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Emergence of compact disordered phase in a polymer Potts model
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One of the central problems in epigenetics is how epigenetic modification patterns and chromatin structure are
regulated in the cell nucleus. The polymer Potts model, a recently studied model of chromatins, is introduced
with an offset in the interaction energy as a parameter, and the equilibrium properties are investigated using the
mean-field analysis of the lattice model and molecular dynamics simulations of the off-lattice model. The results
show that in common with both models, a phase emerges, which could be called the compact-disordered phase,
in which the polymer conformation is compact and the epigenetic modification pattern is disordered, depending
on the offset in the interaction energy and the fraction of the modified nucleosomes.
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I. INTRODUCTION

Epigenetics is defined as “the study of mitotically and/or
meiotically heritable changes in gene function that cannot be
explained by changes in DNA sequence” [1], and the fun-
damental problem in the field is to understand how a single
fertilized zygote develops into a mature organism. In eukary-
otes, genomic DNA is wrapped around histone octamers to
form nucleosomes, which are strung together to form chro-
matin [2], and it has become evident that the chromatin
structure and dynamics, as well as biochemical modifications
of DNA and histones, play important roles in epigenetic reg-
ulation [1]. Chromatin can be classified into two regions. The
one in which genes are actively transcribed is called euchro-
matin, and the other in which genes are repressed is called
heterochromatin [3,4]. Depending on the chromatin regions,
histone proteins have distinct epigenetic modifications.

Several studies have attempted to understand various phe-
nomena related to epigenetics through mathematical modeling
approaches. From a physics perspective, many theoretical
works have focused on the multistability of the epigenetic
marks, their spatial patterns, and their heritability [5]. The
establishment of epigenetic modification patterns was ini-
tially studied using one-dimensional mathematical models
[5–7]. More recently, several polymer models have been de-
veloped to study the coupling between the one-dimensional
epigenetic modification pattern along the chromatin and three-
dimensional polymer dynamics [8–11]. For example, the
“polymer Potts model” or “magnetic polymer” [8,12,13] has
been proposed for a chromatin model. It explicitly includes
the microscopic degrees of freedom of polymer conformation
and nucleosome modifications simultaneously. Such math-
ematical models have been studied from the perspective
of macroscopic phase transition phenomena and thermody-
namics using statistical mechanics tools such as molecular
dynamics simulations.

Magnetic polymer models, consisting of monomers with
magnetic moments, have been introduced with attention to
the magnetic properties of polymer materials [14]. Moreover,
they have recently been studied actively as abstract models

of chromatin [8,12,13,15], and their equilibrium phases and
phase transitions are once again attracting attention [16–18].
In the context of the chromatin model, a single-polymer model
with a chain of N monomers representing nucleosomes, the
structural units of chromatin, is often used. Corresponding to
the fact that the nucleosome has various modification states,
each monomer has a “spin” as an internal degree of freedom.
With i as the index of the monomers in the chain, the po-
sition and spin of the ith monomer are represented by �ri, a
vector in three spatial dimensions, and Si, a scalar variable,
respectively. The microscopic state of the system is then de-
noted by {�ri} and {Si}, the set of the degree of freedom of all
monomers.

In general, the number of feasible spin states depends
on the model under consideration. Considering an effective
model of chromatin, spins generally adopt two or three states.
This is a class of Potts model [19] as a magnetic model.
When considering this model as a model of chromatin, the
spin variable Si represents the histone modification state of the
ith nucleosome. Assuming three states of the spin degrees of
freedom, the state with Si = 0 is assigned to a nonmodified
neutral state, and the states with Si = ±1 are assigned to
different modified states. For example, the two main histone
modifications in heterochromatin, the trimethylation of his-
tone H3 at lysine 9 (H3K9me3) and at lysine 27 (H3K27me3),
can be assigned to the two modified states.

The polymer Potts model was first demonstrated to exhibit
a simultaneous conformational and magnetic order transition,
using molecular dynamics simulations [8]. Subsequently, it
was demonstrated to be a first-order phase transition by both
mean-field theory and corresponding molecular dynamics
simulations [12]. This is in contrast to the coil-globule tran-
sition of homopolymer without an internal degree of freedom,
which is considered to be a second-order phase transition
in most theoretical studies [20,21]. The coupling between a
three-dimensional structure and the internal degree of freedom
in one dimension leads to the remarkable effect of changing
the order of the transition. In a slightly different but similar
model, a different construction of the free energy of the model
also confirms the existence of a first-order phase transition,
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and it is noted that the jump in the magnetic order parameter
at the transition temperature is enhanced by the coupling to
the polymer conformation [15].

