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Optimization strategies to obtain smooth gait transitions through
biologically plausible central pattern generators
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Central pattern generators are small networks that contribute to generating animal locomotion. The models
used to study gait generation and gait transition mechanisms often require biologically accurate neuron and
synapse models, with high dimensionality and complex dynamics. Tuning the parameters of these models to
elicit network dynamics compatible with gait features is not a trivial task, due to the impossibility of inferring
a priori the effects of each parameter on the nonlinear system’s emergent dynamics. In this paper we explore
the use of global optimization strategies for parameter optimization in multigait central pattern generator (CPG)
models with complex cell dynamics and minimal topology. We first consider an existing quadruped CPG model
as a test bed for the objective function formulation, then proceed to optimize the parameters of a newly proposed
multigait, interlimb hexapod CPG model. We successfully obtain hexapod gaits and prompt gait transitions by
varying only control currents, while all CPG parameters, once optimized, are kept fixed. This mechanism of gait
transitions is compatible with short-term synaptic plasticity.
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I. INTRODUCTION

Central pattern generators (CPGs) are relatively small neu-
ral circuits that play a fundamental role in multiphase animal
locomotion [1,2]. They can autonomously produce rhythmic
patterns of neural activity, independently from the presence
of sensory feedback or inputs from higher areas [3]. Sen-
sory feedback can, however, adapt and fine-tune the activity
of the CPG to the environment [4], while hierarchically
higher areas can, for example, prompt transitions between
gaits [5–7].

Numerous studies have applied experimental and theoreti-
cal approaches to unravel the structure and function of animal
CPGs and their interactions with other key structures gov-
erning animal locomotion [8–10], leading to the development
of many biologically informed mathematical models [11–14]
which aim to retain sufficient detail to pursue the investigation
of biophysical CPG properties, but also reduce complexity
to allow meaningful interpretation of the results. Simplified
CPG-inspired oscillator networks are also of great interest
in the field of bioinspired robotics, constituting the basis
for efficient, robust, and distributed locomotion control sys-
tems [15,16].

The CPG capability of generating rhythmic patterns results
from the interplay of the topology of the neural network and
the dynamics of both neurons and synapses.

In this work, we maintain complex, high-dimensional
neuron models and use dynamic synapse models, without
compromising biological accuracy, with the goal of mod-
eling biologically plausible gait transition mechanisms. On
the other hand, we represent the multigait interlimb CPGs
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employing minimalist topologies, with few network nodes,
hereby called cells.

As stated above, while CPGs can operate independently,
transitions between gaits are modulated by the action of higher
areas. In CPG models, a single gait is achieved by keeping
the connectivity fixed; to generate multiple gaits, usually the
control mechanism of the brainstem is mimicked by adjusting
the synaptic conductances. Biologically, however, changes in
conductance values result from long-term synaptic plasticity,
making them unsuitable to model quick gait switches. For this
reason, in our previous work [17,18] and in the present paper,
we implement gait transitions by modifying the input control
currents received by the CPG cells.

We propose a method to set the many model parameters
by defining a proper objective function that drives the opti-
mization to a parameter set that elicits the desired emergent
dynamics of the CPG network in terms of gait features. The
use of global optimization strategies for CPG parameter set-
ting is explored, first, by using the quadruped CPG model
proposed in [18] as a test bed, improving the accuracy in
reproducing the target quadruped gaits. Second, we optimize
the parameters of an interlimb hexapod CPG model with a
minimalist topology, but accurate neuron and synapse models,
with the goal of reproducing the three main hexapod gaits
and biologically plausible gait transitions. We successfully
obtain a parameter set that allows reproducing the three target
gaits and smooth gait transitions by modifying only the input
control currents.

II. CPG PRIMARY ELEMENTS: CELLS AND SYNAPSES

We model the CPG cells with the thalamic reticular
burster [19,20] within the Hodgkin-Huxley (HH) framework
(see Appendix A for details). The dynamics of the membrane
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potential Vi and of the voltage-dependent state variables
yi ∈ R6 (representing intracellular calcium concentration and
gating variables) are governed by HH-type ODEs:

d

dt

[
Vi

yi

]
=

[−∑
k Ik + Ic + Isyn

i

f (Vi, yi )

]
, (1)

where the sum
∑

k Ik includes the intracellular ionic currents,
and the current Ic, modeling the modulation from higher
areas, is used as the control parameter; the components of
f (Vi, yi ) modeling gating variables’ dynamics are logistic or
sigmoidal functions. This model produces bursting activity
for Ic ∈ [−0.43, 0.13] μA

cm2 [17]. The term Isyn
i groups the

incoming synaptic currents,

Isyn
i =

N∑
j=1

∑
S

gSi j[E
S − Vi(t )]sSj , (2)

where S denotes the synapse type, ES represents the rever-
sal potential, 0 � sSj (Vi, t ) � 1 describes the neurotransmitter
release rate of the synapse, and gSi j is the maximal synaptic
conductance or weight.

