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Local control for the collective dynamics of self-propelled particles
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Utilizing a paradigmatic model for the motion of interacting self-propelled particles, we demonstrate that
local accelerations at the level of individual particles can drive transitions between different collective dynamics,
leading to a control process. We find that the ability to trigger such transitions is hierarchically distributed
among the particles and can form distinctive spatial patterns within the collective. Chaotic dynamics occur
during the transitions, which can be attributed to fractal basin boundaries mediating the control process. The
particle hierarchies described in this paper offer decentralized capabilities for controlling artificial swarms.
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I. INTRODUCTION

In nature, groups of self-propelled elements interact and
spontaneously form collectives, or swarms, such as flocks
of birds [1-3], schools of fish [4], and colonies of bacteria
[5,6]. The functioning of such formations requires a decen-
tralized decision-making process that often relies on pertinent
information, e.g., food location, available to only a few con-
stituents [7]. Therefore, a collective decision is based on
efficiently transferring information from local to global scales
within these formations [8—11]. The success of such natural
mechanisms motivates research toward enabling artificial sys-
tems to exhibit collective capabilities such as self-organization
in space, navigation behaviors, and decision-making (see
Refs. [12,13] and Refs. therein). To accomplish these tasks,
different strategies have been developed [14-21]. However,
controlling the switching among different collective patterns
via local interventions is an open problem in such applica-
tions. A step toward such accomplishment is understanding
the boundaries that separate coexisting collective motion.

Here we investigate this issue via computer simulations
of a system of interacting self-propelled particles, a suitable
model for swarms of artificial elements. As coexistent col-
lective motion, we consider two types of behavior exhibited
by the particles: a translational and a rotational state. We
demonstrate that local accelerations—at the level of individual
particles—can trigger transitions between these two collective
states. By applying large sets of different accelerations to
each particle of the swarm in a given state, we observe that
the accelerations that trigger transitions form subsets of vari-
ous sizes, yielding an internal hierarchy among the particles.
Remarkably, in low-density swarms, particles in the upper
hierarchy form patterns of high control effectivity that remain
inalterable for different swarm sizes and initial conditions
(ICs). For denser swarms, we show that local controllability
is still achievable by adjusting the energy balance of the
particles. Although patterns of high control effectivity may
be less readily distinguishable, the particle hierarchies per-
sist. Moreover, we observe chaotic motion during the driven
transitions, signaling the presence of unstable chaotic sets
and associated fractal basin boundaries separating the states.
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These basin boundaries often extend over a significant portion
of the system’s state space, increasing the likelihood of in-
ducing transitions between states. Consequently, fractal basin
boundaries play a pivotal role in the success of our control
approach. Finally, we examine a simplified model describing
the interacting self-propelled particles to illustrate that homo-
clinic intersections can generate such fractal basin boundaries.

II. LOCAL CONTROL FOR COLLECTIVE STATES

The equations describing the system with N interacting
self-propelled particles (SPPs) are given by
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where the vectors 7; and o; are, respectively, the position and
velocity of the ith particle in a plane with i =1, ..., N. The
constants & and S account for velocity-dependent admission
and dissipation of energy of the SPPs system, respectively.
The pairwise interaction among the particles is given by the
generalized Morse potential,

U#) = Z [Cre—l?i—7j\/1r _ Cae—\?i—?,»l/la]’ (3)
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where the parameter pairs (C,,[,) and (C,,[,) specify the
respective amplitudes and ranges of the attractive and repul-
sive terms of the Morse potential. The SPP model presented in
Egs. (1) and (2) embodies the generic components necessary
for swarming behavior, namely, particle separation, cohesion,
and velocity matching [22]. Depending on the interaction
parameters, the model exhibits qualitatively different collec-
tive motions [23]. We fix C, = 0.5, [, = 2.0, C, = 1.0, and
I, = 0.5, corresponding to a regime in which the collective
motion is consistent with swarming [23]. In addition, the
applicability of this model has been proved in numerous stud-

ies of a swarm’s collective behavior [24-30].
The dynamics of swarms of SPPs depend on the in-
terplay between their energy admission and dissipation
[31]. Here, this aspect is captured by the effective friction
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FIG. 1. Time evolution of the SPPs system in Eqgs. (1) and (2)
for N = 3. An acceleration d; is applied to one of the particles at
t = 3000 (arb. units). (a) For d; = (1.565, 182.43°), a transition is
triggered from RS to TS. (b) For d; = (1.361, 191.27°), a transition
from TS to RS occurs. Swarm energy parameters are o« = 0.15 and
B =3.0.

