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Optimal conditions for environment-assisted quantum transport on the fully connected network
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We present a theoretical analysis of the efficiency and rate of excitation transport on a network described by a
complete graph in which every site is connected to every other. The long-time transport properties are analytically
calculated for networks of arbitrary size that are symmetric except for the trapping site, start with a range of initial
states, and are subject to dephasing and excitation decay. Conditions for which dephasing increases transport are
identified, and optimal conditions are found for various physical parameters. The optimal conditions demonstrate
robustness and a convergence of timescales previously observed in the context of light-harvesting complexes.
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I. INTRODUCTION

The role of quantum coherence in photosynthetic systems
is a topic of longstanding [1] and continued [2] interest, and
forms one of the pillars of the new field of quantum biol-
ogy [3]. Much of this interest stems from the experiment of
Engel et al. [4], in which long-lived time-resolved oscilla-
tions were observed using ultrafast nonlinear spectroscopy.
These oscillations were interpreted as evidence for a coherent
wavelike transfer of energy whose speed and efficiency could
be understood as something akin to Grover’s quantum search
algorithm [5].

The specific light-harvesting complex studied in Ref. [4],
the Fenna-Mathews-Olsen (FMO) complex, has been the sub-
ject of intense investigation [6]. This body of work shows
that a simple wavelike interpretation of the excitation energy
transfer (EET) is not correct. Early theoretical investigations
quickly showed that the dynamics of EET in FMO is in
a regime where environmental noise is both significant and
advantageous [7]. This was something of a surprise, as such
noise usually causes a loss of coherence through dephas-
ing. Subsequent work confirmed that the role of coherence
in FMO was limited and the transport could not be inter-
preted as quantum search [8,9]. Indeed, many now argue that
quantum coherence is not essential to photosynthesis [10].
Nevertheless, the general phenomenon where noise assists
transport [11], also known as environment-assisted quantum
transport (ENAQT) [12], is a topic of great interest.

The discovery of ENAQT encouraged a more expansive
study of EET in networks beyond FMO, with an eye towards
the design of engineered networks. Rebentrost er al. [12]
studied EET on a binary tree in which each site has a ran-
dom energy, known as on-site disorder. For sufficiently strong
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disorder, the eigenstates of the system will be subject to
Anderson localization, which suppresses transport. However,
given sufficient dephasing, transport can be recovered. It is
interesting to note that an example of this phenomenon was
seen in the conductivity of electron transport on a binary
tree in work by Jonson and Girvin in 1979 [13]. The exis-
tence of ENAQT for finite ordered chains was demonstrated
in Ref. [14], while the conditions for optimal EET on the
binary tree and the hypercube were analyzed in Ref. [15].
ENAQT has since been experimentally observed in trapped-
ion [16], superconducting [17], and optical cavity [18]
systems.

One of the characteristic features of ENAQT, in networks
or FMO, is that optimal transport involves a convergence of
relevant timescales [19]. This convergence, which yields an
inherent robustness [20], has been dubbed the “Goldilocks
effect” [21]. The possibility that such a dynamical regime
is important for photosynthesis was suggested some time
ago [22].

Most studies of ENAQT for large networks have involved
numerical work. However, analytical results are known for
systems with a few sites [11,14,23,24]. One particularly nice
network is the complete graph, in which every site is con-
nected to every other site; this is also known as the fully
connected network (FCN). Transport on this network admits
exact treatment, for arbitrarily large size, due to its high degree
of symmetry. Using this fact, Caruso et al. [25] studied EET
on this network and found evidence for ENAQT in certain
limiting regimes.

In this paper we extend their model to enable a broader
analysis of ENAQT on the FCN. We find analytical results
for both the efficiency and the rate of EET for the entire
range of physical parameters. By including an energy shift,
our extended model contains the continuous-time version [26]
of Grover’s quantum search algorithm. By varying the initial
state, we are able to identify the role of initial state coherence
on the transfer. We find the optimal regimes for ENAQT
on the FCN and demonstrate an analytical convergence of
timescales. Our findings show that ENAQT and Grover search
occur in distinct dynamical regimes. These results serve to
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FIG. 1. Model for excitation energy transfer on the fully con-
nected network. An initial excitation is generated (blue arrow) from
a common ground state to a set of excited states (filled circles), such
as state |1) (in green). Each state is coupled to every state with a
coupling strength J and decays back to the ground state with rate I".
Energy is collected via state |N) (in red), which decays to a trapping
site with rate «. This state has an energy shift ey with respect to
the other excited states. Finally, all states are subject to a dephasing
process with characteristic rate A.

elucidate the nature of optimal and robust transport in a rich
dynamical system.

