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Charge transport in a double-stranded DNA: Effects of helical symmetry and long-range hopping
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Within a tight-binding framework, we examine conformation-dependent charge transport properties of the
DNA double-helix, including helical symmetry and the possibility of multiple charge conduction pathways.
Using techniques based on the Green’s function method, we inspect changes in the localization properties of
DNA in the presence of long-range hopping, with varying disorder strength. We study three characteristic DNA
sequences, two periodic and one random. We observe that, in all cases, due to disorder-induced delocalization, the
localization length variation is similar. We also investigate the effect of backbone energetics on current-voltage
(I-V ) responses, using the Landauer-Büttiker formalism. We find that, in the presence of helical symmetry and
long-range hopping, due to environmental effects, DNA can undergo a phase transition from semiconductor to
insulator.
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I. INTRODUCTION

DNA, the basic building block of life, consists of four
different nitrogenous bases: adenine (A), guanine (G), cyto-
sine (C), and thymine (T), connected via hydrogen bonds in
a ladder-like structure that is famously known as a double-
helix [1]. Adenine (A) pairs with thymine (T) and guanine
(G) pairs with cytosine (C). This is known as complemen-
tary base-pairing. The backbone structure of DNA is formed
by phosphate groups and pentose sugars (deoxyriboses). De-
oxyriboses are attached to the nitrogenous bases via similar
C-N bonds. Most of the theoretical models consider charge
conduction [2–9] through the π -π path between bases and no
charge transport along the backbone sites. Even in cases of po-
laron hopping along DNA, the same mechanism was followed
[10,11]. Considering energetic and spatial separation between
sites, multiphonon-assisted hopping of small polarons be-
tween next-nearest neighbors was suggested as the transport
mechanism responsible for the strong high-temperature de-
pendence of the electrical conductivity in DNA [12]. In our
present work, we model double-stranded DNA incorporating
its helical symmetry and the presence of multiple conduction
channels, as reported in a number of chirality-induced spin
selectivity (CISS) studies [13–16].

We perform the following investigations, using three
double-stranded (ds) DNA sequences: Two periodic, i.e.,
poly(dA)-poly(dT) and poly(dG)-poly(dC), as well as a ran-
dom sequence containing both A-T and G-C base pairs.
Random means that A-T and G-C base pairs are randomly
organized over the DNA chain, with purine on purine: the
sequence is generated via a random number generator in the
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range [0,1]; if the random number is less than 0.5, an A-T
is inserted, otherwise a G-C. We model ds-DNA within the
tight binding (TB) framework by incorporating helical sym-
metry into the widely used dangling backbone ladder model
(DBLM) [17]. In a wire model [18,19], we have connections
between successive base pairs which are the only sites in-
cluded. In a ladder model [18], we have connections between
bases of successive base pairs, hence the sites are the bases. If
diagonal interactions are included, this is an extended ladder
model [20]. If, to a wire model, we add interactions between
base pairs and neighboring deoxyriboses (which are further
connected to phosphate groups in the backbone), this is a
fishbone wire model [18,21,22]. If, to a ladder model, we
add interactions between bases and neighboring deoxyriboses
(which are further connected to phosphate groups in the back-
bone), this is a fishbone ladder model [17,18] that can be
found in the extended ladder version as well. The DBLM
can also be called the fishbone ladder model. Some other TB
variants are presented in Refs. [4,5,23,24].

Environmental fluctuations are modeled by varying the
on-site energies of the backbone sites. In this article, first
we check the density of states (DOS) profile of the three
sequences for the clean case (without disorder). The term
local density of states (LDOS) is often used to describe local
variations of DOS, e.g., due to disorder or in small systems
like molecules or oligomers, while, in periodic crystals of
any dimensionality, DOS is, at least in some dimensions,
continuous. We studied localization phenomena for all se-
quences, varying disorder strength and energy. Moreover, we
investigated transmission profiles and plotted the transmis-
sion probability (T ) versus energy (E ) with varying disorder
strength. Lastly, we studied the current-voltage (I-V ) response
of all sequences both for the clean case and also with disorder.
We observed semiconductor-like cutoff in all cases. Lastly,
we compare our model with DBLM and find that, due to the
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presence of multiple conduction channels, charge transport
along DNA gets enhanced in a significant manner.

This paper is organized in the following way. In Sec. II we
lay down our theoretical formulation and describe the model
Hamiltonian. We explain our numerical results in Sec. III and
summarize our conclusions in Sec. IV.