Synapses are either modeled using the fast threshold mod-
ulation (FTM) approach [21,22], sSj = f S∞(Vj ) or described by
a first-order kinetic model [21,23–25],

dsSj
dt

= α
(
1 − sS

j

)
f S∞(Vj ) − βs j,

f S∞ = 1

1 + e−ν(Vj−θS )
, (3)

where θS is the synaptic threshold, and α and β are co-
efficients determining the exponential rise and decay rates,
respectively: the greater the α (β) values, the faster the rise
(decay) rates of sSj after the presynaptic voltage Vj goes over
(under) θS .

III. FITTING STRATEGY

In our previous works [14,18] we proposed a custom op-
timization strategy for the parameter setting of a quadruped
CPG: the strategy hierarchically subdivides the problem into
consecutive simpler steps, considering subnetwork units sep-
arately. Although efficient in terms of computational cost,
and effective in clarifying the role of each unit and synapse,
this optimization strategy does not capture the interplay of
all model elements, leaving the dynamics of the final CPG
network to be verified a posteriori.

In this paper, we propose a method to define an objective
function for setting the parameters of biologically plausible
CPGs, which can be used for any number of legs. The ob-
jective function is defined with the goal of obtaining a CPG
model with fixed topology and synaptic conductances, able to
exhibit multiple gaits and smooth gait transitions when vary-
ing the control currents. In particular, we explore the use of
global optimization strategies to set the model parameters that
play a crucial role in determining the emergent dynamics of
the CPG network, namely, synaptic conductances and control
currents.

TABLE I. Target features of quadruped (mouse) gaits [29,30], in
terms of frequency ( f ), duty cycle (d), and phase lags (�1 j).

Gait f [Hz] d �12 �13 �14

Walk (W) [2 4] <0.4 0.5 0.75 0.25
Trot (T) [4 9] [0.4 0.51] 0.5 0 0.5
Bound (B) [10 12] >0.51 0 0.5 0.5

A. Objective function

Different animal gaits are characterized by specific phase
differences between limbs, and by features such as ranges of
frequency and duty cycle values (see, for example, Table I and
Fig. 5). When designing a multigait CPG with biologically
accurate neuron and synapse models, what matters is that the
activity pattern of the CPG cells matches the characteristic
features of each gait. For this reason, we are interested in
imposing only the high-level features of the emergent network
dynamics related to each gait. In other words, we don’t need
the individual CPG neurons to retrace point-by-point target
membrane potentials: we are interested only in obtaining a
pattern of alternating bursting activity with given phase dif-
ferences, frequency, and duty cycle. Following this principle,
the only parameters included in the optimization process are
synaptic conductances and control currents, fixing all other
parameters to biologically plausible values (as detailed in
Appendix A). In this paper we consider the following:

(1) nF target features, indicating the feature type with the
index k

(2) nG target gaits, with G indicating the gait type
(3) A number N of legs (corresponding to N CPG cells)
(4) A set of CPG parameters x to be optimized.
It is evident that the problem of tuning the parameters of

a CPG model so that it can successfully reproduce the target
gaits cannot be codified in an objective function that doesn’t
require the system’s simulation to be calculated. The objective
function can, however, be defined by comparing the nF target
features P∗

G,k characterizing each one of the nG gaits (where k
identifies phase lags, frequency ranges, or duty cycle ranges)
with the values of such features PG,k obtained by simulating
the CPG with a certain parameter set x, as summarized in
Fig. 1. In particular, for a candidate solution x, the objective
function is defined as follows:

ε(x) =
nF∑

k=1

Wk

nG∑
G=1

1

nG
Fk (P∗

G,k, PG,k ), (4)

where Wk weighs the contribution of the kth gait feature to the
objective function.

At each objective function evaluation, the CPG is simu-
lated for nG values of the control current Ic, chosen within
the bursting interval so that they are compatible with the fre-
quency and duty cycle characteristics of the desired gaits, as
explained in [18]. To ensure that transitions between gaits are
successful as well, each gait is simulated for initial conditions
close to the phase lags of adjacent gaits. After each simulation,
the membrane potentials Vi of the CPG cells at steady state
are considered. Swing and stance phases are determined by
thresholding the membrane potentials at a voltage level Vth;
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simulation of the 
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with N cells

optimization
algorithm
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target features
target gaits

FIG. 1. The CPG model is simulated for a parameter set x, ob-
taining the feature values PG,k for nF target features and nG target
gaits. The obtained values are compared to the reference P∗

G,k val-
ues to calculate the objective function ε(x), according to which the
optimization algorithm updates x.

if any cell exhibits dynamics different from regular bursting
the current parameter set x is discarded by assigning an ar-
bitrarily large value to the objective function, and the current
objective function evaluation stops without performing sim-
ulations for the remaining Ic values. Otherwise, each term
Fk (P∗

G,k, PG,k ) is calculated. If k refers to phase lags, then
the mean squared difference between each phase lag �1 j

( j = 2, . . . , N) extracted from each simulation (as explained
in [17]) and its target value �∗

1 j is calculated:

Fk (P∗
G,k, PG,k ) = 1

N − 1

√√√√ N∑
j=2

[mod1(�∗
1 j − �1 j )]2. (5)

If k refers to frequency or duty cycle, then Fk (P∗
G,k, PG,k ) is

null if PG,k falls within its target range, otherwise

Fk (P∗
G,k, PG,k ) = |P∗

G,k − PG,k|
PG

, (6)

where P∗
G,k is the boundary of the target range nearest to PG,k .