This paper is organized as follows. In Sec. II we review
the dynamical framework we use for studying EET on the
FCN. The main results for ENAQT are presented in Sec. III,
in which the efficiency and rate of transfer are found for
networks of arbitrary size. This analysis uses a reduced set
of equations for the density matrix, which are derived in the
Appendix. The role of initial state coherence is explored in
Sec. IV, and the Grover search limit is identified. The optimal
conditions for ENAQT on the FCN are derived in Sec. V. We
conclude in Sec. VI.

II. THEORETICAL MODEL OF EET

Our model for EET follows that of Refs. [12,25]. The key
features of this model are illustrated in Fig. 1, and can be sum-
marized as follows. An excitation is produced in a network of
sites. This excitation can move throughout the network, and
will ultimately decay (back to some common ground state)
or be trapped at a reaction site. The network Hamiltonian is
given by

N N
=Y e+ Y
j=1

Jok=1; j#k

Vikl ) kI, (D

where |j) represents an excitation in the jth site, &; are the site
energies, and Vj; are the couplings between sites. For the fully
connected network, we set Vj; =J, and we further restrict
the site energies ¢; = 0 for all sites except j = N, which we
take as the trapping site. Trapping at site N is modeled by the
damping term

Htrap = —i k|N){N]|, 2

while the decay of each excitation is given by

N
Hdecay =—iT Z |]><]| (3)

j=1

In addition, each site is affected by noise from its local
environment. We model this by a purely Markovian dephasing
process, so that the density matrix evolves via the Lindblad
equation

dp

——~ =—i(Hp — pH'
7 i(Hp — pH")

1
~|—AZ( LipL} — LTL,p 2pL}L,~>, Q)

where the total Hamiltonian is
H=Hy+ Htrap + Hdecaya (5)

the Lindblad operators are L; = |j){j|, and A is the dephasing
rate, taken to be uniform for all sites. (Note that we are using
units such that i = 1.)

The efficiency of EET is given by the total population
trapped at site N

[e.¢]
n= 2K/ pnN (1) dt, (6)
0
while the mean transfer time is defined by
2 o0
T = —K/ t pyn(t) dt. @)
n Jo
By writing the density matrix equation in superoperator form
dp
— =Lp, 8
o P ®)

the efficiency can be evaluated [8] as
o0
0=2c [ (VIeF pO)Mya
0

= 2 (N|[L7 " p(0)]5 IN)
= =2« (N|L7 ' p(0)|N), )

where we have used the fact that matrix elements of ¢“’ go
to zero as t — 0o. The mean transfer time can similarly be
evaluated as

2 o0
T = —K/ (Nt p(0)|N)dt
n Jo

2 00
- ;K<N|[£-2(£r — e p(0)], IN)

2
- %(N|,C_2p(0)|N). (10)

While 5 and t are the usual parameters studied in EET, their
combination R = n/t, the overall rate of energy transfer, is
also of interest.

III. SOLUTION FOR THE FCN

Given this theoretical model for EET, we solve the follow-
ing problem: Starting with an initial condition p(0) on the
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FCN, find n and t in terms of the physical parameters J (the
coupling between sites), ey (the energy of the trapping site),
k (the trapping rate), I' (the excitation decay rate), and X (the
dephasing rate).

We use the dimensional reduction method introduced by
Caruso et al. [25] to study networks with arbitrary size N. In
their work, certain limiting results for n were found using the

We further extend the model to include an energy shift ey for
the trapping site, and consider a range of initial conditions for
p(0).

The reduced equations are derived in the Appendix, and
can be written in matrix form

dv

Laplace transform of the reduced equations of motion. Here dr Ly, an
we use the analytical forms of both n in Eq. (9) and 7 in
Eq. (10) and matrix manipulations to find the general solution. where
J
PNN 2T +«) 0 2J 0 0
X -k =2 —(A+2I'+«k) (IN —en) 0 0
v=|Y |, L= —eN —(IN —¢ey) —(A+2I'+ k) J 0 , (12)
S 0 —2k —2ey —(A+2IN) A
T —2K 0 0 0 -2r
[
and X, Y, S, and T are linear combinations of the elements of where
the density matrix (with expressions found in the Appendix). Ak + NT) 4+ 2(N — DI'(k + 2IN)
n= k(. + 28T)
A. Transport properties L'k +T)YA+2T)(k + A +2IN) (18)
Using the reduced equations of motion, the efficiency is J2kc (X + 28T) ’
n=~2[L7 VO, (13) - TeADe+2D (19)
k(k + A+ 2T)(A 4 2S8T)
and the mean transfer time is and we have defined the detuning
T= 2%[5‘%(0)]1, (14) A=ey—JIN=2) (20)