II. THEORETICAL FORMULATION

The effective Hamiltonian for our model can be expressed
as (for a schematic representation of this model we refer to
Refs. [13,25])

HDNA = Hladder + Hbackbone, (1)

where

Hladder =
∑

j=I,II

[
N∑

i=1

εi jc
†
i jci j +

N−1∑
i=1

N−n∑
n=1

(tn jc
†
i jci+n, j + H.c.)

]
+

N∑
i=1

v(c†
iI ciII + H.c.), (2)

Hbackbone =
N∑

i=1

∑
j=I,II

(
ε

q( j)
i c†

iq( j)ciq( j) + t q( j)
i c†

i jciq( j) + H.c.
)
, (3)

where c†
i j (ci j) creates (annihilates) an electron at the ith site

of the jth strand, tn j represents the intrachain hopping integral
between the sites n and (n + i), and it becomes [16]

tn j = t1 je
−(ln j−l1 j )/lc , (4)

where t1 j is the nearest-neighbor hopping (NNH) strength,
lc is the decay constant, and ln j measures the distance be-
tween the sites n and (n + i). In terms of the radius R,
stacking distance �h and twisting angle �φ, we can write ln j

as [16]

ln j =
√[

2R sin

(
i�φ

2

)]2

+ (i�h)2. (5)

ln j maps to the nearest-neighbor distance for n = 1 [25]. εi j is
the on-site energy of nucleotides, ε

q( j)
i is the on-site energy of

the backbone adjacent to the ith nucleotide of the jth strand,
t q( j)
i is the hopping integral between a nucleotide and the

corresponding backbone site, and v is the interstrand hopping
integral. For simplicity, we set ε

q( j)
i = εb and t q( j)

i = tb.
To explore the DNA transport properties, we use semi-

infinite one-dimensional (1D) chains as source (S) and drain
(D) electrodes connected to DNA at the left and right
ends, respectively. The Hamiltonian of the entire system is
given by

H = HDNA + HS + HD + Htunneling. (6)

The explicit form of HS, HD, and Htunneling are

HS =
0∑

i=−∞
(εc†

i ci + tc†
i+1ci + H.c.), (7)

HD =
∞∑

i=N+1

(εc†
i ci + tc†

i+1ci + H.c.), (8)

Htunneling = τ (c†
0c1 + c†

N cN+1 + H.c.), (9)

where τ is the tunneling matrix element between DNA and
the electrodes.

In this two-terminal setup, we use the Green’s function
approach to calculate the transmission probability T (E ) of

electrons [26] through the DNA double-helix. The single-
particle retarded Green’s function operator representing the
complete system, i.e., ds-DNA and two semi-infinite elec-
trodes, at an energy E can be written as

Gr = (E − H + iη)−1, (10)

where η → 0+ and H is the Hamiltonian of the entire system.
Using the Fisher-Lee [26,27] relation, the two terminal trans-
mission probability is defined as

T (E ) = Tr[�SGr�DGa], (11)

where E is the incident electron energy, Ga is the advanced
Green’s function operator, and Tr is the trace over the reduced
Hilbert space spanned by the DNA molecule.

The effective Green’s functions can be expressed in the
reduced Hilbert space in terms of the self-energies of the
source and drain electrodes

Gr = [Ga]† = [
E − HDNA − 	r

S − 	r
D + iη

]−1
, (12)

where

	
r(a)
S(D) = H†

tunnelingGr(a)
S(D)Htunneling, (13)

and

�S(D) = i
[
	r

S(D) − 	a
S(D)

]
. (14)

Gr(a)
S(D) being the retarded (advanced) Green’s function for the

source (drain) electrode and 	
r(a)
S(D) is the retarded (advanced)

self-energy of the source (drain) electrode. It can easily be
shown that the coupling matrices

�S(D) = −2 Im
(
	r

S(D)

)
, (15)

Im represents imaginary part. The self-energies are the sum

	r
S(D) = �S(D) + i
S(D), (16)

�S(D) being the real part of 	r
S(D) corresponds to the shift

of the energy levels of DNA and the imaginary part 
S(D) is
liable for the broadening of these levels.
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The two-terminal Landauer conductance, at absolute zero
temperature, is given by

g = 2e2

h
T (EF), (17)

and the current passing through the system for an applied bias
voltage V can be written as

I (V ) = 2e

h

∫ EF+eV/2

EF−eV/2
T (E )dE , (18)

where the Fermi energy EF is set at EF = 0 eV. Here we
assumed that the entire voltage drop occurs only at the bound-
aries of the conductor. The electronic density of states (DOS)
of the system can also be obtained using the Green’s function
formalism. The DOS can be expressed as

ρ(E ) = − 1

π
Im[Tr[G(E )]], (19)

where G(E ) = (E − HDNA + iη)−1 is the Green’s function for
the entire DNA molecule with electron energy E as η → 0+,
HDNA is the Hamiltonian of DNA, and Im and Tr, respectively,
represent the imaginary parts and trace over the entire Hilbert
space.

