—only on
the wavelength scale.

To affect the apparent density of the suspension, the in-
clusions must exert a force on the fluid, and therefore the
corresponding resonances must have dipolar angular symme-
try. Since in metafluids there is no external structure (e.g.,
a skeleton in the form of a gel-like matrix) from which the
inclusions could recoil, their lowest dipolar modes are rigid
translations with zero frequency, which means that higher-
order dipolar modes are required for any acoustic effect. Since
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the inclusions are by definition much smaller than the ultra-
sound wavelength used, higher-order modes are difficult to
achieve at the corresponding frequencies, as this requires that
the speed of sound in the inclusions be much lower than that of
the host fluid. Moreover, these modes are subject to a crucial
requirement: to exert a net force on the host fluid, part of the
active regions of these modes must be hidden from the fluid,
in the sense that their coupling with the fluid is weaker.

One of the possible solutions is a heterogeneous medium
containing quasihomogeneous inclusions with contrasting
sound speed, such as oil droplets or highly porous spheres.
While the sound speed contrast in the former is too low to
achieve a full metaeffect [22], it was shown in Ref. [23] that
metamaterial operation is possible with the latter. Large air
cavities in the porous spheres make them highly compressible,
while they maintain a relatively high mass density due to their
solid skeleton, so that the resulting speed of sound inside the
spheres is much lower than in the surrounding fluid.

Homogeneous objects have well-predicted acoustic modes
determined by their shape alone, with resonant frequencies
inversely proportional to the size and directly proportional
to the speed of sound in the objects. According to multiple
scattering models [24], these well-defined resonances lead to
a change in the dynamic constitutive parameters ρ and χ .

While for homogeneous inclusions the response can be
influenced only by adjusting the size, compressibility, and
density of the objects, in our earlier work [25] we have
drawn attention to a possible alternative approach. We in-
troduced a model of ultrasonic metafluids in the form of
suspensions of disordered, generally irregularly shaped dis-
crete microscopic oscillators [Fig. 1(left)] coupled to the
embedding fluid via a triangulated surface of the oscillator.
Possible candidates for practical implementation range from
the largest macromolecular structures to artificial, microfab-
ricated (e.g., microprinted) objects. Such discrete oscillating
structures have special properties that distinguish them from
simpler continuum objects. The main interest lies in their
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FIG. 1. Left: Example of a general discrete micro-oscillator
model with internal point masses (blue), point masses defining a
spheroidal surface (black), and network of bonds (dashed). Right:
Simplified prototype micro-oscillator consisting of a quasispherical
distribution of 20 surface points and an additional point in the center,
with bonds between closest neighbors on the surface and between
each surface point and the central point. In both cases, the points
defining the spheroidal surface are evenly distributed at r = r0 by
solving the Thomson problem. Throughout this work, r0 is set to
3μm, making the resonator much smaller than the ultrasound wave-
length at the resulting frequencies.

unpredictability with respect to possible anomalous resonance
effects—resonances of complex discrete structures are even
qualitatively unpredictable because they depend on various
structural properties such as the mass distribution and, in
particular, the coordination number of important connections
between particles that define the effective topology of the
oscillator network.

In Ref. [25] we formulated the detailed operating princi-
ple of such a metafluid model, gave explicit formulas for its
effective dynamic moduli in terms of the modal structure of
the micro-oscillators, and discussed basic practical issues of
performance optimization in terms of their size and density
relative to the density of the embedding fluid. In Sec. II we
briefly summarize the key constituents and results of this
metafluid model. In Sec. III we take a simple step towards
inhomogeneous inclusions and investigate the operation of
micro-oscillators with different ratios of surface and core
masses. In Sec. IV we focus on resonances with anomalously
low frequencies, “floppy” modes, which are the main advan-
tage of discrete oscillators from an acoustic point of view.

