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Coarse-graining of perplexity for the spatial distribution of molecules
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Biological tissue consists of various molecules. Instead of focusing on a particular molecule, we consider
the Shannon entropy which is calculated from the abundance of different molecules at each spot in the tissue.
The spatial distribution of the Shannon entropy is of interest. In this paper, we first obtain the heat map of
perplexity, whose logarithm is the entropy. To characterize the spatial variety of molecules, we propose a scalar
k that is concerned with the coarse-graining of the perplexity heat map. To verify the usefulness of the number,
experiments with mass spectrometry imaging were performed for mouse kidneys. We found that k has large
values in the renal pelvis area, cortex area, veins, and arteries in the mouse kidney, whereas fractal dimensions
fail to distinguish those regions.
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I. INTRODUCTION

Among different molecules in biological tissue, quite often
a target molecule is focused on and the position dependence of
the abundance of the target molecule is investigated. An alter-
native approach to study the tissue with various molecules is
to obtain a characteristic quantity such as the Shannon entropy
and study its position dependence. In this paper, aimed at char-
acterizing biological tissues from the viewpoint of the spatial
distribution of the entropy, we perform coarse-graining.

Entropy has been used to analyze information of a
medium [1]. For classical and quantum gases, fractal dimen-
sions and their relation to entropy were investigated [2]. The
Shannon entropy was used for avoided crossings in quantum
chaos [3]. The concept of the Shannon entropy was used for
the kinetics of colloidal particles [4]. See, also, [5,6]. Entropy
was used for the study of quantum many-body systems [7]. An
extension of the Shannon entropy was explored for biological
diversity [8].

To study biological tissue from an informational point
of view, heat maps of the Shannon entropy calculated from
the abundance of molecules in each spot have been investi-
gated [9,10]. In this paper, the characterization of the position
dependence of the Shannon entropy is explored.

Mass spectrometry imaging (MSI) is a technique with ion-
izing molecules in a sample to provide both molecule species
and positions of those molecules in the sample [11–13]. The
resolution of an image is of the order of micrometer or sub-
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nanometer. At each spot of the sample, hundreds of m/z peaks
are obtained.

In mass spectrometry, the Shannon entropy was calculated
for m/z spectra [14–17]. See [18,19] for more details. Re-
cently, the binning effect of the Shannon entropy [20], the
relation between the Shannon entropy of mass spectra and
molecules such as peptides and proteins [21], and a data-
targeted extraction method for metabolite annotation [22]
were investigated.

The Shannon entropy has been viewed as a physical quan-
tity which gives information as to how molecules spatially
vary. In [9], the Shannon entropy has been revisited to capture
information from all peaks in mass spectra over the sample
and a method based on the information entropy (Shannon
entropy) for time-of-flight secondary ion mass spectrome-
try (TOF-SIMS) was proposed. Furthermore it was shown
that without peak identification, the spatial distribution (heat
maps) of the Shannon entropy of spectra indicates differences
in materials and changes in the conditions of a material in a
sample. The spatial distribution of the Shannon entropy was
also studied for the matrix-assisted laser desorption-ionization
(MALDI) MSI and a method to select candidate peaks was
proposed [10].

In this study, we derive perplexity from entropy and de-
velop an approach to visualize the spatial and mass-spectral
diversities by coarse-graining. To this end, a slope k (see
below) is introduced.

The remainder of the paper is organized as follows. In
Sec. II, we introduce perplexity and define k. Section III
gives the experimental results for MSI. Fractal dimensions are
considered in Sec. IV. Section V is devoted to discussion. The
conclusions are given in Sec. VI.

II. PERPLEXITY AND COARSE-GRAINING

We begin by introducing the Shannon entropy using inten-
sities in the mass spectrum [9,10]. Let n be the number of
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FIG. 1. A mouse kidney (sample 4-2) and examples of peaks on
mass spectra at three different spots in the kidney.

intensities in the mass spectrum. In MSI, different intensities
appear as a function of m/z at each pixel on the sample.
Examples of such peaks are shown in Fig. 1 for the mouse
kidney of sample 4-2 (see below). We call nonzero intensities
the peaks. Each peak corresponds to an ion. Here, the dimen-
sionless unit m/z is the ratio of the mass of an ion divided
by the unified atomic mass unit (1 Dalton) and the absolute
charge number (the absolute value of an integer number of
elementary charges that an ion has gained or lost). Let pi be
the ith intensity in the mass spectrum which is normalized as∑n

i=1 pi = 1. In Fig. 1, the numbers of the peaks are 558, 478,
655 for points A,B,C, respectively.

