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Synchronized states in a ring of dissipatively coupled harmonic oscillators
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The question under which conditions oscillators with slightly different frequencies synchronize appears in
various settings. We consider the case of a finite number of harmonic oscillators arranged on a ring, with bilinear,
dissipative nearest-neighbor coupling. We show that by tuning the gain and loss appropriately, stable synchro-
nized dynamics may be achieved. These findings are interpreted using the complex eigenvalues and eigenvectors
of the non-Hermitian matrix describing the dynamics of the system. We provide a complete discussion for the
case of two oscillators. Ring sizes with a small number of oscillators are discussed taking the case of N = 5
oscillators as an example. For N � 10 we focus on the case where the frequency fluctuations of each oscillator
are chosen from a Gaussian distribution with zero mean and standard deviation σ . We derive a scaling law for
the largest standard deviation σfull that still permits all oscillators to be fully synchronized: σfull ∼ N−3/2. Finally,
we discuss how such random fluctuations influence the timescale on which the synchronized state is reached and
on which timescale the synchronized state then decays.

DOI: 10.1103/PhysRevE.109.014308

I. INTRODUCTION

Synchronization is a fascinating phenomenon that can be
interpreted as a display of cooperative behavior appearing in
many complex systems [1,2]. Since the first observation by
Huygens in the late 1600s [3], it has been studied in diverse
communities, where it plays an important role in our un-
derstanding for example in electric networks in engineering,
circadian rhythms in biology, pattern formation in statisti-
cal mechanics, and chemical reactions in chemistry [4–6].
Other examples are laser networks [7], phase-locked loops [8],
Josephson junction arrays [9,10], spin-torque resonators [11],
power grids [12], and communication networks [13,14].

Typically synchronization is investigated in the context of
the adjustment of rhythms of autonomous oscillators, which
attain stable periodic orbits without active regulation from the
outside [15] and thus require nonlinearities in the governing
equations of motion. Far less common is the investigation
of synchronization in models that are linear in both the os-
cillators and the couplings. Although linear systems are in
general well understood, the specifics of the considered net-
work topology may facilitate different dynamical features, in
particular with regards to synchronization. Such linear models
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appear for example after certain transformations of the Ku-
ramoto model [16], in the context of feedback control theory
[17,18] or in the description of coupled electronic LC circuits
[19–21]. Many photonic systems can also be well described
by a model of linearly coupled harmonic oscillators, such
as coupled cavities [22] or waveguides [23,24]. Furthermore,
linearly coupled oscillators emerge when mapping quantum
dynamics to classical representation [25].

Without dissipation, coupled harmonic oscillators form
collective eigenmodes, where the individual oscillators per-
form motion with a fixed phase relation [26,27]. However,
a system not initialized in an eigenmode usually stays in
a superposition of several eigenmodes with different eigen-
frequencies resulting in a beating pattern. Moreover, if the
number of coupled oscillators is large, then the system dynam-
ics does not need to exhibit perfect revivals in general [28] and
synchronized motion is absent. Hence in a closed system of
oscillators, only for an eigenmode as the initial condition does
one obtain a time-independent phase relation between the
oscillators. However, if the system is not closed, but subject
to gain and loss, then the open system dynamics allow for
a situation where all eigenmodes but one are damped. Then,
synchronization is possible as long as the respective eigenstate
is present in the initial state. However, in order to achieve a
situation where all but one mode are damped, one needs to
carefully balance gain and loss.

In contrast to a self-sustained system where the nonlinear-
ity counteracts the dissipation (or gain) in order to stabilize
periodic orbits, a single linear harmonic oscillator only ex-
hibits the following dynamics in the absence of periodic
driving: Either the dissipation exceeds the gain, such that the
amplitude of the dissipative systems shrinks and eventually
reaches a single point in phase space, or in the other way
around, where the gain exceeds the dissipation, the oscillation
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amplitude infinitely grows. In the special case where both
are equivalent the system is effectively described by closed
system dynamics with infinitely many closed orbits in phase
space depending on the initial energy of system. However,
when coupling between linear oscillators are introduced, more
solutions are possible [29]. In the context of synchronization,
non-Hermitian linearly coupled oscillators have been investi-
gated in various arrangements and with various aims (see, e.g.,
Ref. [30]).