II. MODEL: METAFLUID
WITH DISCRETE OSCILLATORS

A. Effective acoustic parameters

Due to the oscillation of the inclusions excited by the sound
field, the density and compressibility of the suspension as
experienced by the sound wave become frequency dependent.
Although, in principle, even a single inclusion changes the
properties of the material (the effect does not arise from the
interaction between the inclusions), it is necessary by con-
struction for an effective metamedium that many of these
structures are distributed in the liquid. For low concentra-
tions of micro-oscillators (dilute limit) and long wavelengths
relative to the size of the micro-oscillators as well as to
the mean distance between them (metamaterial limit), the

effective macroscopic density ρeff (ω) and compressibility
χ eff (ω) of such a metafluid at (angular) frequency ω can be
briefly written as [25]

ρeff (ω) ≡ ρ0 + ρ ′ = ρ0 + φV (ρ − ρ0) + φV ρ
x(ω)

a0
, (1)

χ eff (ω) ≡ χ0 + χ ′ = χ0 + φV
1

V1

Q1

iωp
, (2)

where ρ0 and χ0 are the density and compressibility of the host
fluid, ρ the mean mass density of the oscillators with volumes
V1, and φV their volume fraction that does not change with
time. While the density ρ is an important factor to consider
in practical implementation due to the possible sedimentation
or floatation of the micro-oscillators, in this work we have
neglected the effects of gravity and set ρ = 2ρ0. The impact of
ρ on the metamaterial-like response has been analyzed in our
previous work [25]. For optimal metamaterial performance it
was found that ρ should be similar to the density of the fluid.
Therefore, in principle, one can design or select inclusions
whose density is equal to that of the fluid and prevent sedi-
mentation or floatation issues. In Eq. (1) the first two terms
reflect a simple compositional average, while the last term
comes from the dynamic influence of the oscillators: x(ω) is
the displacement of the center of mass (CM) of the oscillator
in the reference frame of the acoustic velocity, i.e., relative to
the long-wavelength acoustic oscillation of the host fluid, due
to the excitation by the sound wave with the displacement am-
plitude a0. The dynamic compressibility χ ′ in Eq. (2) results
from the breathing of the oscillators, i.e., from the volume flux
Q1 of the oscillator excited by the sound pressure p. Since x
and Q1 are proportional to the excitation amplitudes a0 and p,
respectively, the excitation does not appear in Eqs. (1) and (2),
and ρeff and χ eff depend only on the frequency response and
surface geometry of the micro-oscillator.

In Ref. [25] we described the dynamics of the micro-
oscillator by its damped fluid-coupled modes and obtained x
and Q1 as sums of modal contributions,

x = 1∑
j m j

〈∑
i

∑
j

ci(a0)mjxi
j

〉
= x

a0
a0, (3)

Q1 = −iω
∑

i

ci(a0)
∑
�k

1

3

∑
j∈�k

Sk n̂k · xi
j . (4)

Here xi
j are the ith mode three-dimensional displacement vec-

tors of the point masses mj of the micro-oscillator and ci(a0)
are the acoustically excited amplitudes of the modes. Due to
random orientations of the micro-oscillators and the resulting
isotropic symmetry of the “average” oscillator provided by
orientational averaging 〈 〉 in Eq. (3), x lies in the direction
a0/a0 of acoustic polarization. In Eq. (4) the volume flux is
given by the deformation of the effective, triangulated surface
of the oscillator, where the vertices of the triangles are the sur-
face mass points j with corresponding displacements xi

j ; the
summation �k is over the surface triangles with unit normals
n̂k and areas Sk .

B. Fluid-coupled modes

The normal modes xi and resonance frequencies ωi of the
micro-oscillator coupled to the embedding fluid are solutions
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of [25]

Vxi = ω2
i Txi, (5)

where V is the matrix of harmonic inter-particle “spring con-
stants,” which will be discussed in the next sections, and T is
the kinetic matrix discussed below. For an oscillator consist-
ing of N mass points j, xi = {xi

j} is a “supervector” with size
3N of the individual displacement vectors.