The obtained objective function is thus discontinuous, non-
differentiable, and highly nonlinear. Derivative-free global
optimization strategies that are suitable to solve this problem
are based on particle swarm [26] and genetic algorithms [27].
Another aspect to consider is the high computational burden
of the objective function evaluation, which requires multiple
simulations of the CPG model. For this reason, surrogate
optimization [28] is another suitable optimization technique,
since it allows carrying out the optimization process using a
smaller number of function evaluations.

IV. PRELIMINARY TESTING: RESULTS ON THE
QUADRUPED CPG

We use the quadruped CPG model and its parameter set
found with the custom strategy (CS) proposed in our previous
work [18] as a preliminary test of the global optimization
approach, with the double advantage of exploiting the a priori
knowledge on the parameter set and, at the same time, validat-
ing the previously proposed custom strategy. In this case, the
chosen target gaits are walk (W), trot (T), and bound (B) of the
mouse (modeled in our previous work [18]), characterized by
the phase lags, frequency, and duty cycle listed in Table I. The
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FIG. 2. Parameter sets x found by the CS (black stars), the PS op-
timization (orange circles), the GA optimization (green circles), and
the SO algorithm (purple circles). The black vertical lines indicate
the range between the lower and the upper bounds constraining the
explorable parameter space.

parameter set x includes all synaptic conductances and the dif-
ference between the control currents driving the fore and hind
cells for each gait G: x = {gS

12, gE
12, gF

41, gF
14, gD

12, �IW
c , �IT

c ,
�IB

c } (see Appendix B for details on synaptic conductance
notation). Taking into account the symmetries of the CPG
model, we set gS

21 = gS
34 = gS

43 = gS
12, gE

21 = gE
34 = gE

43 = gE
12,

gF
32 = gF

41, and gF
23 = gF

14. All other parameters were set as in
Appendix B of [18].

The objective function calculation includes all features
listed in Table I, with Wk = 1 for phase lags and Wk = 0.02
for frequency and duty cycle. These weights have been heuris-
tically chosen to prioritize the generation of correct phase
lags. All CPG simulations were performed using the toolbox
CEPAGE [31]. The minimization of the objective function
was performed using the Matlab functions particleswarm,
ga, and surrogateopt, which implement particle swarm (PS)
optimization, genetic algorithm (GA) optimization, and sur-
rogate optimization (SO), respectively. All functions were
initialized with the default options, including the number of
instances of the candidate parameter set, and the explorable
parameter space was constrained by imposing lower and upper
bounds for each parameter in x. These bounds were chosen
in accordance with the goal of obtaining regular rhythmic
CPG activity. Only one instance x∗

0 of the initial candidate
parameter set was assigned the values obtained through the
custom optimization strategy defined in [18]. The remaining
instances, i.e., 79 particle positions for PS, 199 individuals
for GA, and 19 sample points’ coordinates for SO, were set
randomly within the bounds.

All three algorithms found parameter sets x different from
the instance x∗

0 encoded as one of the initial candidates, indi-
cating that all algorithms evolved beyond their initial state. As
such, all algorithms reached values of the objective function
ε(x) lower than ε(x∗

0 ), with the GA-based optimization reach-
ing the lowest value. This result is a first confirmation of the
effectiveness of the proposed optimization method in setting
the multigait CPG parameters, regardless of the global opti-
mization algorithm employed. At the same time, the solutions
found by the global optimization algorithms did not drift far
from x∗

0 , as illustrated in Fig. 2, despite the multistart strategy
adopted by these algorithms. We remark that x∗

0 was only one
of the many initial seeds, as stated above. This suggests that
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FIG. 3. Gaits obtained by simulating the quadruped CPG from [18] (see also Appendix B) with the parameter sets x found by, from
top to bottom, the CS, the PS optimization, the GA optimization, and the SO algorithm. Bound was obtained for IB

c = −0.4243 μA
cm2 , trot for

IT
c = −0.0300 μA

cm2 , and walk for IW
c = 0.1243 μA

cm2 . Color coding as in Fig. 12 in Appendix B.

there are no other regions of the parameter space, distinct from
the one identified by the custom optimization strategy, where
the gaits are correctly reproduced, validating the effectiveness
of the custom strategy. Figure 3 shows the impact of the refine-
ment operated by the global optimization algorithms on the
obtained gaits. The results for each gait are quite similar for
the four considered optimization strategies (as evidenced also
by the similar objective function values in Table II), and in
accordance with the desired features. This suggests that, even
if there is only one point minimizing the objective function,
there is a non-null subspace of the parameter space corre-
sponding to generated gaits with the desired features. This, in
turn, suggests that the proposed method (CPG structure plus
objective function) provides robust results.