Here we investigate a ring-network of linear harmonic
oscillators subject to gain and loss and focus on the case
when the coupling between the oscillators is purely dissipative
[31]. Such dissipative coupling has been studied both for
linear [32–36] and nonlinear [37–39] systems. The simulta-
neous presence of gain and loss allows for the emergence of
dissipation-free subspaces in parameter space. Within these
subspaces we find periodic motion of all oscillators in the
network that is starting from an (nearly) arbitrary initial state
the system reaches a regime during time propagation in which
all oscillators exhibit synchronized motion for a long time. At
this point, let us specify the notion of synchronization we use
throughout this work:

(1) With “long time” we mean times long compared to the
eigenfrequencies of the individual oscillators and we focus
on the case where all oscillators have small deviations from
a common “mean frequency.” In the ideal case they oscillate
forever.

(2) With “synchronized” we mean that the oscillators have
a fixed phase relation. Ideally, we want that all oscillators have
the same amplitude. If this is the case, then we denote it as full
synchronization. If the system is not in a fully synchronized
state, then we will characterize its degree of synchronization
by a suitable measure.

(3) With “arbitrary” initial state we mean that for most
initial states synchronization is achieved, yet there exist some
special initial conditions that do not lead to synchronization.

We note that within the above definitions for uncoupled
oscillators, one only finds synchronization when there is no
gain and loss and all oscillators have the same frequency.
We emphasize that we are not particularly interested in the
thermodynamic limit where the number of oscillators goes to
infinity but in the dynamics for a finite number of oscillators.

The remainder of the paper is organized as follows: In
Sec. II A we summarize some general considerations of
synchronization for linearly coupled harmonic oscillators im-
portant for our work, followed by the specific model under
investigation in Sec. II B. In the subsequent Sec. III we discuss
our results, which includes the special case of two coupled
oscillators in Sec. III A and the more general case of many
oscillators in Sec. III B. Finally, we conclude in Sec. IV.

II. MODEL AND BASIC FORMALISM

A. General considerations of synchronization in linear
oscillator models

To introduce the basic concepts and notation, we con-
sider N harmonic oscillators in a network, each labeled by a
subscript n = 1, . . . , N . In the present work we are mainly in-
terested in the regime N � 100, which could be implemented

via photonic setups [22,24]. It is convenient to describe the
dynamics of the oscillators by dimensionless complex am-
plitudes. The equation of motion for an individual oscillator
subject to dissipation is given by ȧn(t ) = (−i�n − γ )an(t ). Its
solution an(t ) = an(0) exp[(−i�n − γ )t] describes damped
oscillatory motion with initial (complex) amplitude an(0),
frequency �n, and “damping” γ . Note that while for
γ > 0 the oscillator is indeed exponentially damped, for γ <

0 (i.e., gain), the oscillator amplitude grows exponentially (in
an actual system one would have saturation effects which
would have to be described by a nonlinear equation; there-
fore, we will consider only cases where the amplitudes of
the oscillators do not grow exponentially). In the coupled
system, the motional state of each oscillator is characterized
by a time-dependent complex amplitude an(t ) = |an(t )|eiφn (t ),
which now, however, can deviate from the dynamics of the
individual oscillator discussed above. If all oscillators in the
network oscillate with a common real frequency ωsyn while
their relative amplitudes remain constant, then we will re-
fer to it as synchronization. Using a vector notation �a(t ) =
(a1(t ), . . . , aN (t ))ᵀ, such synchronized motion may be ex-
pressed as

�a(t ) = f (t )�asyne−iωsynt , (1)

where f (t ) is a real function that takes into account the possi-
bility that the amplitudes decay (or grow) over time, which we
will discuss in Sec. II B in more detail. In the case of f (t ) = 1
the motion represents a periodic steady state, which we refer
to as ideal synchronized motion.