where L is defined in Eq. (12), v(0) is found from the initial
conditions of the density matrix, and the subscript means that
we are evaluating the first element of the vector (correspond-
ing to pyy ). The required matrix manipulations are performed
in Mathematica. We consider an initial pure state of the form

1 S
t=0)=— i), 15
[ ( )>V@;u> (15)

where S < N is the number of terms in superposition. This
state allows for some initial coherence, but no population in
or coherence with the trapping site |N). The reduced vector
for this initial state is

v(0) = (16)

— n O O O

Note that S = 1 would also describe any localized initial state
|j), j # N, or a statistical mixture of such states.

The resulting efficiency can be written in the following
form:

1

(T I I) o

We will analyze n further in Sec. III C.
The transfer time can also be evaluated, but it turns out the
transfer rate is more convenient to analyze:

n 2K
R = BT Ry @D
where
2(N =8 — DA+ NA2+8(N — DI'(A + ST)
hr= (. + 28T)2
n C[(k+T)(2k+41+8) + (A + 2I)(k + A + 2IN)]
J2(A +28T)
A+ 20)(k + D)k + 1 +2IN)
(22)
J2(A +28T)2
and
P AL+ 20)(k + 1) 2Tk (k +T)
2

T (k£ A+20)( + 28T

(o +200)
(k +A+2I)(A +28T)°

We will analyze R further in Sec. III D.

These expressions constitute the main results of this paper.
These exact solutions for n and R are somewhat difficult to
analyze, for general values of A, k, A, I' (we treat J, N, and
S as fixed). However, these results extend and generalize pre-
vious analytical results [23,25] and reduce to them in various

(k + A + 2D)2(1 + 28T

(23)
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FIG. 2. (a) Efficiency 7 as a function of A and « for transport on a fully connected network with N =20, S =1, =0.01,J =1, and
A = 100. The dashed lines indicate the slices ¥k = 1 (bottom, black) and ¥ = 50 (top, blue). The global optimum 1 = 0.33 occurs for A = 56
and « = 44. (b) The efficiency as a function of A for x = 1 (bottom, black) and ¥ = 50 (top, blue). (c) The efficiency as a function of I" for

Kk = A =50.

limits. The inclusion of S and A allows for an additional limit,
namely the continuous-time version [26] of Grover’s quantum
search algorithm. We will first look at the general features of
n and then consider the analytical limits in remainder of this
section.

B. Typical efficiency for ENAQT

To proceed, we note that previous work suggests that the
regime for ENAQT is in the regime I' < J < A, to which we
direct our attention. Here we consider a typical case with spe-
cific parameters of I' = 0.01, J = 1; we will derive analytical
expressions in the following sections.

The efficiency for a network of size N = 20, initially lo-
calized at a single site (with S = 1), is shown as a function
of A and « in Fig. 2(a) (with A = 100). This exhibits the
characteristic shape of ENAQT [12], with an enhancement
of transport with dephasing. This is shown in more detail in
Fig. 2(b), where slices of the efficiency are shown as functions
of A for k =1 and « = 50. Each shows an enhancement
with dephasing with a maximum efficiency for A = A. The
optimal enhancement occurs near k¥ ~ A & A/2, but persists
over a broad range of parameters. The efficiency decreases for
increasing I", as shown in Fig. 2(c).

We also observe that ENAQT persists for decreasing A,
as shown in Fig. 3. The location of optimal enhancement de-
creases towards k & A ~ +/NJ, while the efficiency increases.
In fact, Eq. (17) shows that the efficiency is always maximized
by setting A = 0, and thus ey = J(N — 2).