The better outcomes of the global optimization algorithms
come at the cost of a significantly higher computational load.
Objective function values ε(x) and computing times for all
algorithms are summarized in Table II. We remark that these
values refer to the specific runs, and just give a general idea of
the different orders of magnitude. Even when maintaining all
other conditions unaltered, both the run time and the perfor-
mance of the global optimization algorithms can be impacted

TABLE II. Objective function values ε(x) and computing times
for all algorithms: custom strategy CS, particle swarm PS, genetic
algorithm GA, surrogate optimization SO. TCS is used as the unit for
running time and corresponds to 9 hours and 38 minutes on an Intel®

Xenon®CPU E5-1620 v2 at 3.70 GHz × 8.

CS PS GA SO

ε(x) 0.0226 0.0199 0.0119 0.0175
Running time TCS 3.53 TCS 24.5 TCS 7.61 TCS

by the initialization of the particles’ positions, population
individuals, or points’ coordinates, and likely worsened if the
instance x∗

0 of the initial candidate parameter set is not known
a priori. However, the high computational cost prevents a
systematic analysis over multiple runs.

V. RESULTS ON THE HEXAPOD CPG

A. Hexapod CPG model

We model the interlimb hexapod CPG according to a min-
imalistic topology [11,32]: one cell controlling each limb,
symmetric reciprocal inhibitory connections between pairs of
controlateral cells, and asymmetric reciprocal inhibitory con-
nections between adjacent ipsilateral cells. The CPG network
is shown in Fig. 4, where the cells are named according to

+ ∆
2

+ ∆
3

FIG. 4. Schematic of the interlimb hexapod CPG: limbs are de-
noted following Wilson’s convention [33], and the corresponding
CPG cells are named accordingly. The cell color coding established
by this figure is consistent throughout the paper.
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FIG. 5. Representation of three hexapod gaits: black bars indi-
cate the swing phases, and blank spaces represent the stance phases
of each leg for the (a) wave, (b) ripple, and (c) tripod gaits.

the corresponding limbs following Wilson’s convention [33]:
L indicates left limbs, R indicates right limbs, and ipsilateral
limbs are numbered from front to back.

All synapses are represented using the first-order kinetic
model.

B. Hexapod gaits

According to Wilson’s system [33], locomotor gaits in
insects comply with two central principles:

(1) Waves of forward leg movements run from posterior
to anterior, and no leg moves forward until the one behind is
placed in a supporting position.

(2) Contralateral legs of the same segment are always in
antiphase.

These simple rules account for the vast majority of gaits
observed in hexapods, with the exception of a few insect
species. We focus in particular on three common gaits ex-
hibited at slow, medium, and high speed, commonly referred
to as wave (W), ripple (R), and tripod (T), summarized in
Fig. 5.1These gaits are also compliant with the additional rules
in Wilson’s system [33]:

(3) The duration of the swing phase remains constant
among gaits.

(4) The frequency varies among gaits, so consequently
the stance phase decreases (i.e., the duty cycle increases) as
frequency increases.

(5) The intervals between adjacent ipsilateral legs are con-
stant among gaits.

1We remark that, despite using coinciding letters, here we are
considering different gaits than in the quadruped CPG.

TABLE III. Objective function values ε(x) and number of func-
tion evaluations for the three global optimization algorithms (particle
swarm PS, genetic algorithm GA + pattern search Psearch, surrogate
optimization SO).

PS GA (+Psearch) SO

ε(x) 0.0382 0.1227 (0.1206) 0.1184
Function evaluations 11 200 18 070 (+1029) 7255

C. Results of the parameter optimization

The parameter set x includes all synaptic conductances
and the differences between the control currents driving the
fore and mid cells (�IG2

c ) and the fore and hind cells (�IG3
c )

for each gait G: x = {gL1R1, gL1L2, gL2L1, gL2L3, gL3L2, �IW 2
c ,

�IW 3
c , �IR2

c , �IR3
c , �IT 2

c , �IT 3
c }. Taking into account the sym-

metries of the CPG model, we set gL1R1 = gR1L1 = gL2R2 =
gR2L2 = gL3R3 = gR3L3, gL1L2 = gR1R2, gL2L1 = gR2R1, gL2L3 =
gR2R3, and gL3L2 = gR3R2. In this case, the objective function
is computed considering only the phase lags, since there is
a large variability in frequency and duty cycle ranges exhib-
ited by different species [34]. We instead choose to verify
adherence of the obtained gaits to Wilson’s system a poste-
riori. All CPG simulations were performed using the toolbox
CEPAGE [31].