function [first term in Eq. (2)]. This function has a zero at
92 = % representing an attractive characteristic velocity that
defines two velocity ranges: |v;| < |U.|, where particles are
accelerated, and |v;| > |¥.|, where they are damped [32-34].
Once the velocity |U.| is established, the effective friction
function vanishes and the swarm dynamics becomes Hamil-
tonian [23,32,33]. However, the particle swarms approach the
velocity U, in two distinct self-organized configurations: (i)
a rotational state (RS), where the particles rotate around a
common center without global translational motion and (ii) a
translational state (TS), where the particles travel with con-
stant velocity in a crystallized formation. Interestingly, the
approach to one state or another depends on the swarm’s ICs;
that is, each state has a basin of attraction with its respective
basin boundaries. Additionally, depending on the ICs, both
states can display various internal features that we do not
differentiate in this study. For instance, in the RS, the swarm
can rotate clockwise or counterclockwise, while in the TS it
can move in any direction within physical space. For addi-
tional types of different states coexisting in the state space of
systems with swarm behavior, see Refs. [23,24,35-37]. Once
the ICs are specified, the swarm goes through a transient phase
of motion during which the effective friction is still active.
After reaching one of the states, the particle swarms remain in
it with their respective collective state; in other words, the RS
and TS are absorbing states.

We first consider a swarm with N = 3 particles to capture
the essential features of both states. For this case, the particles
of swarms in the RS are spatially arranged in a ring rotating
with a velocity given by |9;] = |U.|. The velocity of the
center of mass is Uy = 0, see left-hand side of Fig. 1(a).
Conversely, for swarms in the TS, the particles travel to
infinity in a triangle formation with constant individual
velocities |V;| = |U.|, resulting in ﬁczm = /B shown in the
left-hand side of Fig. 1(b). Following these considerations
on the swarm’s possible collective states, we proceed to our
control strategy which consists of applying an instantaneous
acceleration @; locally to one of the particles for swarms
occupying either states. This acceleration is defined as
d; = (Av,6°), where Av indicates its magnitude and 6°
represents its orientation in a polar diagram centered at the
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FIG. 2. For swarms with N = 3 particles: (a) Distribution of

transition times t for swarms originally in RS (black) and TS (red).

(b) LLE yx during the transition from RS (black) and from TS (red).
Swarm energy parameters are « = 0.15 and 8 = 3.0.

particle’s velocity v; immediately before the acceleration.
After this local action, the swarms in the RS (TS) undergo a
global transition to the TS (RS), as shown in Figs. 1(a) and
1(b), respectively. During the transitions to either collective
state, the particles display a transient irregular phase of
motion, as seen in the middle portions of Figs. 1(a) and
1(b). Such irregular motion arises from the complexities of
the boundaries separating the basins of attraction of these
states. In the literature, an irregular transient motion has
recently been observed in systems of self-propelled elements
[35,38]. In addition, transitions between RS and TS have been
previously observed only in stochastic systems with random
noise applied to all swarm particles [39-41].