C. Analytical results for the efficiency

Many analytical limits can be obtained from the general so-
lution. We begin by comparing our results to those of Caruso

et al.' First, we consider the case of no dephasing, or A = 0.
In this case Eq. (18) reduces to

N -1 «kI"
o= (I+2I'/k) + _S12(1 + T /)1 +2TN/k) (24)
and Eq. (19) to
oy = (1 4+ T /)1 + 20 /)", 25)
Sk

The resulting efficiency agrees with Eq. (10) of Ref. [25] for
S =1and A = —JN — 2 (the model used there has ey = 0).
We also see, by setting I' = 0, that

N -1
o] —> 5 and oy, — 0, (26)
and thus
5 f A=0, T 0 27
— —— for =0, — 0.
TN

For § = 1, this agrees with Eq. (5) of Ref. [25].

However, when the coherence of the initial state

increases, the efficiency increases, reaching unity for
S =N — 1. The fully coherent limit A =0,I" - 0,x — 0
of our theoretical model corresponds to the Hamiltonian dy-
namics of a continuous-time quantum walk on the complete
graph [27]. This quantum walk, in turn, corresponds to the
continuous-time version of Grover’s search algorithm [26],
with the trapping site corresponding to the desired target
state. The probability of success is maximized and equals
unity for S =N — 1, A =0, and at the measurement time
To = /(2J/N — 1). We will discuss this further in Sec. I'V.

'Our result should agree with their Eq. (A28) for a correct calcula-
tion of their denominator.
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FIG. 3. Efficiency n as a function of A and « for transport on a fully connected network with N =20, S =1, I' =0.01, J = 1 for (a)
A = 50, with optimum 7 = 0.49 at A = 20 and « = 22, (b) A = 25, with optimum n = 0.65 at A = 15.4 and x = 11.7 and (c) A = 0, with

optimum n = 0.83 at A = 6 and k = 4.5.

Second, we consider the case of no excitation decay, or
I' = 0. In this case Egs. (18) and (19) reduce to

o] = 1 and Oy = O, (28)

so that

n=1 for T =0. 29)
This efficiency agrees with Eq. (A30) of Ref. [25]. However,
we observe that the order of the limits ' — 0 and A — 0
matters. We will return to this important point in Sec. III D.

We can also compare our results to those of Cao and
Sibley [23], who present exact results for N =2 and S = 1.
In this case Eq. (18) reduces to

+2I' Tk +T)(x +A1+2I
IS N CE V(G ) k0
K J°k
and Eq. (19) to
L +1T)
=~ | 31
M+ A+ 20) D

The resulting efficiency agrees with their Eq. (5). We will
consider their results for N = 3 in the following section.

D. Analytical results for the transfer rate

In addition to observing ENAQT in the efficiency, it can
be also observed in the transfer rate R. This is especially
relevant when the efficiency is close to unity [23,24]. Thus,
we consider the cases considered above.

First, for the A = 0 case, Eq. (22) reduces to

1«2

2(N—-1)
Br="c—+ 5zl +60 /) +6/x1]  (2)
and Eq. (23) to
1
pr= U +20/0) 1420/ + 2T /)% (33)

Taking the limit I' — 0, we obtain the coherent transfer rate

28k

R SN Dt At

for A=0, I —0.

(34)
The maximal rate, as a function of «k, occurs for x =
V2(N — 1)J? + A2, so that
SJ?

V2N = D2+ A2

In this form, we see that the initial coherence S speeds up
the overall transfer, up to a factor of N — 1. This speedup
corresponds to the coherence enhancement of the efficiency
seen in Eq. (27). In fact, setting S=N —1, A =0 and
making the replacement J — E/N [26] we obtain Ryax =
(E/N)/J(N —1)/2 ~ E/+/N, in agreement with the perfor-
mance of the continuous-time search algorithm.
Second, for the I' = 0 case, Eq. (22) reduces to

for =0, I'—=0. (35)

max —

,31:2(1\7—5—1);+N+K(KJ—;LM (36)
and Eq. (23) to
K
B = TN (37)

For N =3 and S = 1, this resulting rate agrees with Eq. (22)
of Cao and Sibley [23]. We will consider the optimal rate in
Sec. VL.