In the previous studies [12,14,15] on the polymer Potts
model or magnetic polymer model, the effect of the offset of
the interaction energies between monomer segments was not
been seriously considered. In the absence of conformational
degrees of freedom, the interaction energy offset is a shift in
the energy origin and does not affect the equilibrium state.
However, in the case of the polymer Potts model, the relative
relationship between the energy of the polymer conformation
and that of the internal degrees of freedom may affect the equi-
librium state. This may be why only simultaneous first-order
transitions of the conformational and magnetic order were ob-
served previously because the effect of the offset has not been
studied extensively. In fact, the effect of the offset in the inter-
action energy on the modification state of biological systems
such as chromatin is noteworthy. In this study we introduce an
offset in the interaction energy between monomer segments
into the polymer Potts model and investigate the equilibrium
phases of the model using the mean-field approximation and
molecular dynamics simulations.

The remainder of this paper is organized as follows: in
Sec. II a polymer Potts model of a lattice with spin as an
internal degree of freedom on a monomer is introduced.
Moreover, its phase diagram is illustrated by a mean-field
analysis. In particular, we demonstrate that by controlling the
energy offset, conformational and magnetic order formation
can be separated, and a phase with a compact conformation
and magnetic disorder (called the compact-disordered phase)
would emerge. We also discuss the phase diagram obtained
when the modified-state fraction is controlled. In Sec. III
we present the numerical results of the molecular dynamics
simulations for another polymer Potts model introduced as an
off-lattice model. For a model with an energy offset different
from that in previous research [12], we demonstrate that the
compact-disordered phase and a similar two-step phase transi-
tion identified in the lattice model are observed in the behavior
of certain physical quantities as a function of temperature.
Finally, Sec. IV presents the summary and discussion.

II. MEAN-FIELD THEORY FOR A LATTICE
POLYMER POTTS MODEL

A. Lattice model

In this section the polymer Potts model is defined precisely
on a lattice and analyzed with the mean-field theory. For a
simple lattice polymer model, a single polymer is considered
and the configuration of the polymer is limited to be on a
simple cubic lattice with a lattice spacing a and is confined
in a volume V with a monomer density ρ = N/V . Here only
the excluded-volume effect is considered, assuming that the
elastic energy of the polymer is omitted. The Hamiltonian
of the system consists of the product of the contributions
with respect to the configuration {�ri} and the spin {Si}. It is
expressed as

H ({�ri}, {Si}) = 1

2

∑
i �= j

�(�ri, �r j )J (Si, S j )

− h
∑

i

Si − μ
∑

i

S2
i , (1)

where h is the external field, μ is the chemical potential that
controls the fraction of the modified states, J (Si, S j ) denotes
the magnetic interaction, and �(�ri, �r j ) is the adjacency matrix
of the polymer with the lattice spacing a. It is expressed as

�(�ri, �r j ) =
{

1, |�ri − �r j | = a,

0, otherwise.
(2)

Here we assume that there are three spin states, as in the
example explained in the previous section, and set the values
of spin to Si = −1, 0, and 1. Specifically, we consider Si = 1
to represent the modified state H3K9me3 and Si = −1 to
represent H3K27me3. This is based on several reports [22]
that the two modified states are mutually exclusive. In the case
of chromatin, the properties of other molecules responsible
for the modified states require consideration when setting the
magnetic interactions. One is molecules called the “reader”
that specifically recognize the epigenetic modification. The
reader molecules for H3K9me3 and H3K27me3 are HP1 and
PRC2, respectively. They are also known to bridge between
the nucleosomes with the same modification and play the
role of effective interactions between nucleosomes [23,24]. In
addition, there are other “writer” molecules that deposit the
biochemical modification on nucleosomes, and HP1 is known
to recruit the writer molecules of H3K9me3, and one of the
PRC2 subunits is known to be the writer of H3K27me3 itself
[1,25,26].

Incorporating the above properties in a simplified form, our
model employs the magnetic interaction J (Si, S j ) between the
monomers given by

J (Si, S j ) =
{− ε

2 (c + 1) Si = S j = ±1,

− ε
2 (c − 1) otherwise,

where c is a parameter that provides the offset of the magnetic
energy of the system, and the positive constant ε represents
the coupling amplitude. This implies that the nucleosomes
in this model prefer to be in close proximity independent
of their modification state when c > 1 and prefer more to
have an identical modification state because ε > 0. With the
spin variables, the interaction energy function has bilinear and
biquadratic terms. They are explicitly expressed as

J (Si, S j ) = ε

2

(
1 − SiS j − S2

i S2
j − c

)
. (3)