III. RESULTS AND DISCUSSION

In Fig. 1 we plot the local density of states (LDOS)
for the three DNA sequences, at zero disorder to get an
idea about the density profile of the available states. We
observe a band gap at the center of the band for all
three sequences. This gap can be controlled via backbone
energetics as reported in Ref. [28]. This LDOS profile
will help us later understand the localization behavior of
ds-DNA. We use the sequence “AGAAGAGAGGAAGGA-
GAAAGGGGGGGAAAG” for random DNA. The same for
the other strand can be obtained by following complimentary
base-pairing.

Let us now proceed to study the localization properties
of the different DNA sequences. To perform the localization
study, we define the localization length, l , as the inverse of the
Lyapunov exponent γ [29], i.e.,

γ = 1/l = − lim
L→∞

1

L
〈ln[T (E )]〉, (20)

where L is the length of the DNA chain in terms of base
pairs and 〈 〉 denotes the average over different disorder
configurations. In the numerical calculations we set L = 30
in units of base pairs. Although various distribution functions,
e.g., Gaussian or binary, have been used to simulate exper-
imental effects in previous studies [21], we think that it is
appropriate to employ the most disordered case to simulate
the actual experimental complications: We assume the on-site
energies of backbone sites εb to be randomly distributed in
the range [−w/2,w/2], where w represents the backbone
disorder strength.

For the numerical calculations, the on-site energies of
nucleotides εi j are taken as the ionization potentials and
the following numerical values are used in our work: εG =
8.177 eV, εC = 9.722 eV, εA = 8.631 eV, and εT = 9.464 eV.

FIG. 1. LDOS, in arbitrary units, versus energy (eV) for three
DNA sequences at w = 0. A band gap exists in all three cases at the
center of the band.

These parameters are taken from the first-principle calcula-
tions [30,31]. The nearest-neighbor hopping parameter in a
given strand is taken as t1 j = 0.35 eV for like bases and
t1 j = 0.17 for different bases [28]. We take the interstrand
hopping parameter, i.e., vertical hopping to be v = 0.035 eV
[17], one order of magnitude smaller than the intrastrand
hopping. Though there are a lot of variations available in the
literature for hopping parameter values [32], we followed a
specific set of previous studies as a reference as cited above.

For calculations of long-range hopping we utilize parame-
ters arising due to helical symmetry of DNA. Specifically, we
use the following parameters: l1 j = 4.1, l2 j = 5.8, l3 j = 5.1,
l4 j = 6.2, l5 j = 8.9, l6 j = 10.0, and lc = 0.9, all units are in
Å. Using these values we can calculate the related hopping
integrals tn j . This procedure gives t2 j ∼ 0.16t1 j and so on. It is
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FIG. 2. Inverse localization length γ versus disorder w for the
three DNA sequences at different energy values. The presence of
disorder-induced delocalization is clearly visible in all three cases.
Both energy (E ) and disorder (w) are in eV.

clear that gradually tn j values will decrease (except t3 j > t2 j)
with increasing distance, therefore we restrict ourselves up to
t6 j and set t1 j = 0.35 eV. These parameter values for ln j and
tn j are adopted from Refs. [13,25]. The hopping between a
nucleotide and corresponding backbone is taken as tb = 1 eV.
We chose this value as a compromise between values found in
the literature [4,17,33,34].

Numerical calculations for the inverse localization length
γ versus disorder w, at different energies, are shown in Fig. 2.
These energy values are taken on both sides of the band.
One can see from this figure that in all the cases γ increases
up to a certain value of w, and then starts decreasing. This
phenomenon is known as disorder-induced delocalization.
Based on the structural variability of DNA, many forms of
disorder have been studied in the past (Refs. [35,36]), e.g.,
diagonal disorder (modification of the on-site energies of
bases or base pairs) and nondiagonal disorder (modification
of the interaction integrals between bases or base pairs). How-

FIG. 3. Inverse localization length γ versus energy (eV) for three
DNA sequences at different disorder strengths w. Both energy (E )
and disorder (w) are in eV.

ever, in ds-DNA, environmental effects mostly modify the
energetic of sugar-phosphate backbones, so the disorder in a
computational model becomes mainly off-diagonal in nature.
Therefore, we ignored diagonal disorder (Anderson-like) in
our present calculations. Hence, we observe that localization
length starts increasing at higher values of disorder instead of
decreasing.