Again, we test all three global optimization algorithms on
the minimization of the function, this time without encoding
any a priori knowledge in the initial state. All algorithms
were initialized with their default options and the explorable
parameter space was constrained by imposing lower and upper
bounds for each parameter in x, allowing ranges that produce a
biologically plausible behavior of the CPG model. The initial
state of all algorithms (i.e., initial instances of x) was initial-
ized randomly within the bounds.

Table III lists the objective function values and the number
of function evaluations for the three algorithms. Since the ge-
netic algorithm reached the worst objective function value, the
result was further refined by employing the local derivative-
free optimization strategy implemented by the patternsearch
Matlab’s function. The particle swarm optimization reached
the best result, with both the lowest value of the cost function
ε(x) and the fewest function evaluations.

The parameter sets identified with particle swarm opti-
mization and surrogate optimization produced stable ripple,
tripod, and wave gaits, while the parameter set found by the
genetic algorithm yielded a wave gait with less consistent
phase lags over time. To overcome this problem, the GA-
based optimization was repeated focusing only on the wave
gait and simulating the CPG for a longer time interval at each
objective function calculation. In this case, to reduce the com-
putational burden, all parameters were fixed to the previously
found values, with the exception of x = {IW

c ,�IW 2
c , �IW 3

c }.
The final parameter sets found with the different algorithms
are shown in Fig. 6.

Despite some parameters having significantly different val-
ues (namely, gL1L2 and gL2L3), all parameter sets give rise to
clearly recognizable gaits. The final resulting CPG dynamics
for each gait, in terms of membrane potentials, are shown
in Fig. 7. By thresholding the voltage traces, it is possible
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FIG. 6. Parameter sets x found by the PS optimization (orange
circles), the GA optimization refined through pattern search (green
circles), and the SO algorithm (purple circles). The black vertical
lines indicate the range between the lower and the upper bounds
constraining the explorable parameter space.

to distinguish between the swing phase (bursting activity of
the corresponding cell) and stance phase (below-threshold
activity of the corresponding cell), obtaining a representation
of the three gaits, also shown in Fig. 7, that can be directly
compared with the reference case of Fig. 5. The parameter
values resulting from the optimization procedure and other
model parameters are listed in Appendix C. All transitions
between gaits, provoked by varying the control currents while
leaving all other parameters unaltered, happen promptly and
smoothly, as shown in Fig. 8 for the gaits obtained through
particle swarm optimization.

The quantitative comparison between ideal and obtained
phase lags is shown in Fig. 9, confirming the qualitative
observation: in all cases, the obtained phase lags fall very
close to their target values. In particular, PS optimization and
GA-based optimization yielded ripple and tripod gaits that
perfectly reproduce the ideal phase lags (maximum percent
errors of 0.48% and 0.28% for the ripple gait, and 0.45%
and 1.95% for the tripod gait, in the case of PS and GA,
respectively); the wave gait presents slightly less accurate
phase lags (maximum percent errors of 4.78% and 8.05% in
the case of PS and GA, respectively). On the contrary, the
surrogate optimization yielded a perfect wave gait (maximum
percent error of 0.48%) and less accurate ripple and tripod
gaits (maximum percent errors of 8.35% and 4.88%).

We also verify the adherence of the modeled gaits to the
five rules of Wilson’s system:

(1) Waves of forward leg movements do run from pos-
terior to anterior and the overlap between the swing phases
of ipsilateral legs, when present, is very small (maximum
duration of 1.09%, 0.93%, and 3.28% of the step period for
the wave gait and 0.41%, 0.53%, and 4.09% of the step period
for the ripple gait in the case of PS, GA, and SO, respectively);
there is no overlap between the swing phases of ipsilateral legs
in any of the modeled tripod gaits.

(2) Contralateral legs are always in antiphase for all mod-
eled gaits, with maximum overall errors of 0.22%, 0.87%, and
0.10% in the case of PS, GA, and SO, respectively.

(3) The mean duration of the swing phase, averaged over
all legs and gaits, is 77.47 ms with a standard deviation
of 13.43 ms for PS, 80.01 ms with a standard deviation of
4.08 ms for GA, and 73.26 ms with a standard deviation
of 15.66 ms for SO [see also Fig. 10(a)]. This rule is thus

better fulfilled by the result obtained with the GA-based
optimization.

(4) The duty cycle increases as the frequency increases,
from wave, to ripple to tripod gait for all optimization algo-
rithms, as shown in Fig. 11.

(5) The interval between adjacent ipsilateral legs, av-
eraged over all leg pairs, is not constant across gaits; in
particular, the interval grows significantly for the tripod gait
for all optimization algorithms [see also Fig. 10(b)]. Thus this
rule cannot be considered fulfilled in any case.