In a free oscillator, the kinetic matrix T is a diagonal matrix
of the particle masses mj . However, since the oscillator in our
model is coupled and must accelerate the fluid surrounding it,
assuming potential flow in the fluid, it experiences an addi-
tional mass load that is reflected in a full kinetic matrix.1 We
can split it into T = M + A, where M = diag(m1, . . . , mN )
is diagonal, while A is symmetric by construction [25] and
contains contributions due to the coupling. The diagonal
elements of A represent additional effective hydrodynamic
masses of the particles, while the off-diagonal elements are
due to the hydrodynamic interactions between the parts of the
micro-oscillator.

Since the matrices V and T are symmetric, the orthogo-
nality condition x jTxi = 0 holds for ω2

j �= ω2
i . The excitation

amplitudes ci required in Eqs. (3) and (4) are determined
by projecting the excitation forces exerted on the oscillator
particles onto the modes and are given by [25]

ci(ω) = 1

ω2
i − ω2

〈xi|(F + ω2Ma0)〉
〈xi|T|xi〉 , (6)

where F is the acoustic pressure force on the surface particles
and ω2Ma0 is the fictitious (inertial) force in the oscillating
reference frame acting on all particles; a0 is the supervector
of rigid translation corresponding to acoustic oscillation with
amplitude a0. Damping is taken into account by adding an
imaginary part to the eigenfrequencies, ω′

i = ωi − iβi. The
damping coefficient βi of a mode can be estimated by pertur-
bation calculation of the viscous dissipation in the fluid flow
coupled to the mode [25]. It is independent of ωi and decreases
approximately inversely proportional with the square of the
micro-oscillator size. Treating viscosity as a perturbation is
possible under the condition that inertial forces [described by
the time derivative term in the Navier-Stokes equation (NSE)]
dominate over the viscous ones. This is true when the size of
the inclusions is sufficiently large compared to the penetration
length of oscillatory shear, which depends on the correspond-
ing excitation frequencies [25]. However, despite including
viscosity only as a perturbation, the Reynolds number is still
small, as in the case of any well-defined propagating wave.

C. Oscillator model and interparticle potential

The bonds between the oscillator particles are modeled
by quadratic pair potentials Ui j that depend on the distance
between the particles,

Ui j = 1
2 ki j (|Ri + xi − R j − x j | − |Ri − R j |)2, (7)

1If the assumption of potential (irrotational incompressible) fluid
flow is relaxed and the flow is compressible and able to describe
outgoing waves, there is an additional radiation load besides the mass
load and T is complex.

where Ri are the equilibrium positions of the particles, xi their
fluctuations, and ki j the bond constants. In elastic network
models of proteins [26–28], this potential is known as the
anisotropic network model (ANM). The harmonic approx-
imation matrix V is then obtained from the total potential
U = ∑

i< j Ui j as

Vkl = ∂2U

∂xk∂xl
, (8)

where the derivatives are with respect to the components of
the particle displacement supervector.

To demonstrate the basic metamaterial function of
our micro-oscillator suspension model, we started in
Ref. [25] with the simplest possible micro-oscillator prototype
[Fig. 1(right)], which we will also use here in Sec. III. It con-
sists of a spherical distribution of particles and an additional
particle in the center that is not exposed to the surrounding
fluid. In this simple prototype, the inner particle represents
the mass of the entire internal structure. In Sec. IV, we will
turn to micro-oscillators with many more particles and full
network complexity.

III. MASSIVE SHELL VS MASSIVE CORE

A first step beyond homogeneous inclusion to a micro-
oscillator with a somewhat richer internal structure can be
made with our simple prototype of Fig. 1(right) and changing
the ratio ξ between the total surface mass and the internal
mass. To observe the effects on ρ ′, we choose equal interac-
tions between each surface particle and the central particle and
make the interactions between the surface particles negligible.
This clean choice leads to only one type of significant dipo-
lar modes, namely, the three modes with roughly the same
frequency where the central part and the surface move in op-
posite directions, resulting in a single resonance peak in ρ ′(ω).
Additionally for each ξ , we adjust the spring constants so
that the frequency of the dipolar mode remains approximately
constant.