In the case of only the spin system without the polymer
conformation, the parameter c yields only a shift in the free
energy. However, in the polymer Potts model, the parameter
c has a nontrivial effect on the free energy by coupling the
conformation and spin degrees of freedom of the polymer
through the � term in Eq. (1). As is explained subsequently,
the phase diagram of the system and the order of the phase
transition depend explicitly on c. This energy term, including
the bilinear and biquadratic exchange interactions, has a Z2

symmetry, rather than a Z3 symmetry of the conventional
three-state Potts model. It is called the S = 1 Ising model in
the field of magnetism in statistical physics.
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The partition function of the system is then given by

Z (β, h, μ; c) =
∑
SAW

∑
�S

exp

(
− β

2

N∑
i, j=1

�(�ri, �r j )J (Si, S j )

+ βh
∑

i

Si + βμ
∑

i

S2
i

)
, (4)

where
∑

SAW represents the sum of {�ri} over self-avoiding
walks for the polymer conformation. The order parameter
for the coil-globule transition in this model is the monomer
concentration ρ. That is, the swollen phase is characterized
by ρ = 0, whereas the compact phase is by ρ > 0. The order
parameter for the magnetic phase transition is the magnetiza-
tion given by

m = 1

N

∑
i

〈Si〉, (5)

and the conjugate quantity to the chemical potential μ is

D = 1

N

∑
i

〈
S2

i

〉
, (6)

where 〈· · · 〉 denotes the expectation with respect to the equi-
librium thermal state. The second of these is the fraction of
spins adopting ±1 or in terms of chromatin, the fraction of
nucleosomes in modification states with Si = ±1. The mag-
netically disordered phase and the ordered phase of this model
are characterized by m = 0 and m �= 0, respectively.

At the limit of μ → ∞, the spin states are restricted to
±1. Thus, D = 1 because the neutral states are eliminated
completely, and the model is reduced to the polymer Ising
model [14,16,18,27]. In a previous study of the polymer Ising
model using mean-field theory [14], it was demonstrated that
the magnetic phase transition and the coil-globule transition
occur simultaneously. In particular, a first-order transition
occurs for sufficiently small magnetic fields including zero,
and a second-order transition occurs for large fields. Sub-
sequently, Monte Carlo studies on finite-dimensional lattice
models [16,18,27] yielded qualitatively consistent results with
the mean-field theory concerning the phase diagram for three-
dimensional simple cubic lattices. However, these studies
indicated that no simultaneous phase transition occurs for
two-dimensional square lattices. Nevertheless, the effect of c
in Eq. (3) was not considered in previous studies.

B. Mean-field theory

Using the mean-field approximation for self-avoiding
walks and the dilution approximation for the adjacency ma-
trix �(�ri, �r j ) used in the previous study [14], the free-energy
density f (β, h, μ; c) is obtained as

β f (β, h, μ; c) = min
φ,ψ,ρ

1

ρα
(φ2 + ψ2)

− ln[1 + 2eψ+βμ cosh(φ + βh)]

+ 1 − ρ

ρ
ln(1 − ρ) + ρα

4
(1 − c) − ln

(
q

e

)
,

(7)

FIG. 1. Phase diagram of the lattice polymer Potts model in the
α-c plane at μ = 0 and h = 0. In the swollen-disordered phase,
m = 0 and ρ = 0, and in the compact-ordered phase, m �= 0 and
ρ > 0. CD stands for the compact-disordered phase, which is char-
acterized by m = 0 and ρ > 0. The solid and dotted lines indicate
the first-order and second-order phase transitions, respectively. The
dashed and dash-dotted lines in the compact-ordered phase represent
the instability line of the compact-disordered and swollen-disordered
solutions, respectively. The dash-dotted line in the swollen disor-
dered phase represents the instability line of the compact-ordered
solution.

where q is the coordination number of the lattice defined
by the model and α = βεq. The extremum conditions for
the auxiliary fields φ and ψ yield the following saddle-point
equations:

φ = ρα

2

2eψ+βμ sinh(φ + βh)

1 + 2eψ+βμ cosh(φ + βh)
, (8)

ψ = ρα

2

2eψ+βμ cosh(φ + βh)

1 + 2eψ+βμ cosh(φ + βh)
, (9)

respectively. Details of the derivation of the free-energy den-
sity are provided in Appendix A.

Using the solutions φ∗ and ψ∗ of the saddle-point equa-
tions, the order parameter m and the fraction of the modified
states D are expressed as follows:

m = 2

ρα
φ∗, (10)