The above notion is not sufficient to fully characterize
synchronized motion as for example a single oscillatory site
in the network (while all other oscillators are at rest) also
fulfills Eq. (1). It is thus necessary to also quantify the degree
of synchronization of a vector �a, which we denote by S (�a). To
this end, we use the inverse participation ratio [40],

S (�a) = 1∑N
n=1 |an|4

, (2)

which takes values between 1 and N . Here a value of S = 1
corresponds to the aforementioned case of a single oscillator
in motion, whereas a value of S = N indicates fully synchro-
nized motion, i.e., all nodes have the same absolute value of
the amplitude. Values of S = Ñ < N correspond to partial
synchronization of approximately Ñ oscillators. In Fig. 1,
we illustrate different degrees of synchronization and their
respective dynamics in a network of three oscillators.

The time evolution of a linearly coupled network of har-
monic oscillators in the presence of gain and loss is expressed
as

d

dt
�a = W �a, (3)

where we assume the non-Hermitian matrix W to be time
independent. The diagonal elements contain the frequencies
of the individual oscillators and their loss or gain, as described
above. The off-diagonal elements Wnm are the couplings be-
tween the oscillators n and m. In components this reads
ȧn = ∑

m Wnmam. From this equation one clearly sees that for
complex Wnm the real and imaginary parts of oscillator n
become coupled to both the real and imaginary parts of the
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FIG. 1. Illustration of potentially attainable synchronized motion
in a network of N = 3 oscillators. The inverse participation ratio S(�a)
increases from top to bottom in accordance with the transition from
partially to fully synchronized motion.

oscillator m. In Appendix A we provide the form of this
equation for real and imaginary parts separately and also for
the representation an = |an|eiφn with real amplitude |an| and
real phase φn. The state of the system at time t is given by the
formal solution

�a(t ) = eW t �a(0), (4)

where �a(0) denotes the initial state at time t = 0. Thus, the
dynamics of the network is fully characterized by the matrix
W , in particular by its eigenvalues and eigenvectors. For some
special cases, the matrix W can be diagonalized analytically
(see, e.g., Refs. [23,30,41]), but in general one has to perform
the diagonalization numerically. Since W is (in general) non-
Hermitian, one has to distinguish right and left eigenvectors
defined via

W �c j = w j �c j and �z†
jW = �z†

jw j . (5)

Here † indicates the complex conjugated and transpose, and
the eigenvectors are normalized according to

�c†
j �c j = 1 and �z†

j′ �c j = δ j′ j . (6)

Note that, in general, �c†
j �= �z†

j . The matrix W can now be

expressed as W = ∑
j w j �c j�z†

j , such that the time evolution of
Eq. (4) is conveniently given by

�a(t ) =
∑

j

�c je
w j t �z†

j �a(0), (7)

where �z†
j �a(0) is the initial weight of the eigenstate j. While

the imaginary part of the complex eigenvalue w j deter-
mines the oscillation frequency of eigenmode j, the real part
Re(w j ) determines whether the oscillatory motion is damped
[Re(w j ) < 0], growing [Re(w j ) > 0], or oscillates forever
[Re(w j ) = 0].

In order to obtain a time evolution of the form of Eq. (1)
with f (t ) = 1 after some initial transient time, i.e., dynami-
cally reach the eigenstate with Re(wsync) = 0, the initial state
needs to have nonvanishing overlap with the synchronized
eigenstate [�z†

synca(0) �= 0]. Furthermore, all other eigenstates
present in the initial state need to have Re(w j ) < 0, such that
they are damped. In the following, we will therefore search for
conditions and parameters under which one eigenstate fulfills
Re(wsync) = 0 while all other eigenstates fulfill Re(w j ) < 0.
Subsequently, we will characterize the degree of synchroniza-
tion of the resulting state in terms of S; cf. Eq. (2).