Overall, the modeled gait features appear in good agree-
ment with Wilson’s system, with only one of the five rules not
fulfilled. We remark that, when defining the objective function
for the parameter optimization of the hexapod CPG, we only
imposed specific phase differences between limbs. Even if
other gait features such as frequency, duty cycle, and duration
of the swing phase were not codified in the objective function,
the obtained model behavior is nonetheless compatible with
these characteristics as they are observed in natural gaits.
This finding corroborates the suitability of the obtained CPG
model, in terms of both topology and neuron and synapse
models.

VI. DISCUSSION AND CONCLUSIONS

Animal locomotion arises from the nontrivial interplay
between the nervous system, the musculoskeletal system,
and the environment, with multilayered and distributed
control systems, with central networks, reflexes, and mechan-
ics all contributing to sensorimotor responses on different
timescales [35]. Because of this inherent complexity, it has
been a longstanding challenge to understand (through integra-
tive approaches involving biology, physics, engineering, and
other disciplines) the structure, function, and integration of
animal sensorimotor systems. In this paper, we focused on
a part of the animal locomotion system, the CPGs, which
provide a type of feedforward controller for locomotion that
helps to overcome delays. CPGs are activated by descend-
ing driving signals and produce predetermined motor outputs
for locomotion. The modulating descending pathways can
activate selectively multiple interconnected modules of the
CPG network that control the movement of each joint in
each limb [4,36–38]. The adaptations achieved by sensory
inputs can be fast, as when running in the forest, or slow,
to accommodate the animal’s growth. Such adaptations are
typically mediated by short- and long-term forms of synaptic
plasticity and can be induced by different cellular and synaptic
mechanisms through actions at the network level [5].

As stated above, the animal locomotion system is highly
complex and not completely understood in its mechanisms. In
this paper, we proposed a possible strategy to derive functional
models able to reproduce key features of the CPG component
of this system. We proposed a method to set the parameters of
interlimb multigait locomotion CPGs, based on the definition
of an objective function that matches the network activity
pattern to gait features. We considered networks with bio-
logically accurate neuron and synapse models and minimalist
topology, where gait switches are prompted by an input con-
trol current, while all other network parameters remain fixed.
In this modeling framework, each CPG cell has a different
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FIG. 7. Gaits obtained by simulating the hexapod CPG with the parameter sets x found by (from top to bottom) the CS, the PS optimization,
the GA optimization refined through pattern search, and the SO algorithm. Color coding as in Fig. 4. The three gaits are also represented by
thresholding the voltage traces: black bars correspond to the swing phases, and blank spaces represent the stance phases of each leg. Wave was
obtained for IW

c = −0.057 μA
cm2 (IW

c = −0.059 μA
cm2 for the GA optimization), ripple for IR

c = −0.15 μA
cm2 , and tripod for IT

c = −0.243 μA
cm2 .

input control current (IGc for the reference cell, IGc + �IGi
c

for the others). Therefore, even if the network topology is
fixed and simple and we do not have interconnected modules
that are activated or deactivated by the descending pathways,
each CPG cell has its own “descending modulation”. In other
words, we have proposed a functional model that captures
some key features of the system owing to complex dynamics
and simple topology. Of course, the same relevant features
may be captured by adopting a complementary approach,
with simpler dynamics and more complex topology. The main
strength of our approach is that it allows accounting for the
short-term synaptic modulation, which is likely at the basis
of gait switching. Despite the high level of abstraction of our
functional circuits, we obtained plausible gait transitions. Our
modeling strategy could be a useful tool to obtain crucial
comparative insights in the comparison of the locomotion
systems of animals with different complexity levels [35] or
at different growth stages [37].

We explored the use of derivative-free global optimization
algorithms for the minimization of the proposed objective
function. Global optimization has already been shown to ef-
fectively identify parameters for biologically detailed neuron

models [39]. We remark that, by contrast with many other
works on CPG parameter setting, here we do not focus on
retracing experimentally observed membrane potential pro-
files or reproducing elicited firing rates, but on matching
high-level network dynamics characteristics to target gaits.
We first tested three global optimization algorithms on an ex-
isting multigait quadruped CPG network, reaching the double
objective of (1) validating the effectiveness of the previously
proposed parameter setting custom strategy [14,18] and (2)
testing the suitability of the proposed objective function for
reaching accurate modeling of quadruped gaits, independently
from the chosen global optimization algorithm.

The obtained results could be extended to quadrupeds other
than mice (with different biomechanical characteristics) by
using as reference the experimental data in [40] or similar
papers.