D = 2

ρα
ψ∗, (11)

respectively. The thermodynamically stable monomer density
ρ∗ is determined from the extremum condition in Eq. (7)
for ρ. The phase diagram of the mean-field approximation
of this model can be obtained by numerically solving the
saddle-point equations. Figure 1 shows the phase diagram of
the polymer Potts model in the α-c plane at μ = 0 and h =
0. There are three phases: a swollen-disordered (SD) phase
with ρ = 0 and m = 0, a compact-disordered (CD) phase with
ρ > 0 and m = 0, and a compact-ordered (CO) phase with
ρ > 0 and m �= 0. Another possible phase is the swollen-
ordered phase with m �= 0 and ρ = 0, which cannot exist as
an equilibrium state in the mean-field analysis because of the
saddle-point equations of Eqs. (8) and (9), while a previous
study suggests that it appears under nonequilibrium condi-
tions [28].
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FIG. 2. Phase diagrams of the lattice polymer Potts model in the
α–μ plane at (a) c = 0, (b) c = 1, and (c) c = 2. The solid and
dotted lines indicate the first-order and second-order phase transi-
tions, respectively. CD and SD stand for compact-disordered phase
and swollen-disordered phase, respectively. The dash-dotted white
lines represent the instability conditions. The heat map represents
the average ratio of modified states D.

First, we verify the phase structure at the two limits, μ →
∞ and μ → −∞. The polymer Ising model studied in the
previous work [14] corresponds to a system at μ → ∞, in
particular, fixed at c = 0. Our results provide an extended
phase diagram with respect to the parameter c, which is shown
in Appendix B. It should be emphasized that in the region
where c is small, including c = 0, there is a first-order phase
transition between the SD and the CO phases, but the CD
phase is present between the two phases as c is increased. In
the opposite limit, μ → −∞, the CO phase is absent because
the spins are only neutral states with Si = 0. This indicates
a coil-globule transition with no spin degrees of freedom.
The phase transition is second-order, and the phase boundary
of the second-order phase transition is obtained as cc(α) =
1 + 2

α
.

Next, we present the phase diagram in the parameter region
between the two limits of μ. Figure 2 shows the phase diagram
in the α-μ plane, given three specific values of c. Considering
that c, which appears only in the linear term of ρ in the free
energy of Eq. (7), contributes to stabilizing the CD phase, it is
reasonable that only the SD and CO phases are stable at small
c values and that the CD phase does not appear, as shown
in Fig. 2(a). The phase diagram obtained in most previous
studies is basically this phase structure because the parameter
c is not taken into account. However, as shown in Figs. 2(b)
and 2(c), the region where the CD phase is thermodynami-
cally stable increases with an increase in c. For example, in
Fig. 2(c), for a fixed temperature parameter α, changing the
chemical potential μ (i.e., increasing the number of modified
monomers) results in a first-order phase transition from the
CD phase to the CO phase over a wide range of α.

To understand the mechanism of the phase transition in
more detail, we evaluated the free-energy landscape. It is

FIG. 3. Free-energy landscape as a function of the density ρ for
c = 1.5 and certain values of α. The solid and dash-dotted lines
represent the free-energy densities corresponding to the saddle-point
equations with φ = 0 and φ �= 0, respectively.

defined as a function of the density ρ by taking only the φ

and ψ of the extreme values on the right-hand side of Eq. (7).
Figure 3 illustrates the density dependence of the free-energy
landscape on several typical parameters. The free-energy den-
sity is characterized by the solutions of the saddle-point
equations with φ = 0 and φ > 0. At sufficiently high temper-
atures (i.e., small α), only solutions with φ = 0 exist, and the
free-energy landscape has a minimum at ρ = 0, which corre-
sponds to the SD phase. As the temperature decreases, this SD
phase solution becomes unstable while maintaining φ = 0,
and the minimum shifts to ρ > 0. This implies a second-order
phase transition from the SD phase to the CD phase. At
lower temperatures, a minimal solution with φ > 0 appears as
another branch of the saddle-point equations. Eventually, this
local minimal solution takes a lower value of the free-energy
density than that of the CD phase, which is the phase transition
from the CD phase to the CO phase. This implies a first-order
phase transition in which there is a discontinuous jump in the
density and the magnetic order parameter. This crossing of the
free energies of the CD and CO phases is a characteristic of
the first-order phase transition, which is the mechanism of the
phase transition between these two phases in the mean-field
theory of this model.

This first-order phase transition mechanism indicates the
existence of the CD phase as a metastable state. Notably, as
shown in Fig. 1, the instability line of the metastable state
of the CD phase is obtained explicitly using the mean-field
theory. This indicates that the CD phase could be dynamically
observed as a metastable state in the CO phase. However, the
metastable state exists in an extremely small region for large c,
while the metastable state of the SD phase is rather extended
in the CO phase. This implies that the metastable solution
of the CD phase with ρ > 0 and φ = 0 destabilizes in the φ

direction immediately after entering the CO phase. This is an
important insight that we have obtained by introducing c and
the full mean-field theory.
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III. MOLECULAR DYNAMICS SIMULATION
FOR AN OFF-LATTICE MODEL

This section discusses a slightly realistic three-dimensional
off-lattice polymer Potts model for chromatin. The lattice
model discussed in the previous section is a sort of effective
model. Its mean-field theory provides many insights into the
three-dimensional polymer Potts model. To be specific, it was
indicated that the three phases, SD, CD, and CO phases,
are thermodynamically stable, and a phase diagram has been
derived. However, in general, it is considered that the mean-
field theory does not correctly take into account the effect of
fluctuations in finite dimensions. In particular, the mean-field
predictions of the order of transitions are often modified in
finite dimensions. Therefore, we perform molecular dynamics
(MD) simulations to directly investigate the behavior of the
three-dimensional off-lattice polymer Potts model with three
spin states as in the previous section.