The frequency response of ρ ′ for different values of ξ is
shown in Fig. 2. The momentum transfer to the fluid, which
is the cause of the change in the effective density, depends
directly only on the motion of the surface, but not on its mass.
For large ξ , the motion of the heavy shell in the dipolar mode
is small compared to that of the light mass in the center. There-
fore, the contribution to ρ ′ is significant only in the immediate
vicinity of the resonance, where the amplitude is sufficiently
large. As the shell becomes lighter, its amplitude increases
while the central mass comes more and more to rest. Because
of the greater motion of the shell, the momentum transfer to
the fluid is larger, but the damping is also larger. However,
because of the larger momentum transfer, the ρ ′ curve does
not fall entirely below the curve for higher ξ , as it does for the
real part of the resonance curve of a simple oscillator when
the damping is increased. Therefore, the broadening of the ρ ′
curve as ξ decreases results in a useful increase in operating
bandwidth. It can be concluded that optimal values for ξ are
not far from 1, so that the ρ ′(ω) curve is not extremely narrow,
while the amplitude is still large.
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×

FIG. 2. Frequency dependence of the dynamic density per vol-
ume concentration ρ ′/φV at different ratios ξ of shell and core mass
of the simple micro-oscillator of Fig. 1(right). Three eigenmodes
with almost identical eigenfrequencies are contributing to the res-
onance curve. In the case of ξ = 1 two smaller peaks are resulting
from the splitting of these resonances.

IV. SIGNIFICANCE OF “FLOPPY MODES”

For discrete objects, one of the most important aspects is
the distribution of connections between the different parts of
the system. Two schematic examples are shown in Fig. 3,
where the connections are marked by dashed lines. The pe-
culiarities of connectivity lead to unexpected properties and
fundamental differences from the continuum, in which the
particles are fully constrained by the connections and no free
directions of motion remain. For example, globular proteins
characterized by the cumulative number of vibrational states
G(ω) were found to behave like two-dimensional objects with
respect to slow vibrations [29], i.e., G(ω) ∝ ω2, which is a
signature of a reduced number of interparticle connections.

Heterogeneous objects such as proteins are of particular
interest because of the possibility of low-frequency floppy

FIG. 3. Discrete oscillator models consisting of 30 surface points
(black), 150 internal points (blue), and different configuration of
connections (dashed). The random distribution of internal points is
spatially uniform and is contained inside a sphere with radius 0.9 r0.
The oscillators are characterized by the mean coordination number
〈n〉 = 6.4, 〈n〉 = 2.7, and the fraction of floppy modes F = 0.0,
F = 0.53, respectively, for left and right.

FIG. 4. Average fraction of floppy modes F vs average node
degree 〈n〉 for ten different native structures, averaged over 500
random runs of removing bonds for each structure.

modes [28,30–33]. Such modes are found in structures where
the absence of strong bonds between some nearby particles
leads to underconstrained domains, resulting in degrees of
freedom of free bond rotation whose fraction is equal to the
fraction of floppy modes F (the number of floppy modes
relative to the total number of eigenmodes). One of the major
challenges in microscopic structures that could form the basis
of an acoustic metamedium is to find relevant eigenmodes at
sufficiently low frequencies where the attenuation length of
ultrasound is still large enough. For macromolecular, submi-
cron particles, this is where floppy modes come into play.

In a complex system with many particles and inter-particle
connections, a model of which is shown in Fig. 3, it is not
possible to predict in a simple manner, i.e., without solving
the full eigenproblem, how the absence of certain connec-
tions will affect the nature of the resulting floppy modes. It
is, however, possible to characterize the system statistically
by the fraction of floppy modes F . The relevant structural
parameter associated with F is the mean coordination number
〈n〉 (average number of bonds per atom), known in graph
theory as the average node degree [34]. By simulating the
gradual denaturation (bond breaking) of a number of proteins,
it was observed that the change in F with the decrease in 〈n〉
followed a universal trend for all simulated proteins [30].