To gain a deeper understanding of the irregular motion
during transitions to alternative collective states, we examine
sets of the local accelerations &; that trigger these transi-
tions for statistical analysis. First, we demonstrate that the
probability distribution of the transition duration t follows
an exponential distribution, which indicates random behavior
[Fig. 2(a)]. The mean transition time from RS to TS, and
vice versa, is (r) ~ 190 (arb. units). In addition, we esti-
mate the largest Lyapunov exponents (LLEs) corresponding
to the transition times. We verify that the average LLE is
positive for transitions in both directions and approximately
the same (xz) &~ 0.15 [Fig. 2(b)], indicating transient chaotic
behavior [42]. This chaotic motion points to an unstable
chaotic set (chaotic saddle) embedded in the basin boundaries
of the collective states and mediates the transition in both
directions. Chaotic saddles have been identified at the border
of a variety of dynamical behaviors [43-50]. In general,
the basin boundaries containing embedded chaotic saddles are
fractal and are usually extended over large portions of the
state space [51-53]. This feature is an important ingredient for
the local control strategy proposed here once it allows trajec-
tories of individual particles in a given collective state to easily
access the basins of the opposite state via the application of
the local accelerations d;, causing the entire swarm to switch
its collective dynamics.

Next, we further investigate the sets of local accelerations
d; that can cause collective transitions. For that, we formally
define the set A; = {g; € R?|Av € [0, 2], 6 € [0, 360°]} com-
posed of M; applied accelerations equally spaced in this
interval. We call AT the subset of A; composed of those
accelerations that effectively initiate a transition. In Fig. 3,
we show the set A; of accelerations d; = (Av, 0) applied to
the particle i =3 at 1 = 3000 (arb. units). The set A§" is
marked in gray. For swarms in the RS, we observe that the
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FIG. 3. For swarms with N = 3 particles, polar diagrams (Av, 6)
illustrating the acceleration set A3 applied to particle i = 3 originally
in (a) RS and (b) TS. The set of effective accelerations Agff is marked
in gray. The red arrow represents the direction of v right before the
acceleration is applied. Swarm energy parameters are o« = 0.15 and
B = 3.0. (c) Minimum amplitude Av of the effective accelerations d;
as a function of the energy admission « applied in seven realizations
of swarms originally in RS with dissipation fixed at § = 3.0. The
dashed line marks o = 0.15.

set Agﬁ of accelerations causing the transition into the TS
spans an angle 6 =& 180°, featuring fractal boundaries and
oriented in the opposite direction of the movement of particle
i = 3 (red arrow) [Fig. 3(a)]. Due to the rotational properties
of the particles in the RS, where the red arrow changes its
direction over time, the orientation of A$" in the polar diagram
also undergoes rotation, consistently opposing the particle’s
movement direction. In this example, the minimum ampli-
tude Av of the acceleration d3 required for a transition to
occur is min(Av) ~ 1.6|9.|. For swarms in the TS, we verify
that the set of Agff causing the transition into RS spans an
angle 6 ~ 120° with minimum amplitude Av ~ 1.6|V.| also
containing fractal boundaries [Fig. 3(b)]. The orientation of
A$"™ in the polar diagram is also opposite to the movement
of the accelerated particle (i = 3). Since in TS, the particles
preserve movement direction, the orientation of Agff is also
kept the same over time. With this in mind, we emphasize
that the correlation between the direction of movement of
accelerated particles and the orientation of the sets AST offers
insights into determining the accelerations &; that are more
likely to initiate a transition. Moreover, the fractal bound-
aries observed in these polar diagrams are consistent with the
transient chaotic motion resulting from the chaotic saddle in
the system’s state space. The features of this chaotic saddle,
which mediates the transitions, and the size of the basins of
attraction for both states, are influenced by the parameters that
regulate the energy balance of the particles. As a result, the
minimum amplitude of the effective accelerations also varies
with these parameters. This fact is evident in Fig. 3(c), where
the minimum amplitude, min(Av), is determined as a function
of the energy admission parameter o for seven realizations
with different ICs of the swarm in the RS while keeping
the dissipation fixed at § = 3.0. In this figure, we observe
that increasing the energy input into the particles reduces the
minimum acceleration amplitude required to induce a tran-
sition from RS to TS. Therefore, the energy balance of the
particles plays an essential role in the local controllability of
the swarms.