A. Off-lattice polymer Potts model

In our polymer Potts model, a polymer chain consisting
of N monomer segments has two types of potential energies:
the bonding energy between neighboring monomers along the
polymer chain and the nonbonding energy between monomers
physically proximate to each other. The second of these de-
pends on the internal degrees of freedom, which is a feature
of the polymer Potts model. Following the Kremer-Grest [29]
polymer model, the bonding energy is assumed to be only a
function of the distance r between the adjacent monomer seg-
ments and to follow the Finitely Extensible Nonlinear Elastic
[29] (FENE) potential given by

U FENE(r) =
{

− 1
2 kR2

0 ln
[
1 − (

r
R0

)2]
for r � R0,

∞ for r > R0,
(12)

where R0 is the length scale and k is the coupling constant.
For nonbonding interactions between the monomer seg-

ments, we use a potential acting on the monomers at distances
within a finite cutoff rc, which depends on the internal state
of the monomer segments. Specifically, it is described by the
shifted and truncated Lennard-Jones (LJ) potential defined as

U ′
LJ(r) =

{
ULJ(r) − ULJ(rc) r < rc

0 r � rc
, (13)

where ULJ(r) is the Lennard-Jones potential given by

ULJ(r) = A

{
4εLJ

[(σ

r

)12
−

(σ

r

)6
]}

, (14)

where A is a dimensionless parameter for the potential mag-
nitude, and εLJ and σ are the units of the energy and length
scales, respectively. When we set rc/σ = 21/6, this interac-
tion potential is purely repulsive as a special case, which is
called Weeks-Chandler-Andersen [30] (WCA) potential. For
the other LJ potentials, the cutoff rc is set to be rc/σ = 1.8 in
the simulations.

To study the role of the energy offset revealed in the analy-
sis of the lattice model in the previous section, we consider the
nonbonding interactions that change the energy offset while
maintaining the amplitude of the energy gain by aligning the
monomer modification states fixed. While the energy gain in

-2

-1

 0

 1

 2

 3

 4

 0.6 2
1/6  1.8

(a)

U
/ε

r/σ

WCA
LJ with depth 1

-2

-1

 0

 1

 2

 3

 4

 0.6 2
1/6  1.8

(b)

U
/ε

r/σ

LJ with depth 1
LJ with depth 2

FIG. 4. Interaction potentials used in our simulations. The solid
lines represent a pair potential when the monomer spins are ±1
and aligned, and the dashed lines represent a pair potential when
these are not. (a) Model 1: The solid line is the shifted-truncated LJ
potential with a depth of 1, and the dashed line is the WCA potential.
(b) Model 2: Both solid and dashed lines are shifted-truncated LJ
potentials with depths 1 and 2, respectively. The cutoff rc of the LJ
potentials is set to be rc/σ = 1.8.

the lattice model can be explicitly given, it is not necessarily
apparent in the off-lattice model. Here the energy gain is
assumed to be the difference between the energy minima of
the two potentials. In our simulations, for the case of a small
offset, as shown in the left panel of Fig. 4, the nonbonding
interaction potential is the LJ potential with a depth of 1kBT
when the nucleosome pairs are both modified and in an iden-
tical state, and the interaction potential is the WCA potential
when the nucleosome pairs are in different states or both are
in a neutral state. Thus, the energy gain is 1kBT . Hereafter, we
will refer to the model as Model 1. When the offset is large, as
shown in the right panel of Fig. 4 and referred to as Model 2,
the potential is the LJ potential with depths of 2kBT and 1kBT
when the pairs of nucleosomes are in an identical modified
state and in all other pairs of modification states, respectively.
Again, the energy gain is 1kBT .

In our MD simulations, the monomer dynamics in the
polymer Potts model followed a Langevin equation. We used
the Lennard-Jones dimensionless reduced unit in which m,
σ , εLJ, and kB were set to unity. The time integrator of the
molecular dynamics method is a velocity-Verlet algorithm
with a time step of 0.005τ . Here τ is the time unit defined
as τ =

√
mσ 2/εLJ. The Langevin dynamics simulations were

performed using a Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) [31]. The spin degrees of free-
dom of each monomer were updated using a Monte Carlo
method during the MD simulation. This Monte Carlo update
is performed using a heat-bath-type transition probability and
is attempted at every 103 time step of the MD by the number
of monomers. The chemical potentials of all the modification
states were set to zero in our simulations. In typical simula-
tions, unless otherwise specified, the linear dimension of the
simulation box is L = 100, and the length of the polymer is
N = 500. The box size L is considered sufficiently large com-
pared with the gyration radius of the coil state of a polymer of
length N .