In Fig. 3 we show the variation of γ with energy E at
different disorder strength w, for the three sequences. We
observe that the behavior of γ is not uniform along all energy
values. As we showed in Fig. 1, there is gap at the middle of
the band. With increasing disorder, some states are created in
this region, which results in increasing localization length. For
the rest of the energy range, γ behaves normally with disorder.

In Fig. 4 we plot the variation of transmission probabil-
ity T (E ) for the three different DNA sequences, at multiple
disorder strengths w. With increasing disorder strength, T (E )
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FIG. 4. Transmission probability T (E ) versus energy (eV) for all
the DNA sequences at different disorder strengths (w). Disorder (w)
has units of eV.

decreases and at very strong disorder (w = 10) there is no
longer ballistic transport present in the system.

In Fig. 5 we depict the current-voltage (I-V ) response of
all DNA sequences at different disorder strength. We set the
temperature at 0 K. To minimize the contact effects we choose
the tunneling parameter between ds-DNA and the electrodes

to be optimum, i.e., τ = √
t1 j × t [37], where t is the hopping

parameter for the electrodes. One can see that, at the clean
case (w = 0), the sequences are semiconducting in nature
with their cutoff voltage around 1 V. Increasing disorder, the
cutoff voltage increases and at strong disorder the sequences
behave as insulators. In previous experimental studies, it
was found that DNA behaves differently; some experiments
reported metallic, some insulating, and some semiconducting
behavior. Here we have been able to show that depending on
the environmental effects, DNA can undergo a phase transi-
tion from semiconducting to insulating, which may explain
different experimental findings [38–44].

In Fig. 6 we present I-V responses of a double-stranded
DNA, modeled without helical symmetry and long-range hop-
ping. In the absence of helical symmetry and long-range
hopping, current outputs for all sequences drop significantly
as soon as disorder is applied. If we compare Fig. 5 with
Fig. 6, it becomes clear that, in the presence of multichannel
transport, the current output is increased and the effect of
environmental fluctuations is decreased. In a different system,
namely, helical oligo-quinolinecarboxamide foldamers orga-
nized as single monolayers on Au or SiO2, it was reported that
the presence of various pathways enhances charge transport
[45]. Overall, we can say the presence of helical symme-
try and multiple conduction channels make charge transport
through DNA more robust and make it a strong contender for
future nanoelectronic devices.

IV. CONCLUSION

In the tight-binding modeling of DNA, usually helical sym-
metry as well as the possibility of associated extra hopping
channels are ignored. Recent CISS studies with DNA and
proteins [13–15] proved that the helical nature of ds-DNA
gives rise to multiple conduction channels (MCC) which re-
sults in spin-polarization. In case of single-helical proteins
[46], it was reported that the presence of MCCs can help
in mitigating environmental effects on charge transport in a
better way than in a single-stranded DNA (where MCCs are
not present). In this work, we incorporated the same into
ds-DNA. Our investigations show that, due to the helical sym-
metry and the presence of MCCs, the transport properties of
DNA can be quite robust. This long-range hopping can bypass
many of the environmental effects and can help in designing
better DNA-based devices and wires by minimizing external
disturbances.

Second, we showed that, depending on the environ-
mental effects, DNA can undergo a phase transition from

FIG. 5. I-V characteristics for ds-DNA sequences with varying disorder strength. All sequences behave almost identically; they undergo a
phase transition from semiconducting to insulating with increasing disorder. Disorder (w) is expressed in eV units.
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FIG. 6. I-V characteristics for ds-DNA sequences with varying disorder strength without helical symmetry and long-range hopping (similar
to DBLM). Current outputs for all sequences drop significantly as soon as disorder is applied as compared to Fig. 5. Disorder (w) is expressed
in eV units.

semiconducting to insulating. This also may solve the puz-
zles of many contradicting experimental findings [38–44], for
example, why DNA behaves differently in transport measure-
ments. Based on our model calculations we provided detailed

insights on the behavior of ds-DNA in different environmen-
tal conditions and hope that these findings will help address
the design challenges for DNA-based nanotechnology devices
and components.
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