Furthermore, adjusting the system parameters to enable the
coexistence of different collective states, each corresponding
to alternative swarm behaviors, is a prerequisite for the
effectivity of the proposed local control &;. Considering this,
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FIG. 4. Parameter planes («, ) corresponding to the constants
governing the energy admission and dissipation of Egs. (1) and (2),
respectively. Each parameter pair has 60 realizations of the swarm
with different initial conditions (ICs). The color code corresponds
to the normalized fraction approaching (a) RS and (b) TS. The
black star symbols mark the swarms energy parameters o = 0.15
and g = 3.0.

it becomes necessary to identify the swarm parameters that
facilitate the coexistence of both the RS and TS states. A
detailed analysis of the parameters composing the potential
function U(7;), which controls the interactions among the
particles, can already be found in Ref. [23]. Therefore,
we complement this analysis by obtaining the region of
bistability between RS and TS in a parameter space defined
by the parameters governing energy admission («) and
the one controlling dissipation (8). In this analysis, the
parameters that compose U (#;) are fixed to the previously
defined values. Hence, in Fig. 4, we consider the parameter
intervals « € [0.0,0.4] and B € [0.0,4.0] and perform 60
realizations of the swarm with different ICs randomly chosen
in the intervals 7y; € [—2.0, 2.0] and ¥y € [—2.0, 2.0]. The
color code indicates the fraction of ICs that converge to the RS
[Fig. 4(a)] and the TS [Fig. 4(b)]. In these figures, the interval
with lighter color shades (light blue, white, and light red) cor-
responds to the parameters where both collective states occur
with similar probability. We verify that this interval occupies a
significant region of the considered parameter plane, evidence
of the structural robustness of the proposed local control
strategy. The red cross indicates the parameters o = 0.15 and
B = 3.0 utilized in simulations across this paper.

We now investigate the sets of effective accelerations AST
in more detail. We first show AST in polar diagrams for ac-
celerations applied at = 1500 (arb. units) to each particle
of swarms with N = 6. The sets Af?ff of each particle i (i =
1,...,6) are marked in red in Figs. 5(a)-5(f) for swarms
initially in the RS and in Figs. 5(g)-5(1) for swarms initially
in the TS. We emphasize that the size of the sets AS™ varies
among the particles in both collective states. To gain further
insights into the size of these sets, we quantify their relative
volume as g; = % [54]. We estimate this measure by
counting the number of effective accelerations, denoted as
Mfff, and dividing it by the total number of accelerations,
denoted as M;, applied to each particle i in a swarm of size
N. Since ¢; represents the fraction of effective acceleration
of a given particle, it reflects its ability to induce transitions
between different collective states. Therefore, we refer to &; as
the control effectivity of particle i. In Fig. 5, the values of ¢;
corresponding to each particle are indicated on their respective
polar diagrams.
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FIG. 5. For swarms originally in the RS: (a)—(f) Polar diagram (Av, 0) of accelerations applied to each particle of independent realizations
of swarms with N = 6. (g)—(1) For swarms originally in the TS. The red dots indicate the set of effective accelerations, A", and ¢; corresponds
to the respective control effectivity of the particle i. The accelerations are applied at# = 1500 (arb. units), and the total number of accelerations
per particle is M; = 7894. Swarm energy parameters are ¢ = 0.15 and g = 3.0.

The values of ¢; displayed in Fig. 5 for both swarm’s
collective states exhibit significant variations among the par-
ticles, suggesting the existence of an internal hierarchy of
control effectivity. To confirm this possibility, we calculate ¢;
for particles in various swarm sizes N and multiple swarm
realizations with randomly selected ICs. For a given N, we
rank the particles that make up the swarm'’s collective state in
descending order of their ¢; values. Subsequently, we calculate
the average of the ordered values of ¢; over seven different sets
of ICs to obtain (g;). In Fig. 6, we present (g;) (color-coded)
as a function of particle rank and swarm size. We confirm that
(e;) decreases as the swarm size increases, reaching the min-
imum fraction detectable by our estimation, 1/M;, at N = 16
for swarms in the RS [Fig. 6(a)] and N = 10 for swarms in the
TS [Fig. 6(b)]. The faster decrease in (g;) indicates that the TS
is less vulnerable to local accelerations. Furthermore, for both
collective states, we note that (g;) consistently decreases with
respect to particle rank, illustrating the hierarchical organiza-
tion of particles within the swarms.