The pre-equilibration process of the system is described,
before showing the results of the main simulations. The initial
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polymer conformation is set as a freely jointed polymer. The
bond length is set to minimize the FENE potential for the ini-
tial condition, and the system evolves under the soft repulsive
interaction between the monomers. This is given by

E = Asoft

[
1 + cos

(
πr

rc

)]
r < rc, (15)

where Asoft denotes the magnitude of the soft potential. In
the pre-equilibration process, Asoft is first increased linearly
from 0 to 30 in the initial 103 time steps to remove the
overlap between the monomers. Subsequently, the soft repul-
sive interactions are replaced by the LJ potentials described
above, and the system evolves 107 time steps to attain the
equilibrium state. To verify that the system has attained the
equilibrium state, this pre-equilibration process is performed
for several polymer sizes to examine whether the Flory scaling
of the gyration radius in the coil state holds. The final state of
the pre-equilibration process at a sufficiently high tempera-
ture is used as the initial condition for the subsequent main
simulation.

B. Results of MD simulations

First, we present the MD simulation results of Model 1.
Herein, the interaction potential between monomer segments
of different states and between segments of the neutral state
Si = 0 and those of other states is the WCA potential, and
the interaction between segments in the same modification
states with Si = 1 or −1 is the attractive LJ potential with
depth unity in the LJ reduced unit. A first-order-like transition
between the SD and CO phases was reported in a previous
MD simulation study [8] of a different but nearly identical
model with different bonding potentials. We also verified
that a first-order-like transition occurs, as shown in Fig. 5,
from the temperature dependence of the specific heat, equi-
librium thermal averages of the gyration radius Rg, and those
of the squared magnetization m2, together with the results
of nonequilibrium simulations during heating and cooling
processes.

After equilibration at T = 1.3 using the method described
above, the equilibrium simulations were performed with 50
independent runs for N = 300 and 500, and with 100 runs
for N = 100 at a cooling rate of 0.01 every 1.5 × 106 time
steps. Thermal equilibrium average values were obtained
from the weighted averages over the independent runs us-
ing the annealed importance sampling method [32]. In the
nonequilibrium simulations, the polymer conformation was
first equilibrated at T = 1.3. Moreover, the temperature was
reduced by 0.001 every 104 time steps to the lowest tem-
perature T = 0.8, as a cooling process, and then increased
from T = 0.8 to T = 1.3 subsequently at the equal rate, as
a heating process. The short-term averages of Rg and m2 at
each temperature during this cooling and heating process,
obtained in a typical trajectory, are shown in Figs. 5(b) and
5(c), respectively with N = 500 as “Cooling” and “Heating.”

As the temperature decreased, the specific heat exhibited a
single sharp peak at a certain temperature around which the
gyration radius decreased substantially and the magnetization
began to adopt a finite value. In addition, a remarkable hys-
teresis in Rg and m2 was observed near the temperature at

FIG. 5. Temperature dependence of (a) specific heat CV for
N = 100, 300, and 500, (b) gyration radius Rg for N = 500, and
(c) squared magnetization m2 for N = 500 in Model 1 with the WCA
and LJ potentials with a depth of 1 in equilibrium by black marks.
The results for Rg and m2 for N = 500 with a single typical trajectory
under nonequilibrium conditions are also shown during the heating
(crosses) and cooling (circles) processes.

which the specific heat was maximized. These are character-
istics of first-order phase transitions. Meanwhile, there was
no clear evidence of the CD phase in our MD simulations.
This indicated a single phase transition from the SD to the CO
phases as the temperature decreased. This, in turn, indicated
that the interaction potentials in this simulation corresponded
to the smaller c regime in the lattice model discussed in
previous sections.

Next, we discuss the simulation results of another model,
Model 2. Here the interaction potentials between monomer
segments in different states and/or the neutral state Si = 0,
and those between segments in the same modified state with
Si = 1 or −1 are the attractive LJ potentials with depths of
1 and 2 in the LJ reduced unit, respectively. Similar to the
previous model, this model switches between two potentials
depending on the internal degrees of freedom of the monomer
segments. The energy minima are reduced, whereas the dif-
ference between the minima of the two potentials is fixed
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FIG. 6. Snapshots of the MD simulations at each temperature at
(a) T = 1.0 (b) 2.0, and (c) 3.0. The yellow monomers represent the
neutral state, and the blue and red ones represent the modified states.
The simulation outputs were visualized with OVITO software [33].

at 1. We consider this as equivalent to increasing the offset
parameter c in the lattice model described in the previous
section. Three characteristic snapshots of the model MD sim-
ulations at different temperatures are shown in Fig. 6. As
shown in the figure, there is a typical compact conformation
with the internal states of the polymer remaining disordered.
This indicates the existence of a CD phase in the intermediate
temperature regime in addition to the SD and CO phases.