B. Linear oscillators with purely dissipative
nearest-neighbor coupling

After the general considerations of the previous Sec. II A,
let us now specify the network of interest throughout the
remainder of this work: The individual oscillators have fre-
quencies �n ∈ R and are arranged on a ring. Each oscillator
is subject to gain or loss mediated via the rate γ ∈ R and
interacts with its two nearest neighbors via a purely dissipative
coupling v ∈ R. For simplicity we assume that the coupling
and dissipation is equal for all oscillators. We are interested
in the possibility of synchronization when the frequency of
each oscillator is different, which corresponds to the notion
of synchronization as an adjustment of rhythms due to the
presence of interactions. The equation of motion of the nth
oscillator is then given by

d

dt
an = (−i�n − γ )an − v(an+1 + an−1), (8)

with a0 ≡ aN and aN+1 ≡ a1 to fulfill periodic boundary con-
ditions. Note that positive values of γ represent loss, whereas
negative values correspond to gain. To simplify notation we
express all energies in units of v and take v to be positive (the
case of negative v will be discussed later), i.e., ωn = �n/v,
g = γ /v and τ = tv. Furthermore, we parametrize the fre-
quencies as ωn = ω̄ + 	n. Then, Eq. (8) becomes

d

dτ
an = [−i(ω̄ + 	n) − g]an − (an+1 + an−1). (9)

Our goal in the following is to determine the values of g for
a given set of frequency differences 	n, such that the oscil-
lators perform synchronized motion in the sense discussed in
Sec. II A.

As the term (−iω̄ − g) is independent of the oscillator
index n, it only trivially contributes to the overall dynamics;
specifically oscillations with frequency ω̄ and damping or
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growing with rate g. In matrix representation, Eq. (9) can be
written in the form of Eq. (3) with t → τ and W = (−iω̄ −
g)I + M, where

M = −i

⎛
⎜⎜⎜⎜⎝

	1 −i 0 . . . −i
−i 	2 −i . . . 0
0 −i
...

−i 0 . . . −i 	N

⎞
⎟⎟⎟⎟⎠. (10)

Note that the (left and right) eigenvectors of W and M are
identical and their eigenvalues are simply shifted, i.e., if
M�c j = λ j �c j , then W �c j = w j �c j with

w j = −i[ω̄ + Im(λ j )] + [−g + Re(λ j )], v > 0. (11)

Moreover, as M only depends on 	n, the eigenvectors and
thus the degree of synchronization S (�c) is independent of g.

Let us summarize as follows the general conditions of the
previous Sec. II A for synchronized motion tailored to the
specifics of our system discussed here:

(i) There exists a single eigenstate �csync of W with purely
imaginary eigenvalue. This corresponds to a state �csync that
fulfills −g + Re(λsync) = 0, where M�csync = λsync�csync.

(ii) All other eigenstates of W have negative real part for
the set of parameters determined in (i). That corresponds to
−g + Re(λ j ) < 0 for all j �= sync.

(iii) The synchronization measure S (�csync) should be as
large as possible. Ideally S (�csync) = N .

So far, we have taken v to be positive. For negative
values of v we define the scaled energies in terms of −v

such that ωn = ω̄ + 	n = −�n/v, g = −γn/v, and τ = −tv.
Then, Eq. (9) becomes

d

dτ
an = [−i(ω̄ + 	n) − g]an + (an+1 + an−1), (12)

where the first term remains identical while the sign changes
in front of the oscillator couplings, and thus the off-diagonal
matrix elements of M, cf. Eq. (10). Here the imaginary part of
the eigenvalues (as well as the corresponding eigenstates and
the measure S) remains unchanged, while the real part simply
changes its sign. Thus, eigenstates that are decaying for v > 0
are growing for v < 0 and vice versa.