Next, we untangle these hierarchies by examining the po-
sitions of the particles with a specific ¢; within the swarms
at the instant right before the local acceleration is applied.
In Fig. 7(a), in the case of a swarm consisting of N = 16
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FIG. 6. Average control effectivity (g;) (color code) with i =
1,..., N over seven different sets of ICs as a function of the particle
rank and the swarm size N. (a) For the RS. (b) For the TS. The
red line corresponds to case studied in Fig. 5. The accelerations are
applied at ¢ = 1500 (arb. units) and the total number of accelerations
per particle is M; = 7894. Swarm energy parameters are o = 0.15
and g = 3.0.

particles in the RS, we observe that the outer layer of the
formation concentrates the particles with the highest values of
&; (color-coded). By contrast, in the case of a swarm consisting
of N = 8 particles in the TS, we observe that particles with
the highest ¢; occupy the axis of the swarm perpendicular to
the direction of movement [Fig. 7(d)]. To ascertain whether
these observations represent statistically significant patterns,
it is crucial to investigate swarms of different sizes and ICs.
In such a statistical approach, the swarms exhibit various
qualitative features, including different directions of rotation
for the RS and direction of translation for the TS. To ensure
comparability across realizations, we track the particles by
their positions (7y;, 7;) relative to the swarm’s center of mass
[55]. Using these coordinates, we confirm the emergence of a
distinct hierarchical pattern with particles possessing high &;
occupying the outer layers of the RS in seven different sets of
ICs [Fig. 7(b)]. To highlight this pattern across various swarm
sizes, we illustrate that ¢; increases with larger distances from
the swarm’s center of mass, |;|, for N = 10, N = 13, and
N = 16 [Fig. 7(c)]. Now, in the case of swarms in the TS, we
verify that particles with the highest ¢; are distributed along
the axis oriented perpendicular to the direction of motion in
seven different sets of ICs [Fig. 7(e)] [56]. For different N,
we observe that €; peaks around the angles 6° = 0° and 6° =
180° [measured as shown in Fig. 7(e)] for N = 6, N = 7, and
N = 8 [Fig. 7(f)].

To gain insights into the emergence of hierarchies of con-
trol effectivity among the particles and patterns of high control
effectivity within the swarms observed in Figs. 6 and 7, we
must consider that the success of the local control strategy
proposed here depends on the global stability of the collective
states. Specifically, the effectivity of instantaneously acceler-
ating one particle to switch the swarm’s collective state relies
on the ability of this acceleration to force swarm trajectories
to traverse the basins of attraction of the original collective
state and reach the basin of attraction of the alternative state.
However, the required amplitude of these local accelerations
for switching typically depends on specific features within
the cross section of the system’s basins of attraction in the
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FIG. 7. (a) Positions of the particles in a swarm with N = 16
particles in the RS. The color code indicates each particle’s control
effectivity, ¢;, while the arrows represent the particle’s velocity, v;.
(b) Seven different realizations of swarms in the RS, each with
different ICs. (c) Control effectivity of the particles, ¢;, as a function
of the distance to the center of mass, ||, of the RS for various
swarm sizes, N. (d) Positions of the particles in a swarm with N = 8
particles in the TS. (e) Seven different realizations of swarms in the
TS, each with different ICs. (f) ¢; as a function of the angle, 6° [as
shown in (e)], for varying swarm sizes, N. The accelerations are
applied at + = 1500 (arb. units) and the total number of accelerations
per particle is M; = 7894. Swarm energy parameters are « = 1.0 and
B = 8.0. Swarm energy parameters are « = 0.15 and g = 3.0.

direction of the perturbed particle. Interestingly, one of the
most significant features within these cross sections that can
facilitate the action of our control is the distance between
the collective state itself and the boundaries of its basin of
attraction. In the case of the SPPs model studied here, where
the basin boundaries form a complex fractal set, the distance
to the collective states varies across the cross sections corre-
sponding to different particles. This cross-section variability
gives rise to the hierarchy of control effectivity among the
particles observed here. In turn, we attribute the formation
of patterns of high control effectivity to the eventual con-
centration of particles for which the corresponding basin
cross section encompasses a shorter distance between the
state and the basin boundaries. This concentration of parti-
cles in a specific region of the swarm’s spatial conformation
may arise from macroscopic features of the particular swarm
region, such as the velocity of the particles for the RS or
the number of neighbors for the TS. While it can be chal-
lenging to generalize patterns of high controllability, their
understanding, in conjunction with the concept of particle