We observe similar behavior for our discrete oscillators
(Fig. 4). These results were obtained using a structure with a
spherical distribution of surface particles surrounding a ran-
dom distribution of internal particles (Fig. 3). We start by
connecting each particle to a sufficient number (in this case
at least five) of its nearest neighbors to obtain an oscillator
without floppy modes [Fig. 3(left)]. Then a desired value of
〈n〉 is reached by randomly removing bonds, for example,
〈n〉 = 2.7 in Fig. 3(right). For each structure, the procedure
is repeated a number of times and the average value of F vs
〈n〉 is computed (Fig. 4). The exact position of the transitional
region where the floppy modes start to appear is related to
the bond removal protocol. Using our random procedure, we
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observe the transition region at around 〈n〉 = 6.2, while in
[30], where they removed bonds stepwise according to their
strength and eliminated the weakest ones first, a value of
〈n〉 = 2.4 was observed.

In the harmonic description [Eq. (5)] the underconstrained
regions in the structure are reflected in singularities of the
interaction matrix V, Eq. (8). These singularities are a direct
consequence of the ANM potential Eq. (7), since it depends
only on the distances between the particles and does not pe-
nalize changes in the orientation of the interparticle vectors.
The reduced rank of the potential matrix beyond the three
translational and three rotational modes corresponds directly
to the number of floppy modes in the system, which we exploit
to calculate F .

Due to other potentials in the background, the frequencies
of the floppy modes in a real system are of course never
zero, but only “anomalously” low compared to the frequen-
cies of the “regular” modes and can therefore extend from
above 10 GHz to below the 100 MHz range suitable for the
propagation of ultrasound in water. On the other hand, floppy
modes with extremely low frequencies, if they exist, become
useless because of their strong damping: since the damping
coefficient is independent of ωi (Sec. II B), the ratio βi/ωi

increases and resonance is suppressed. To further lower the
operating frequency, larger micro-oscillators are required.

In the numerical model, the opposite situation is usually
encountered, i.e., the floppy mode frequencies are actually
very close to zero and must therefore be increased to the
realistically relevant range. One way to obtain a nonsingular
harmonic matrix V with the same configuration of connections
would be to introduce an additional potential of the form

U G
i j = 1

2 kG
i j (xi − x j )

2, (9)

also known as the Gaussian network model (GNM)
[26,27,35–37], which penalizes all relative displacements
equally and eliminates all free directions of motion. It turns
out, however, that the addition of such a fundamentally dif-
ferent potential changes the shapes of all modes, which is
undesirable. As pointed out in Ref. [27], GNM is the ap-
propriate choice when evaluating deformation magnitudes or
the distribution of motions of individual residues, but ANM
is the only possible model when assessing the directions or
mechanisms of motions. Therefore, instead of GNM, we intro-
duce an additional weak ANM background potential between
all pairs of atoms, essentially connecting them all with weak
springs. Consequently, V is no longer singular and frequencies
of floppy modes become finite, with their magnitudes con-
trolled by the strength of the background potential. This is a
reasonable approximation of a realistic system, which retains
the signature of floppy modes.

A. Influence of low-frequency modes on effective
acoustic parameters

With the background potential of suitable magnitude rel-
ative to the strong bonds of the system, the floppy modes
can be shifted to desirably high frequencies compared to their
imaginary part, but still separate from the high-frequency
nonfloppy modes. Figure 5 shows the frequency response
of the effective dynamic density ρ ′ and compressibility χ ′

××

××

FIG. 5. Top, bottom: Frequency response of dynamic density and
compressibility per volume concentration for the prototype oscilla-
tors shown in Fig. 3 left and right, respectively. The y scale is kept
the same in both cases to demonstrate the impact of floppy modes.