III. RESULTS

In the following, we first discuss the case of N = 2 in
Sec. III A, which provides a clear picture of the basic mech-
anism underlying the synchronization of linear oscillators
interacting via dissipative couplings. Subsequently, we con-
sider a ring of N > 2 oscillators in Sec. III B and show that
also in this case, synchronized motion may be achieved and
follows similar arguments as before.

A. Two coupled oscillators (N = 2)

For two coupled oscillators, the problem reduces to
analyzing a 2 × 2 non-Hermitian matrix, for which the cor-
responding eigenvalue problem can be solved analytically.
Similar matrices appear, e.g., for coupled ring resonators [42]
or in the context of PT -symmetric systems [43,44]. Here we
provide the results for our system setup explicitly and discuss

their implications for synchronized dynamics. Without loss of
generality, we may choose the scaled frequency differences of
the two oscillators to be 	1 = +	 and 	2 = −	, such that
matrix M governing the dynamics [cf. Eq. (10)] is given by

M = −i

(
	 −i
−i −	

)
. (13)

Here we have chosen v > 0. However, from the discussion in
Sec. II B we know that a negative value of v simply results
in a change of sign of the real part of the eigenvalues. The
two eigenvalues and corresponding right eigenvectors of M
are given by

λ± = ∓i
√

	2 − 1, (14)

�c± = 1√
1 + |	 ± √

	2 − 1|2

[
i(	 ± √

	2 − 1)
1

]
. (15)

If |	| < 1(|	| > 1), then the eigenvalues λ± are both purely
real (imaginary) and nondegenerate. In contrast, for 	 = ±1
not only are the eigenstates degenerate but also the cor-
responding eigenvectors coalesce, i.e., these values of 	

correspond to exceptional points [45–48]. The impact of ex-
ceptional points on synchronization goes beyond the scope of
the present work, and we will focus in the following on the
cases |	| > 1 and |	| < 1.

a. Overview. As discussed in Sec. II B, the eigenenergies
w± = −i[ω̄ + Im(λ±)] + [−g + Re(λ±)] describe the over-
all possibility of long-lasting synchronized motion in terms
of oscillation frequency and damping, while S quantifies
the degree of synchronization. Let us start by considering
the real part of the eigenenergies w± given by Re(w±) =
−g + Re(λ±), which determines the (exponential) damping or
growing. In Figs. 2(a) and 2(b) we show Re(w−) and Re(w+),
respectively, as a function of the frequency difference 	 and
the dissipation strength g. Note that 	 as well as g can take
on positive and negative values. The red areas in Figs. 2(a)
and 2(b) indicate positive values corresponding to amplitude
growth, whereas the blue areas indicate negative values and
thus amplitude damping. Along the white separation between
the two regions the amplitudes neither increase nor decrease.
We discuss this most relevant line for dissipation-free syn-
chronization in more detail below.

As expected from the discussion above, quite different be-
havior of Re(w±) is observed depending on whether |	| > 1
or |	| < 1. Similarly, a pronounced difference is found in the
behavior of the imaginary part Im(w±) = −[ω̄ + Im(λ±)],
which describes the oscillation frequency of the eigenmodes
and is shown in Figs. 2(c) and 2(d). For |	| < 1 the frequency
remains unchanged and both eigenstates oscillate with the
mean frequency ω̄. However, for |	| > 1 the frequency of
the − state [cf. Fig. 2(c)] is increasing, while that of the +
state [cf. Fig. 2(d)] is decreasing. Both follow the functional
form of a square root with opposite sign, cf. Eq. (14). Last, in
Figs. 2(e) and 2(f) we show the degree of synchronization S
as function of 	, which is given by [cf. Eq. (15)]

S (�c±,	) =
{

2 |	| < 1
2 	2

2	2−1 |	| > 1.
(16)
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FIG. 2. Top row: Density plots of the real part Re(w±) as a
function of the frequency difference 	 and the dissipation strength
g: (a) w− and (b) w+. Dissipation-free synchronization is found
along the white line. Middle row: Corresponding imaginary part
(c) Re(w−) and (d) Re(w+) as a function of 	, which corresponds
to the oscillation frequency of the respective eigenvector. Last row:
Degree of synchronization S as function of 	 of the eigenvalue (e)
�c− and (f) �c+. The largest value is found for |	| < 1 corresponding
to fully synchronized motion.