To investigate the phase structure of this model in more
detail, the equilibrium physical quantities are calculated from
50 independent runs of MD simulations for N = 300 and
500, and independent 300 runs for N = 100. Figure 7 shows
the temperature dependence of the specific heat and ther-
mal expectation values of the gyration radius and squared
magnetization. It also displays a typical trajectory of the
nonequilibrium simulation, wherein the temperature is re-
duced from T = 3.0 to T = 1.5 and increased to T = 3.0 at
a rate equal to that for Model 1. The figure shows a signifi-
cant difference between the temperature at which the gyration
radius decreases and that at which the squared magnetization
begins to rise. This indicates that the two transition tempera-
tures are different. Furthermore, no difference exists between
the observed values during the cooling and heating processes.
That is, no significant hysteresis is observed. This implies that
both transitions are of the second order. Although the mean-
field analysis of the lattice model predicted that the phase
transition on the low-temperature side would be a first-order
transition, this MD simulation did not display a tendency
for a first-order transition. For hysteresis to be observed, the
metastable state must be locally stable in the low-temperature
phase, but the mean-field analysis clarified that the destabi-
lization temperature of the metastable state is marginally close
to the transition temperature. Thus, it remains possible that the
hysteresis is not observed even when a first-order transition

FIG. 7. Temperature dependence of (a) specific heat CV for
N = 100, 300, and 500, (b) gyration radius Rg for N = 500, and
(c) squared magnetization m2 for N = 500 in Model 2 in equilibrium
by black marks. The results for Rg and m2 for N = 500 with a single
typical trajectory under nonequilibrium conditions are also shown
during the heating (crosses) and cooling (circles) processes.

occurs. Although the order of the transitions remains to be
investigated, the existence of two transitions and a CD phase
between them is strongly indicated.

IV. SUMMARY AND DISCUSSION

In this work we studied the equilibrium phases and phase
transitions of the polymer Potts models, both on and off
the lattice, as a model of chromatin. In these models the
Potts spin was introduced into each monomer segment of the
polymer chain as an internal degree of freedom. It was as-
sumed to adopt three states: two modified states and a neutral
state. In the lattice polymer model, we considered the ferro-
magnetic interactions between the nearest-neighbor monomer
segments. We also introduced an offset c to the interaction
energy and the chemical potential μ, which is conjugate to
the fraction of the modified segments. The analysis based on
the mean-field approximation revealed the existence of three
equilibrium phases: compact-ordered, compact-disordered,
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and swollen-disordered. These depend significantly on param-
eters such as the temperature, c, and μ. It also revealed that
the phase transition between the compact-ordered phase and
other phases is a first-order transition, whereas that between
the compact-disordered and swollen-disordered phases is a
second-order transition.

On the other hand, the off-lattice polymer Potts model
has been studied by molecular dynamics simulations. The
model includes the energy gain by ferromagnetic interactions
between adjacent monomer segments using a Potts-spin-
dependent potential, as well as an effect corresponding to the
energy offset. Our simulation results indicate that the three
phases observed in the lattice model also exist in the off-lattice
model. In particular, the compact-disordered phase distinctly
appears only in the intermediate temperature range with large
energy offsets. This is qualitatively consistent with the mean-
field theoretical predictions for the lattice model.

We observed that a compact-disordered phase is common
in both lattice and off-lattice models. The existence of this
phase implies the separation of the coil-globule transition for
the polymer conformation and the spin order transition for the
spin degree of freedom. This study clarified that the condition
for its existence is that the energy offset should be large. One
previous study [15] of the polymer Potts model pointed out
that a compact disordered phase can appear when a second
virial coefficient of the free-energy model is varied. In our
work, we emphasize the importance of being able to control
the offset term in the model Hamiltonian, as opposed to the
macroscopic parameter in the free energy. We also find that
making the offset term sufficiently small, as in most cases
[8,14], leads to only a direct phase transition from swollen-
disordered to compact-ordered phases (i.e., a simultaneous
phase transition of conformation and spin).