[Eqs. (1) and (2)] for the prototype oscillators of Fig. 3. In
Fig. 5(bottom) corresponding to the oscillator in Fig. 3(right)
with F = 0.53, there are distinct peaks in the 1 MHz band for
both χ ′ and ρ ′, corresponding to floppy modes; the detailed
look of this region is shown in Fig. 6(top). For the oscillator
in Fig. 3(left) with F = 0.0, on the other hand, there are no
ρ ′ resonances in this region, and for χ ′ the response is much
weaker. Moreover, whereas χ ′ is significantly affected exclu-
sively by low-frequency modes, interestingly enough diverse
response of ρ ′ is present across the whole spectrum.

In general, the shapes of floppy modes can be very diverse.
For example, they can have many moving parts as in Fig. 6
(middle) or only a few active sites as in Fig. 7(top). This
also applies to the points on the surface that are coupled with
the fluid. The corresponding solution of the velocity potential
of the fluid is generally multipolar, with higher multipoles
being more or less pronounced; cf. Figs. 6 and 7(bottom).
Nevertheless, the volume source is completely given by the
monopolar part of this solution, and the momentum transfer
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××

FIG. 6. Top: Detailed view of the dynamic moduli in the floppy-
mode region of Fig. 5(bottom). Two modes are also shown: the
upper one representing a monopole, and the lower one corresponding
to the minimum of ρ ′/φV . Middle: A mode with frequency near
the minimum of ρ ′, yielding a predominantly dipolar velocity field.
Colors represent projections of particle displacements onto the di-
rection of the CM displacement divided by the amplitude of the
CM displacement. Thus, smaller absolute values indicate efficient
momentum transfer to the fluid. Bottom: Velocity potential (shading)
and velocity field of the fluid corresponding to this mode, drawn in a
plane containing the CM displacement.

FIG. 7. Another floppy mode with frequency near the minimum
of ρ ′ from Fig. 6 with only a few active sites (top). The corresponding
velocity field and potential (bottom) contain stronger higher mul-
tipoles compared to Fig. 6, while the dipolar component is still
notable.

to the fluid by its dipolar part. Thus, χ ′ and ρ ′ are determined
directly from the monopolar and dipolar parts, respectively.

The momentum transferred to the fluid is, of course,
opposite and equal to the momentum of the CM of the micro-
oscillator. The color coding of the micro-oscillator particles in
Fig. 6 (middle) and in the analogous diagrams in the following
figures gives projections of the particle displacements onto the
direction of the CM displacement, divided by the amplitude
of the CM displacement. Thus, smaller absolute values mean
that a mode displaces the fluid mass more efficiently and is a
stronger source of “hidden” force exerted on the fluid. Some-
what contrary to first expectations, we observe that modes
with a notable dipolar component such as that in Fig. 7 do
not necessarily contain many moving particles. It is true that
with only a few active particles, larger oscillation amplitudes
are required to produce a hidden force effect of comparable
magnitude (since only a small portion of the surface is in
motion), but such modes still contribute significantly.

One must realize that the ultimate acoustic efficiency of
floppy modes depends not only on the strong monopolar or
dipolar contribution of a single mode, but also on the num-
ber of such modes per frequency interval. In the regions of
high-frequency density of floppy modes, their acoustic effect

014604-6



MODELING ULTRASONIC METAFLUIDS: THE … PHYSICAL REVIEW E 109, 014604 (2024)

××

FIG. 8. Top: ρ ′ and χ ′ responses for a cluster-type micro-
oscillator with 61 points in the central and 119 points in the
surrounding region. Middle: One of its three collective dipolar floppy
modes, color coded as explained in Fig. 6. Bottom: Corresponding
velocity field and potential.

is considerably enhanced by superposition, e.g., of roughly
100 modes near the minimum of ρ ′ in Fig. 6.