We can also establish the approximate relationship be-
tween the efficiency and the transfer rate, in the regime of
slow decay, used in Ref. [23]. By Taylor expanding the general
expressions for oy and « in Egs. (18)—(19) with respect to T,
we find

r
ap ~ 1+ ;/31 (38)

and

ay X — B, (39)
K
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FIG. 4. Efficiency n as a function of A and « for transport on a fully connected network with N =20, A =100, I' = 0.01, J = 1 for
(a) § =5, with optimum 1 = 0.33 at A =43 and « =58, (b) S = 12, with optimum 1 = 0.57 at A = 0 and « = 100 and (¢) S = 19, with

optimum n = 0.9 at A = 0 and ¥ = 100.

where ) and B, are given by the I' = O results in Egs. (36)—
(37). Thus, we have

1
T 142l /Ry’

where Ry is the rate evaluated for I' = 0. This form for n
agrees with the behavior seen in Fig. 2(c) and the optimal
values for Figs. 2 and 3. We will use this approximation in
Sec. V.

n (40)

IV. COHERENCE ENHANCEMENT

We now consider the role of initial coherence in the density
matrix, here parametrized by S. The efficiency as a function of
A and « is shown in Fig. 4, for various values of S.

As the initial state coherence increases, the region of
maximum efficiency moves from the ENAQT regime, with
A > 0, to the coherent regime, with A = 0. In this regime,
the efficiency can be written in a form similar to Eq. (40),
where Ry is replaced by Eq. (34). In particular, one can
show that the maximum efficiency for § = N — 1 occurs for

Kk =/2(N — 1)J2 + AZ, and
1
[+ 2T/ Runan

where Ruax is given by Eq. (35). This form for nn,x agrees
with the optimal value for Fig. 4(c). Thus, for sufficiently
slow decay, this coherent regime reproduces the behavior of
the continuous-time Grover search algorithm. Note that this
coherent regime is distinct from the ENAQT regime, and the
order of limits of zero dephasing and slow decay matters for
both the efficiency and the transfer rate.

for A=0,S=N—1, (41)

nmax ~

V. OPTIMAL CONDITIONS FOR ENAQT

Finally, we return to the expression for the efficiency given
by Eq. (40), valid in the slow decay limit, and consider the
traditional initial condition with S = 1. Using this, and the
expressions for B and B, in Egs. (36)—(37), we can obtain

optimal conditions for the trapping rate « and the dephasing
rate A. For k, we calculate 9Ro/d« and set it equal to zero,
which yields the equation:

NJ? A?
—_— =1 42)
K2 (k + )2
This can be solved for small A to find
k — VNJ? + A? for » — 0. (43)

This provides a good approximation for the enhancement of
the efficiency in the top left region of Fig. 2(a). Similarly, for
A, we calculate 9Ro/0X and set it equal to zero, which yields

2(N —2)J? A?
( ) =1- . (44)
A2 (k + A)?
For small «, we find
A — V2N —2)J? 4+ A? for k — 0. 45)

This provides a good approximation for the enhancement of
the efficiency in bottom right region of Fig. 2(a).

To find the global optimum, we solve Eqgs. (42) and (44)
simultaneously for A and x. Comparison shows that

)\opt = C’Copt, (46)
where
2(N -2
c= /22 (47)
N

Using this, we can solve the resulting equation for « to obtain

Kopt = VNJ2 + (1 +C)2A2, (48)
which yields

J2
 JAHCPNIE+ AT

These are the optimal conditions for ENAQT on the FCN.
These expressions for «qp and Aqp provide excellent approxi-
mations to the optimal values found in Figs. 2 and 3 (and more

(49)

Ropl
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accurate expressions could be developed as a Taylor series
inT).

Furthermore, these optimal conditions display the conver-
gence of timescales discussed in Sec. I, where the dephasing
and trapping rates are of the same magnitude (here with coef-
ficient given approximately by C ~ /2) and proportional to
the energy gap of the system. For example, when A ~ +/NJ
we have Kk ~ A ~J \/N and Rope ~ J/ \/N . Note, however,
that this optimal rate for the ENAQT regime is quite distinct
from the coherent regime discussed in the previous section. In-
deed, setting S = N — 1 and A = 0in Eq. (35) yields Rpyax =
JJV (N —1)/2.

VI. CONCLUSION

In this paper we have examined the transport of energy on
the fully connected network. The analytical solution covers
the whole range of physical parameters, and optimal condi-
tions for ENAQT on this network reveal a convergence of rel-
evant timescales. We have further shown that initial coherence
can enhance the efficiency and rate of transport. However, the
regimes for ENAQT are distinct from the coherence regime,
the latter corresponding to continuous-time Grover search.
Here we place our results into a broader context.