LOF T dFio2  0.02 ’
F ,Okr.\\ N 1 P 7 realizations
r - N mean -+
Eor0p T80 o] = do0nf :
L ) \\.\ \.:/ /‘ i <
Nt
-3.04 . 1072 0.00 ‘
3.5 5.5 7.5 1 25 5
(a) Tai (b) particle rank

FIG. 8. (a) The positions of the particles in a swarm with N = 50
particles in the RS are shown. The color code indicates each parti-
cle’s control effectivity ¢;, while the arrows represent the particle’s
velocity ¥; withi = 1, ..., N. (b) Control effectivity ¢; is plotted as a
function of the particle’s rank within seven realizations of the swarm
with N = 50 particles, each starting with different initial conditions
(ICs). The accelerations are applied at r = 1500 (arb. units) and
the total number of accelerations per particle is M; = 500. Swarms
energy parameters are @ = 1.0 and 8 = 8.0.

hierarchies, offers fresh perspectives for controlling artificial
swarms.

Now we would like to point out that by appropriately
tuning the parameters o and 8, which define the energy input
and dissipation for the particles, it is possible to locally control
even larger swarms than the ones shown in Fig. 6. To illustrate
this finding, we fix « = 1.0 and B = 8.0 to obtain the control
effectivity ¢; for particles in a swarm of size N = 50 in RS.
Hence, in Fig. 8(a), we show the particle positions (ry;, Fy;)
for one realization of the RS, indicating the control effectivity
&; of the local accelerations @; with a color code. We cannot
identify a distinct spatial pattern of control effectivity among
the particles in this parameter set. Nevertheless, in Fig. 8(b),
where we present results from seven realizations with dif-
ferent ICs, we continue to observe the presence of internal
hierarchies among the particles, as previously demonstrated
in smaller swarms.

We attribute the absence of a spatial pattern of control
effectivity in the swarm with N = 50 particles to the irreg-
ular movement of the particles across the swarm formation
at the instant + = 1500 (arb. units) in which the control is
applied. More specifically, the particles are not organized in
well-defined layers for the larger swarm, as seen in the cases
presented in Fig. 7. To elucidate this point, in Fig. 9, we show
the time evolution of the distance to the swarm’s center of
mass |7;| of three different particles belonging to the swarm

2.0

A it i 1 I
0 500 1000 1500 0'00 500 1000 1500

(a) t (arb. units) (b) t (arb. units)

FIG. 9. Time evolution of the distance to the swarm’s center of
mass |7;| of three particles marked in different colors for a swarm
of size: (a) N = 16 particles with energy parameters o = 0.15 and
B =3.0. (b) N = 50 particles with energy parameters o = 1.0 and
B =8.0.
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FIG. 10. Basins of attraction at the cross-section ¥. The white
color corresponds to RS, while gray to TS. The blue (red) curve is
the stable (unstable) manifold of the saddle point x3. (a) Smooth
basin boundaries for o = 0.0001. (b) Fractal basin boundaries for
o = 0.0005. Parameters: « = 0.2 and 8 = 2.0.

with N = 16 particles [Fig. 9(a)] and with N = 50 particles
[Fig. 9(b)]. Note that for N = 16 particles, the time evolution
of |7;| reaches a plateau corresponding to the rotating motion
of each observed particle in a different, well-defined layer.
Conversely, for N = 50 particles, the measure |7;| varies sig-
nificantly in time, indicating that the three observed particles
transit across the spatial extension of the swarm, not staying
confined in any well-defined rotating layer. Therefore, local
accelerations can still control large swarms, but the possi-
ble existence of invariant patterns of high control effectivity
requires further investigation of their internal dynamics.