We draw x and y axes on the image. At pixel (x, y), we
define the Shannon entropy H (x, y) as

H (x, y) = −
n∑

i=1

pi(x, y) log2 pi(x, y). (1)

After plotting H (x, y), a way to study the structure of H (x, y)
in the neighborhood of the point (x, y) is to consider coarse-
graining. As described below, a computable scalar can be

obtained with the coarse-graining process for perplexity,
which is introduced below, rather than the direct application
of coarse-graining to the heat map H (x, y).

Let us consider perplexity, which is an index to measure
diversity. See [23] for an application of perplexity in biology.
Perplexity (PP) is defined as [24]

PP(x, y) = 2H (x,y). (2)

Suppose that we randomly pick a peak in the mass spec-
trum with the probability given by the relative height of the
peak. Then we consider the number of tries that is necessary
for the particular peak to be selected. Indeed, the expected
number of trials is the reciprocal of the probability for the
peak. The perplexity is the weighted geometrical mean of the
expected numbers of trials for all peaks in the mass spectrum.
In this way, the perplexity provides a measure of diversity of
peaks, which correspond to different molecules. Since 0 �
H (x, y) � log2 n, we have 1 � PP(x, y) � n.

Let us consider coarse-graining for MSI. We select a square
region on the image and divide the square into N (ε) sub-
squares with side length ε. Treating these N (ε) subsquares as
new pixels, relative peak intensities in the pixel at (x, y) can be
expressed as p(ε)

i (x, y). We take averages in mass spectra for
coarse-grained pixels. If the pixel size gets doubled by coarse-
graining, we have p(2ε)

i (x, y) = 1
4 [p(ε)

i (x1, y1) + p(ε)
i (x2, y2) +

p(ε)
i (x3, y3) + p(ε)

i (x4, y4)], where (x1, y1) = (x, y), (x2, y2) =
(x + ε, y), (x3, y3) = (x, y + ε), and (x4, y4) = (x + ε, y +
ε). We note that the pixels of size ε at (x j, y j ) ( j = 1, 2, 3, 4)
are contained in the pixel of size 2ε at (x, y). Thus, the per-
plexity depends on ε and we can write PP(ε)(x, y).

In addition to PP(ε)(x, y) itself, we consider how PP(ε)(x, y)
behaves as ε varies by coarse-graining. We define k(x, y) as

k(x, y) = lim
ε→0

PP(ε)(x, y)

ln ε
. (3)

This k(x, y) contains the information on how H (x, y) be-
haves in the neighborhood of the point (x, y). Since we have
found a linear dependence between ln ε and the perplexity
(see below), the calculation of the limit in (3) is feasible for
experimental data. Indeed, (3) means a power-law behavior of
ePP for small ε > 0 as

ePP ∼ εk . (4)

Below, we will see that the relation (4) holds for experimental
data. In terms of the Shannon entropy, the relation (4) implies
a power-law dependence of the double exponential of H on ε,

exp(eH ) ∼ εk . (5)

Thus, k characterizes the local behavior of the spatial distri-
bution of H .

III. EXPERIMENTS

A. Setup

We used C57BL/6 J female mice, with two four-month-old
mice kidneys (samples 4-1 and 4-2) for MALDI MSI ob-
servation (using a high-resolution microscopic imaging mass
spectrometer, iMScope). Sample preparation steps including
mouse sacrifice, sample pre-reservation, and matrix spraying
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FIG. 2. Entropy and perplexity heat maps on kidney MSI data.
(a),(d) HE staining of kidneys (samples 4-1 and 4-2) of four-month-
old mice and ROIs (marked by rectangles). (b),(e) Entropy heat maps
in ROIs. In the ROI of sample 4-1, the entropy changed between 5.0
and 9.6. In the ROI of sample 4-2, the entropy changed between 7.2
and 9.7. (c),(f) Perplexity heat maps in ROIs. In the ROI of sample
4-1, the perplexity changed between 149.0 and 846.5. In the ROI of
sample 4-2, the perplexity changed between 32.2 and 755.3. Scale
bar: 1 mm.

followed our previous paper [10]. The experimental condi-
tions were as follows: negative ion mode, m/z range between
550 and 950, laser strength of 45%, and number of irradiations
of 100. All experiments in this study were performed in com-
pliance with the licensing instructions from the Institutional
Animal Care and Use Committees of Hamamatsu University,
School of Medicine, Japan (permission code 2015028).