Finally, we discuss the biological implications of the re-
sults. The taxonomy of chromatin is described briefly in the
Introduction. It has undergone substantial progress. Hete-
rochromatin is classified into constitutive heterochromatin and
facultative heterochromatin based on its properties [34]. Con-
stitutive heterochromatin is mainly marked by H3K9me3 in
gene-poor regions. Meanwhile, facultative heterochromatin is
mainly marked by H3K27me3 in cell type-specific gene-rich
regions [4,22,34]. Our model assumes that these H3K9me3-
and H3K27me3-modified states are assigned to the spin states.
The two macroscopically stable states with positive and neg-
ative values of m in the CO phase can be interpreted as
corresponding to the states of the constitutive and facultative
heterochromatin. The CD phase observed in this study may be
interpreted as a compacted chromatin region in which the two
modifications were mixed. Recent studies have suggested that
other mechanisms of chromatin compaction may occur inde-
pendently of H3K9me3 or H3K27me3 [35]. Further studies
from the perspective of mathematical modeling are required.
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APPENDIX A: DETAILS OF MEAN-FIELD
CALCULATIONS

The derivation of the free-energy density shown in Eq. (7)
is explained somewhat more carefully here, while the ba-
sic concepts for the approximation and computation closely
follow those in Ref. [14]. Suppose �S
 = (S1, . . . , SN ) and
�T 
 = (S2

1, . . . , S2
N ). Then the exponential part of the partition

function of Eq. (4) can be expressed as

exp

⎡
⎣−β

2

∑
i, j

�(�ri, �r j )
ε

2

(
1 − SiS j − S2

i S2
j − c

)⎤⎦

= exp

⎡
⎣βε

4
�S
��S + βε

4
�T 
� �T − βε

4
(1 − c)

∑
i, j

�i, j

⎤
⎦.

By introducing the auxiliary fields φ for �S and ψ for �T
with the Hubbard-Stratonovich transformation and assuming
homogeneity in those fields, we obtain

exp

[
1

2
�S


(
βε

2
�

)
�S
]

=
∫

dφ exp

⎡
⎣− N

βε
φ2

∑
i, j

(�−1)i j + φ
∑

i

Si

⎤
⎦,

and

exp

[
1

2
�T 


(
βε

2
�

)
�T
]

=
∫

dψ exp

⎡
⎣− N

βε
ψ2

∑
i, j

(�−1)i j + ψ
∑

i

S2
i

⎤
⎦.

The characteristics of the adjacency matrix � of the self-
avoiding random walks are generally difficult to determine.
However, assuming a compact Hamiltonian path, the sum of
all the matrix elements of � and its inverse �−1 are obtained
as

∑
i j �(�ri, �r j ) = Nq and

∑
i j (�

−1)i j = N/q, respectively
[36]. Here q is the coordination number. Furthermore, in the
calculation, the dilution effect was approximated as [14]

∑
i j

(�−1)i j = N

qρ
. (A1)

By combining these, the sum of the spin degrees of free-
dom can be obtained. Moreover, the partition function can be
obtained as follows:

Z =
∫

dφ dψ exp

(
N

{
− 1

ρα
(φ2 + ψ2)

+ ln[1 + 2eψ+βμ cosh (φ + βh)] + ρα

4
(c − 1)

})
ZSAW,

(A2)

where ZSAW is the partition function for the polymer
configuration that represents the number of feasible self-
avoiding walks. For this self-avoiding walk, the mean-field
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approximation [37] yields

ZSAW =
∫

dρ

(
q

e

)N

exp[−V (1 − ρ) ln(1 − ρ)]. (A3)

Substituting this into Eq. (A2) and evaluating the integral us-
ing the saddle-point method, the free-energy density is derived
as Eq. (7).

APPENDIX B: PHASE DIAGRAM
OF THE POLYMER ISING MODEL

Our lattice polymer Potts model is reduced to the polymer
Ising model by setting the chemical potential μ controlling the
modified states to infinity. Our lattice model of Eqs. (1), (2),
and (3) includes an offset parameter c and the model of c = 0
is the same as in the previous study [14]. The free energy of
the model, including c, is obtained by the mean-field theory
[14]. The phase diagram is shown in Fig. 8. The second-order
transition line between SO and CD and the instability con-
dition of SD can be obtained analytically as αc = 2

c . Similar
to the polymer Potts model, it can be seen that the CD phase
exists as an equilibrium phase when c is large. This is an effect
of c since there are only SD and CO phases when c = 0.

FIG. 8. Phase diagram of the lattice polymer Ising model in the
α–c plane at h = 0. m = 0 and ρ = 0 in the swollen-disordered
phase, and m �= 0 and ρ > 0 in the compact-ordered phase. CD
stands for compact-disordered phase, which is characterized by
m = 0 and ρ > 0. The dotted and solid lines show a second-order
and first-order transition, respectively. The dash-dotted lines repre-
sent instability conditions, and the dashed line in the CO phase is the
instability condition of the CD solution.
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