The modes of Figs. 6 and 7 with significant dipolar com-
ponents are of typical disordered, random shapes, in which
even nearby particles can move in different directions, i.e.,
there are no regions of collective motion. In the continuum
picture, this would correspond to wavelengths that are very
short compared to the size of the micro-oscillator. If there
were no floppy modes, such short wavelength vibrations could
be found only at very high frequencies. That such irregular,
highly inhomogeneous vibrations of individual sites occur
at ultrasonic frequencies, have significant dipolar compo-
nents, and are also efficiently excited is rather unexpected.
One would perhaps rather imagine compact, massive regions
within a complex structure, only loosely connected to each

××

FIG. 9. ρ ′ and χ ′ responses (top) for a cluster-type micro-
oscillator with four separate cluster regions marked with different
colors (middle). The shape of one of its collective dipolar floppy
modes is shown with arrows and (bottom) with the color coding as
explained in Fig. 6; here the micro-oscillator has been rotated by an
angle.

other or to the background, as more important sources of
hidden force.

To study the acoustic effect of such collective modes, we
model them by constructing several well intralinked regions
such that they have no internal floppy modes, and using the
same background potential. In this way we obtain six low-
frequency modes (three translations and three rotations) for
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each of these regions, which are essentially a kind of collec-
tive floppy modes whose frequencies are determined by the
background potential. An example where the central region is
separated from the rest of the structure is shown in Fig. 8. This
collective floppy mode, responsible for the ρ ′ change in Fig. 8,
is clearly of a different type than the floppy modes in Figs. 6
and 7. It is purely dipolar, as is the resulting velocity field in
the surrounding fluid [Fig. 8(bottom)]. Given the collective
vibration of the massive region, it is somewhat unexpected
that the amplitude of ρ ′ [Fig. 8(top)] is about three times lower
than in Fig. 6(top). We must note, however, that there are
only three collective dipolar modes, while in the example of
Fig. 6 more than 100 floppy modes with dipolar components
jointly contribute to the ρ ′ minimum there. Figure 9 presents
an oscillator with three smaller clusters spread throughout a
larger one. This structure has more collective floppy modes
overall than that of Fig. 8, but their effect on ρ ′ [Fig. 9(top)]
does not add up as it does for the floppy modes of Fig. 6
because their frequencies are too far apart.

V. CONCLUSION

Suspending discrete micro-oscillators in a fluid can sig-
nificantly alter its wave-propagating properties, such as the
effective dynamic density or the compressibility. Using har-
monic analysis of general, irregularly shaped microstructures,
coupled to the fluid via their triangulated surfaces [25], we
have investigated the importance of two possible topological
design parameters for both the density and compressibility of
the suspension: (1) the change in the ratio of the microstruc-
ture core mass to the mass of its shell and (2) the presence of
low-frequency modes in loosely connected micro-oscillators.

We find that although a lower core mass compared to the mass
of the shell leads to a larger decrease in the effective density
of the suspension, a larger operating frequency bandwidth is
obtained in the opposite case, i.e., with a lower shell mass.
This is due to the larger momentum transfer from the shell,
which is directly coupled to the fluid. Second, we find that
the presence of low-frequency modes, which are a hallmark
of loosely connected or under-constrained systems, can un-
der certain conditions yield strong monopolar and dipolar
response. In addition, we have shown that acoustic efficiency
is further improved (due to superposition) in a frequency
range with a high density of activated low-frequency modes.
The use of micro-oscillators with such low-frequency modes
has two advantages. The first is acoustic accessibility. Indeed,
a serious obstacle in dealing with ultrasonic acoustic waves
in water is attenuation, which increases with frequency. The
floppy modes with their extremely low frequencies are there-
fore the most suitable candidates from this point of view. The
second advantage is that the systems exhibiting floppy modes
do not need to be intricately designed as is usually the case for
structures in metamaterials, which makes experimental im-
plementation a bit easier. The main problem, however, is the
damping of smaller (micron- and submicron) oscillators [25]
due to viscosity, especially if the eigenmodes are very slow.
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