For sample 4-1, n = 3246. For sample 4-2, n = 3584.

B. Perplexity heat maps

First, we select a region of interest (ROI). Figures 2(a)
and 2(d) show the anatomical structure through hematoxylin-
eosin (HE) staining. We calculated the Shannon entropy and
perplexity on each spot of the kidney MSI data and plotted
heat maps. In Figs. 2(b) and 2(c) (sample 4-1) and Figs. 2(e)
and 2(f) (sample 4-2), there are differences between entropy
and perplexity heat maps. Moreover, sample dependencies
can be seen in the comparisons between Figs. 2(b) and 2(e)
and between Figs. 2(c) and 2(f). In Fig. 2(c), blue and green
spots (i.e., low and middle perplexity spots) dominate in the
medulla and cortex areas, respectively. In Fig. 2(e), the pelvis
and medulla areas (green) (i.e., middle perplexity areas) can
be distinguished from the cortex (yellow) (i.e., high perplexity
spots). For both of the samples 4-1 and 4-2, the medulla area
has lower entropy values than the cortex area.

C. The slope k

To investigate the spatial distribution of perplexity, we
picked several points on the image for the kidney of sam-
ple 4-2 [Figs. 3(a) and 3(b)]. We found a linear trend in
the plot of ln ε and perplexity for small ln ε. In Fig. 2,

FIG. 3. (a),(b) The HE staining and perplexity heat map of the
four-month-old mouse kidney (sample 4-2) and spots selected for
demonstrating slope calculations. The range of the perplexity was
between 32.2 and 755.3. (c) Semilogarithmic plots of ln ε and the
perplexity. For spots a–c, slopes were 504.7, 631.5, and 410.2, re-
spectively. (d) For spots d–f, slopes were 480.8, 482.5, and 488.0,
respectively. (e) For spots g–j, slopes were 744.3, 715.8, 716.6, and
700.8, respectively. Scale bar: 1 mm.

the unit of ε is the length of the original pixels. Differ-
ent spots (a–c) were chosen and the linear dependence was
found at each spot with different slopes (a = 504.7, b =
631.5, and c = 410.2) [Fig. 3(c)]. Spots in the proximity
(d–f) showed similar slopes (d = 480.8, e = 482.5, and f
= 488.0) [Fig. 3(d)]. Spots in the same region (g–j) pre-
sented similar slopes (g = 744.3, h = 715.8, i = 716.6,
and j = 700.8) [Fig. 3(e)]. Thus, k can be experimentally
determined.

Figures 4(a) and 4(b) show heat maps of k(x, y). We found
that the renal pelvis area has large k (red and yellow spots),
while k is small (blue and green spots) in the medulla area
[Figs. 4(c) and 4(d)]. There were green and yellow spots in
the cortex area. We also found pixels of large k in the areas
denoted by * and ** in Figs. 4(c) and 4(d). As examples, we
compare the HE images and heat maps in these rectangular
areas. The magnified figures are shown in Figs. 4(e) and 4(f).
We discovered that large k appears at the vein and artery.
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FIG. 4. Heat maps of the slope k are shown with overlays with
HE staining. (a),(b) Heat maps of k for samples 4-1 and 4-2. In
(a) and (b), [min, max] is [171.1,1105.4] and [104.4,902.6], respec-
tively. (c),(d) Overlays of the heat map and HE staining of the
kidneys. Scale bar: 1 mm. (e),(f) Enlarged areas for the HE staining
and heat map of k. Scale bar: 10 µm.