As expected, the maximum value lies within the range of
|	| < 1 and rapidly decreases as |	| increases, indicating the
absence of synchronization. After this broad overview, we will
discuss in more detail the potential of synchronized motion in
the system of N = 2 oscillators in the following, focusing on
the three criteria (i)–(iii) formulated in Sec. II B.

b. Detailed discussion of the regime |	| > 1. In this case,
the eigenvalues λ± become purely imaginary [cf. Eq. (14)],
such that the eigenenergies take the simple form w± =
−i(ω̄ ± √

	2 − 1) − g. Most importantly, the real part is
solely given by −g for both states and is independent of 	,
which can also be seen in Figs. 2(a) and 2(b). Thus, both
eigenstates show the same dynamical response to dissipation,
i.e., either both are dissipation free (g = 0) or the amplitudes
decay or increase with the same rate given by −g. Although
there exists a dissipation-free subspace for g = 0, and thus
requirement (i) is fulfilled, requirement (ii) cannot be fulfilled
simultaneously. The reason is that both states have different
oscillation frequencies ω̄ ± √

	2 − 1, and none of them is de-
caying, resulting in a beating pattern. We show an example of
such a time evolution of the real amplitudes Re(an) governed
by Eq. (9) in Fig. 3(a) for 	 = 1.1 and g = 0.

c. Detailed discussion of the regime |	| < 1. After we
have ruled out the possibility of synchronization [according

FIG. 3. Examples of different dissipation-free dynamics found
for the case of N = 2 oscillators. We plot the real amplitude
Re(an(τ )) of the first oscillator in red (n = 1) and the second one
in blue (n = 2). (a) For 	 = 1.1 and g = 0, the presence of two
oscillation frequencies within the dissipation-free subspace leads to
beating. (b) For 	 = 0.6 and g = 0.8, only a single eigenstate with
its respective oscillation frequency is dissipation free, while the other
is damped, leading to a periodic steady state of both oscillators, i.e.,
synchronization. Parameters: ω̄ = 10, �a(0) = (1, 0)ᵀ. These results
are obtained by direct integration of the differential equation. It
agrees perfectly with the results obtained via diagonalization.

to our conditions (i)–(iii)] in the previous regime, we now dis-
cuss the case of |	| < 1, where dissipation-free synchronized
motion is indeed possible. For |	| < 1, the eigenvalues λ±
are purely real [cf. Eq. (14)] and dissipation-free states are
determined by 0 = −g ±

√
|1 − 	2|, such that condition (i)

may be fulfilled. In contrast to the previous case, we need
to differentiate between the two states: Dissipation vanishes
for the + state if g = g+ ≡

√
|1 − 	2| and for the − state if

g = g− ≡ −
√

|1 − 	2|. Each of these solutions describes a
half circle with radius one, cf. Figs. 2(a) and 2(b).

We now examine whether condition (ii) is also fulfilled in
this regime. When the − state is dissipation free, the ampli-
tude of the + state is growing exponentially as Re(w+(g−)) =
−g− + √

1 − 	2 = 2
√

1 − 	2 > 0. This is also verified by
Fig. 2: Along the white separation in Fig. 2(a) within the
regime |	| < 1, the area in Fig. 2(b) is red. In contrast,
along the white line in Fig. 2(b), the area in Fig. 2(a) is
blue, i.e., while the + state is dissipation free, the − state
is damped. Specifically, Re(w−(g+)) = −g+ − √

1 − 	2 =
−2

√
1 − 	2 < 0. Thus, synchronized motion for |	| < 1

is found whenever the condition g = √
1 − 	2 is fulfilled.