We then introduced a novel multigate interlimb hexapod
CPG model based on the principle of maintaining a fixed net-
work structure and prompting gait switches through a variable
control current. Exploiting the proposed method for tuning
the model parameters, we were able to accurately model the
three main hexapod gaits and the transitions between them,
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FIG. 8. Membrane potential traces of the CPG neurons (upper plots with colored traces) and corresponding swing and stance phases
representation (swing phase in black) for all gait transitions: (a) wave to ripple, (b) ripple to wave, (c) tripod to ripple, and (d) ripple to tripod.
The change in control currents that prompts the gait transition is marked by the green vertical line.

with all the tested global optimization algorithms. In particu-
lar, we directly obtained suitable parameter sets when using
PS optimization and SO, while we refined the less accurate
results from the GA using local pattern search optimization
and carrying out a second optimization round focusing on the
wave gait.

We observe that the conductances of the inhibitory
synapses connecting the contralateral CPG cells have the
strongest overall values in the case of the PS optimization and
the GA optimization and the second strongest value in the case
of the SO, underlying their key role in maintaining anti-phase

12 13 14 15 16

0
1/6
2/6
3/6
4/6
5/6

1

12 13 14 15 16 12 13 14 15 16

FIG. 9. Representation of the ideal (black bars) and obtained
(colored circles) phase differences between limbs for the wave, rip-
ple, and tripod gaits. Color code as follows: orange circles for PS
optimization, green circles for the GA optimization refined through
pattern search, and purple circles for the SO algorithm.

coordination between contralateral legs during all exhibited
gaits. Additionally, we observe that the values of the synaptic
conductances obtained through our method with all global
optimization algorithms (see Appendix C) display anterior-to-
posterior inhibitory connections (gL2L1, gL3L2 and equivalents
on the right side) much stronger than the posterior-to-anterior
ones (gL1L2, gL2L3 and equivalents on the right side).

In this work, we used specific neuron and synapse mod-
els that enable controlling phase differences, frequency, and
duty cycle compatibly with gait modeling, by modifying only
the control current. The characteristics of these models are

wave ripple tripod
20 

60 

100

140

wave ripple tripod
20 

60 

100

140

FIG. 10. (a) Duration of the swing phase and (b) interval between
adjacent ipsilateral legs for wave, ripple, and tripod gaits. Colored
circles mark the average value among (a) the six CPG cells or among
(b) the four ipsilateral leg pairs. Color code as follows: orange circles
for PS optimization, green circles for the GA optimization refined
through pattern search, and purple circles for the SO algorithm.
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3.1
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FIG. 11. Frequency f and duty cycle dc values for wave, ripple,
and tripod gaits. Colored circles mark the average value among the
six CPG cells. Color code as follows: orange circles for PS optimiza-
tion, green circles for the GA optimization refined through pattern
search, and purple circles for the SO algorithm.

especially relevant when designing multigait CPGs that are
required to reproduce gaits with different phase lags between
corresponding contralateral legs, such as the quadruped CPG,
as explained in detail in [17,18]. We maintained the same
models for the proposed hexapod CPG, omitting the exci-
tatory synapses, since hexapod terrestrial gaits only exhibit
contralateral legs in antiphase. Regardless, the proposed pa-
rameter setting approach, consisting of defining an objective
function based on the adherence of the CPG’s emergent dy-
namics to the target gait features, remains valid independent
of the neuron and synapse models, number of legs, and
parameters to be optimized.
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APPENDIX A: THALAMIC RETICULAR NEURON MODEL

The thalamic reticular neuron model [19,20] is defined by
the following state equations:

ξ
dV

dt
= −IT − IL − INa − IK − Ic + Isyn

C
,

ξ
dCa

dt
= − kIT

2FD
− KT Ca

Ca + Kd
,

ξ
dy

dt
= y∞ − y

τy
, y ∈ {h, m, n, mT , hT }, (A1)

where V is the membrane potential of the neuron, Ca is
the intracellular calcium concentration, and y stands for the
generic gating variable. The vector y in Eq. (1) is thus defined
as y = [Ca, h, m, n, mT , hT ]. The only difference with respect
to the original model is the presence of the dimensionless co-
efficient ξ , which scales the time variable t and thus regulates
the burst frequency f so that it spans the range required to
model the desired gaits. The ion currents IT (calcium), INa

(sodium), IK (potassium), and IL (leakage) evolve according
to the following equations:

IT = gCam2
T hT (V − ECa), IL = gL(V − EL ),

INa = gNam3h(V − ENa), IK = gKn4(V − EK),

+ ∆

FIG. 12. CPG circuit of four coupled cells labeled as follows:
FL or FR, fore-left or right, and HL or HR, hind-left or right. The
symbols �, •, •, and • denote, respectively, the excitatory E and
inhibitory S, F , and D synapses (see Table IV). Each CPG cell
controls flexor muscles regulating the swing phase of a limb, and D
synapses simulate the actions of the neural populations (not explicitly
represented in the given model) controlling the extensor muscles.
The fore and hind gHCOs are coupled through ipsilateral F synapses.