First, the transport dynamics, under optimal conditions for
ENAQT, exhibits highly damped oscillations, decaying with
rate (A + 2I" + «), which is comparable to the characteristic
frequencies of A and J. Thus, coherent oscillations are not
associated with the optimal transfer rate Rop. This agrees
with the analysis of FMO [8,9]. It is somewhat surprising
to see that this remains true in the coherence regime, for
which the maximal transfer rate R, involves nearly criti-
cally damped oscillations. Thus, the quantum speedup seen
in Grover search does not require coherent oscillations. In
fact, using measurement-induced critical damping to improve
quantum search has been proposed before [28]. A related ef-
fect for the hitting time on a hypercube was also studied [29].

Second, the effect of environment on a Grover search algo-
rithm subject to errors was studied in Ref. [30]. They found
that, for errors similar to disordered energies, the probability
of success could be improved by coupling to a thermal en-
vironment, although the characteristic /N speedup was not
recovered. It is tempting to compare this to our identification
of distinct ENAQT and coherence regimes, for which only
the latter achieves quantum speedup. However, their model
of the environment in Ref. [30] involves energetic relaxation
as opposed to simple dephasing. Thus, there does not seem to
be a simple relationship with the model considered here.

Finally, the fact that quantum speedup requires initial co-
herence and zero dephasing reinforces the arguments made
in Ref. [9], namely that photosynthetic light-harvesting com-
plexes are more likely to be optimized for efficiency and
robustness as opposed to achieving a quantum speedup.
Whether there are systems, natural or artificial, in which
ENAQT produces a quantum speedup remains an interesting
outstanding problem.
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APPENDIX: REDUCED EQUATIONS OF MOTION

For completeness, we review the dimensional reduction
of the FCN presented in Ref. [25]. We begin by expanding
Eq. (4) in terms of the density matrix elements pj;. We start
by observing that

N
(Hp)jk =(j —Dpjk +JZ)0€1< — (T + 8 n6)pjiks
=1
N

(0H)je =(ex = Dpjx + Y pje +i(T + S ni)pjv. (Al)
(=1

We thus find that the total equation of motion for p can be
written as

N

pjx = —i(e; — e)pjx — iJ Z(Pek —pje) — Njrpjr, (A2)
=1

with A, representing the dephasing, decay, and trapping
terms given by

Aj’k = (1 — 8j,k))x + 2r + (8j,N + 6k$N)K~ (A3)

To reduce the number of equations, we set j =k = N in
Eq. (A2) to find

N
py = =il Y (pen — pve) — QT+ 26) oy (A4)
=1

Here we see transport is mediated by the sum of coherences
with state N. This motivates the introduction of the auxiliary
variable

N
Ac=Y pik (A5)
j=1

in terms of which
oy = —iJ(Ay — Ay) — (2T 4+ 2«) pyw.- (A6)
‘We further define their sum
N N N
S=Y A=Y A=Y on @D
k=1 k=1 jok=1

and the trace of the density matrix

N
T =Ti(p) =) puc- (A8)
k=1

We now proceed to find the equations for these variables,
starting with A;. We calculate

N N
A=Y pj=—iY (gj—e)pj — iJ(NA, = S)

j=1 j=1

N
- Z A jkPjk- (A9)
j=1
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The last term can be expanded using Eq. (A3)

N
D Ajupje = O+ 20)AL = Aok + k ok + K8k N A
j=1

(A10)
Using this result and ¢; = exd; v in Eq. (A9), we find
Ap = —(k + ien)pnk — (k — ien)dy kA
— iJ(NA, — S) — (M + 2D)Ax + Apik- (A11)

While this depends on the individual coherences pyy, recall
that pyy depends on Ay. Thus, when k = N in Eq. (All),
only pny, An, and S appear on the right-hand side.

We proceed to find the equation for S, using our results
for Ak:

N
§= Y A= —(k +ien)A} — (k — ien)Ay
k=1

— (A4 20)S +AT. (A12)

Finally, we calculate
T = —2I'T — 2k pyn. (A13)

This completes the system of equations. To simplify, we set
Ay =X +1iY in Eq. (A11) to find

X = Re(Ay)
= —(k —A)pyy — (A + 2T + k)X + (JN — en)Y (Al4)
and
Y = Im(Ay)

= —ENPNN — (JN — EN)X - ()» + 2" + K)Y + JS.
(A15)

Altogether we have the closed system of equations

onn = —2(I' + ) oy + 2JY,
X =—( = M)pyy — (. + 2T + )X + (N — &y)Y,
Y =—eyowy — (IN —eny)X — (A + 2T + k)Y + JS,
S =—2kX —2eyY — (A +2I)S + AT,

T =—2kpyy —2I'T. (A16)
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