III. HOMOCLINIC INTERSECTIONS
IN A REDUCED SPP MODEL

We now show that homoclinic intersections of the stable
and unstable manifolds [57,58] are a possible mechanism
giving rise to such fractal boundaries, which play an important
role in the control effectivity. We consider a low-dimensional
SPP system by perturbing the motion of one particle in a
periodically perturbed potential to represent its coupling with
other particles. The resulting equation of motion is

U’ (x,1)

PR _ ai2Ne
X = (o — Bx7)x o

“4)
where the interaction is given by U’(x) = U (x) + xP(t), con-
sisting of a one-dimensional Morse potential U (x) [Eq. (3)]
and a periodic forcing P(t) = € + osin(wt). The frequency
w = 0.2834 mimics the oscillations of the other particles,
corresponding to the frequency of the particle‘s oscillations
in an unperturbed potential. The parameters € = 0.0088 and
o control the perturbation’s overall amplitude and the peri-
odic forcing’s amplitude, respectively. Hence, Eq. (4) yields a
three-dimensional state space Re? x S'. Since S' is a periodic
component, a stroboscopic mapping is obtained by fixing a
cross section X at (x, x, 0). In Fig. 10, we show the basins of
attraction at X. White corresponds to ICs converging to the
RS, while gray represents the ICs converging to the TS. The
boundary between these two basins of attraction is given by
the stable manifold Wy of the saddle point x§; (blue curve).
The red curve represents the unstable manifold Wy of x§. For
o = 0.0001 [Fig. 10(a)], the basin boundary is smooth. The
manifolds Wy and Wy are close but do not touch each other.
For o = 0.0005 [Fig. 10(b)], the manifolds have intersected

at infinitely many points as homoclinic intersections, creat-
ing the fractal basin boundaries. Note that the fractal basin
boundaries occupy a much larger portion of the state space
compared to Fig. 10(a). This feature enhances the local control
effectivity proposed in this paper by increasing the likelihood
of accelerations reaching the stable manifold of the saddle
point. The manifolds were obtained as in Ref. [59].

IV. CONCLUSIONS

In summary, we have demonstrated that swarms of inter-
acting SPPs can be locally controlled by applying external
accelerations to individual swarm particles. By quantifying
the effectivity of accelerating different swarm particles, we
have identified hierarchies of controllability in which specific
particles have the highest probability of shifting the swarm
from a RS to a TS and vice versa. For low-density swarms,
we have observed that particle hierarchies form patterns of
control effectivity within the spatial conformation of the two
swarm states. Specifically, for RS, we have found that con-
trollability increases with the distance of particles from the
center of rotation. In the case of the TS, particles along
the axis transversal to the motion hold a higher position in
the hierarchy, influencing control effectivity. These patterns
have been observed across various swarm sizes, up to a cer-
tain threshold, and under different ICs. For denser swarms,
we have considered one example of a swarm in the RS to
demonstrate that local controllability can also be achieved
by adjusting the parameters governing the energy input and
dissipation of the particles. Although particle hierarchies are
also present in this scenario, the patterns of control effectivity
are not as clearly discernible. We attribute this behavior to the
less ordered movement of particles within the larger swarm.

Furthermore, we have observed chaotic transients during
collective state transitions, revealing the existence of fractal
sets that separate the swarm’s RS and TS. We attribute the
increase in the likelihood of transitions between these states
to this fractal boundary, which extends its coverage across
the system’s state space. Therefore, these fractal sets play
a crucial role in the success of our local acceleration-based
control approach for the swarm. In a simplified version of the
considered model of interacting SPPs, we demonstrate that
the development of fractal basin boundaries occurs through
homoclinic intersections, a typical mechanism for boundary
fractalization.

The local controllability and the particle hierarchies
reported here offer fresh insight into controlling artificial
swarms of SPPs in a decentralized manner; in other words,
steering the swarm by controlling just one of the self-
propelled elements. These findings inspire further research to
experimentally verify these hierarchies, evaluate their scala-
bility in higher-density swarms, and assess their robustness to
random noise. Additionally, it is worth exploring whether sim-
ilar hierarchical patterns manifest within collective states in a
broader range of systems beyond swarms in physical space.
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