which depend on V and on the gating variables h (inactiva-
tion variable of the Na+ current), m (activation variable of
the Na+ current), n (activation variable of the K+ current),
mT (activation variable of the low-threshold Ca2+ current),
hT (inactivation variable of the low-threshold Ca2+ current).
All gating variables evolve according to the differential equa-
tions written above for y, where

y∞ = ay/(ay + by), τy = 1/(ay + by) (y = {h, m, n}),

ah = 0.128e
17−V

18 , bh = 4

e−0.2(V −40) + 1
,

am = 0.32(13 − V )

e0.25(13−V ) − 1
, bm = 0.28(V − 40)

e0.2(V −40) − 1
,

an = 0.032(15 − V )

e0.2(15−V ) − 1
, bn = 0.5e

10−V
40 ,

m∞
T = 1

1 + e− V +52
7.4

, τmT = 0.44 + 0.15

e
V +27

10 + e− V +102
15

,

h∞
T = 1

1 + e
V +80

5

, τhT = 62.7 + 0.27

e
V +48

4 + e− V +407
50

.

In the above equations, the leakage current IL has conduc-
tance gL = 0.05 [ mS

cm2 ] and reversal potential EL = −78 [mV];
INa and IK are the fast Na+ and K+ currents responsible
for the generation of action potentials, with conductances
gNa = 100 [ mS

cm2 ] and gK = 10 [ mS
cm2 ] and reversal potentials

ENa = 50 [mV] and EK = −95 [mV]; IT is the low-threshold
Ca2+ current that mediates the rebound burst response, with

TABLE IV. Synapse types.

Synapse type Abbreviation Symbol

Fast excitatory E �
Slow inhibitory S •
Delayed fast inhibitory D •
Fast inhibitory F •
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TABLE V. Parameter values obtained with the CS and with the
global optimization algorithms: PS, GA, SO.

Parameter CS PS GA SO

gS
12 0.1207 0.1208 0.1208 0.1203

gE
12 0.0052 0.0052 0.0052 0.0052

gF
41 0.0048 0.0047 0.0048 0.0062

gF
14 0.0111 0.0111 0.0108 0.0111

gD
12 0.0118 0.0117 0.0118 0.0134

�IW
c −0.0571 −0.0569 −0.0549 −0.0572

�IT
c 0.0343 0.0339 0.0560 0.0344

�IB
c 0.0571 0.0579 0.0693 0.0570

conductance gCa = 1.75 [ mS
cm2 ] and reversal potential ECa =

k0
RT
2F log( Ca0

Ca ); Isyn is the synaptic current; see Eq. (2). When
the control current Ic is in the range [−0.43, 0.13] [ μA

cm2 ]
the neuron exhibits bursting behavior. The other parame-
ters are set as follows: C = 1 [ μF

cm2 ], Ca0 = 2 [mM], D =
1 [µm], KT = 0.0001 [mM ms], Kd = 0.0001 [mM]. F =
96.489 [ C

mol ] is the Faraday constant, R = 8.31441 [ J
mol K ] is

the universal gas constant, and the temperature T is set at
309.15 [K].

APPENDIX B: QUADRUPED CPG MODEL
AND PARAMETER VALUES

The quadruped CPG network from [18] is displayed in
Fig. 12. In this case, the term Isyn

i groups together the synaptic
currents from four different synapse types, listed in Table IV:

Isyn
i =

4∑
j=1

{
gE

i j[E
E − Vi(t )]sE

j + gS
i j[E

S − Vi(t )]sS
j

+ gD
i j[E

S − Vi(t − δ)]sD
j + gF

i j[E
S − Vi(t )]sF

j

}
. (B1)

TABLE VI. Top: parameter values obtained with all global opti-
mization algorithms. Bottom: other synapse parameters as in [17].

Parameter PS GA (+Psearch) SO

gL1R1 0.8551 0.4741 0.5380
gL1L2 0.0314 0.0461 10−5

gL2L1 0.4573 0.2117 0.1328
gL2L3 10−5 0.0451 10−5

gL3L2 0.3845 0.1679 0.7370
�IW 2

c 0.1474 −0.1199 0.0818
�IW 3

c 0.1860 0.1680 0.0818
�IR2

c 0.1551 0.0320 0.1260
�IR3

c 0.1586 0.2129 −0.0479
�IT 2

c −0.1798 −0.1723 −0.1536
�IT 3

c −0.1865 −0.0841 −0.1760

α 0.7543
β 0.0391
θ 17.500
ν 10
E 60

Slow S synapses are modeled by the first-order kinetic model,
while other synapse types are modeled using the FTM ap-
proach.

The parameter values obtained with the custom optimiza-
tion strategy and with the global optimization algorithms are
listed in Table V. All other parameters are set as in [18].

APPENDIX C: HEXAPOD CPG PARAMETER VALUES

The parameter values obtained with all global optimization
algorithms are listed in the top part of Table VI (above the
horizontal line). The other synapse parameters are set as in
the bottom part of the table (below the horizontal line) and
taken from [17].
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