IV. FRACTAL DIMENSIONS

Here we take the unit of ε to be the side length of
the original pixels. Let N0 be the number of original pix-
els in the ROI. The number of pixels after binning is
N (ε) = N0/ε

2. Fractal dimension D0 is calculated as D0 =
− limε→0 ln N (ε)/ ln ε [25]. From the definition, we see that
in this case, D0 = 2 exactly. For given ε, let us introduce

Pi(ε) =
∑

(x,y)∈ ith pixel H (x, y)
∑

(x,y)∈ ROI H (x, y)
, (6)

where H (x, y) is the Shannon entropy which is computed
using original pixels. The number of pixels depends on ε; the
number decreases as ε becomes large.

Similar to D0, the information dimension D1

and correlation dimension D2 [26,27] are given
by D1 = limε→0

∑N (ε)
i=1 Pi(ε) ln Pi(ε)/ ln ε, D2 =

limε→0 ln[
∑N (ε)

i=1 Pi(ε)2]/ ln ε. In general, we have Dq =
1

q−1 limε→0[ln Zq(ε)]/(ln ε), where Zq(ε) = ∑N (ε)
i=1 Pi(ε)q.

In addition to the fractal dimension D0, the information
dimension D1 and the correlation dimension D2 were calcu-
lated at different points in the images. We found D1 = 2.0 and
D2 = 2.0 for both kidneys. This means that the fractal nature
is not found for q = 0, 1, 2.

V. DISCUSSION

We found that the relation ePP ∼ εk in (4) holds for the
experimental data. Although this relation stems from the sta-
tistical nature of the molecules, it is still an open problem
of how k reflects the spatial distribution of molecules in the
sample. The physical and biological reasons of the power-law
behavior need to be clarified in the future.

We note that k(x, y) is positive even when the Shannon
entropy for pixels in the neighborhood of (x, y) is unchanged
if spectral patterns in the neighborhood have a variety. That is,
k has different values even if the heat map is homogeneous. In
this sense, k is more informative than entropy and perplexity.

Different anatomical regions showed different entropy
and perplexity (Fig. 2). In normal kidneys, the cortex con-
tains more histological structures including proximal tubules,
glomeruli, cortical distal tubules, and interstitial structures,
while the medulla contains interstitial structures, medullary
tubules, and corticomedullary tubules [28]. Our detected m/z
range (550–950) was mainly lipids. It is known that the lipid
expression of histological structures within the cortex is simi-
lar, unlike the lipid expression within the medulla [28], which
may explain the inconsistency of the entropy and perplexity in
Fig. 1.

The fact that the entropy and perplexity in the medulla
area were both lower than those in the cortex area in Fig. 2
implies less complexity of biomolecular and chemical infor-
mation in the medulla area. The major lipids in the cortex are
phospholipids, whereas the medulla is dominated by neutral
lipids [29]. Phospholipids are composed of a head group, a
glycerol backbone, and fatty acid chains [30]. Neutral lipids,
on the other hand, contain only a glycerol backbone and fatty
acid chains [31]. This might explain low-entropy spots in the
medulla area.

When the mass spectra drastically vary in space (e.g., when
different high-intensity peaks appear in neighboring spots),
entropy grows by coarse-graining. In this case, perplexity
rapidly increases and k at this spot becomes large. By contrast,
if the mass spectra are spatially more or less similar, entropy
changes mildly by coarse-graining and k is small.

In Fig. 4, k is large (red and yellow spots) around the vein
and artery area in the kidney. The HE staining shows blood
vessels. Indeed, pixels inside and outside the blood vessels
have quite different mass spectra. On the other hand, k is small
(blue spots) in the medulla area. This implies that the region
of medulla is relatively homogeneous.

VI. CONCLUSIONS

We have proposed the use of perplexity and introduced k
in coarse-graining. We found that the heat map of k reveals
new structures which are not clearly visible in the Shannon-
entropy heat map. Although the use of peaks in the mass
spectrum as a distribution is not yet established, the spatial
distribution of k will help characterize biological tissues.

Since experimental data show the power-law behavior of
the exponential of perplexity in (4), it was possible to produce
heat maps of k for kidneys. These heat maps elucidate struc-
tures of the Shannon entropy, while the information was not
clearly extracted with fractal dimensions.
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