Moreover, this state has a degree of synchronization of S = 2
and is therefore fully synchronized for all |	| < 1.

In Fig. 3(b) we show the dynamics for the parame-
ters 	 = 0.6 and g = 0.8, when starting in the initial state
�a(0) = (1, 0)ᵀ. As discussed previously, we expect to find
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synchronized motion for these parameters. Indeed, after a
short transient time of τ � 2 a stationary oscillatory motion
emerges where both oscillators have the same amplitude. Note
the phase shift between the two oscillators, which may be un-
derstood as follows: Considering the + state �c+ [cf. Eq. (15)],
the long-time dynamics is given by �async(t ) = �c+ exp(ω+t )
[cf. Eq. (7)], where ω+ is purely imaginary. Then,

Re[�async(t )] = N
(

cos(iω+t + φ)
cos(iω+t )

)
, (17)

where the phase difference φ fulfills tan(φ) = −√
1 − 	2/	

and N = (1 + |	 + √
	2 − 1|2)−1/2 is the normalization

constant from Eq. (15).

B. Many coupled oscillators on a ring

In this section, we generalize our results from the previous
Sec. III A for the case of two coupled oscillators to large num-
bers of oscillators arranged on a ring. Also for the case of N
oscillators, the dynamics is governed by Eqs. (9)–(11). In the
following, we will first discuss the case of equal frequencies of
all oscillators. Afterwards, we discuss the more relevant case
of frequency differences.

1. Identical frequencies of all oscillators

To gain a basic understanding of the eigenvalue and
eigenvector structure, we now consider the case when all
frequencies are identical, i.e., 	n = 	. Then, the matrix W is
circulant and its eigenvalues and (right) eigenvectors are given
by [49]

w j = −i(ω̄ + 	) −
[

g ± 2 cos

(
2π j

N

)]
, v ≷ 0, (18)

�c j = 1√
N

N∑
n=1

ei 2π
N jn�en, (19)

where �en is the nth unit vector [50]. As all eigenstates are
independent of 	 or g, one sees that most eigenvalues are
doubly degenerate, i.e., there are two eigenstates with the
same eigenvalue. For even N only the eigenstates with j = N
and j = N/2 are not degenerate; for odd N only the state
with j = N is not degenerate. Moreover, the imaginary part
of the eigenenergies w j , i.e., the oscillation frequencies, is
simply shifted by 	 for all eigenstates. However, the real part
of w j , which dictates the dissipation and, more importantly,
the possibility of dissipation-free dynamics, requires a more
careful analysis.

a. Positive v. The real part of the jth eigenvalue Re(w j ) =
0 if g = g j ≡ −2 cos(2π j/N ). Then all other eigenvalues w j′

with j′ �= j have a real part given by

Re(w j′ (g j )) = 2 cos

(
2π j

N

)
− 2 cos

(
2π j′

N

)
. (20)

Furthermore, we need to distinguish the two cases of odd and
even N : For an odd number of oscillators and j �= (N ± 1)/2,
there is always at least one j′ with Re(w j′ (g j )) > 0, and
thus condition (ii) is not fulfilled. On the other hand, if j =
(N ± 1)/2, then all other eigenstates are damped except for
j′ = j ∓ 1. Yet, this state is also dissipation free and condition

(ii) cannot be fulfilled. For even N , however, there exists
a nondegenerate eigenstate j = N/2 that fulfills (i) and (ii).
Then g = 2 and �csyn ≡ �cN/2 = 1√

N
(−1, 1 . . . ,−1, 1)ᵀ, which

corresponds to anti-phase synchronization between nearest
neighbors with the same frequency ω̄ + 	.

b. Negative v. In contrast to the previous case, the real
part of the jth eigenstate now is equal to zero if g = g j ≡
+2 cos(2π j/N ), and thus Eq. (20) becomes

Re(w j′ (g j )) = −2 cos

(
2π j

N

)
+ 2 cos

(
2π j′

N

)
(21)

for all other eigenvalues w j′ with j′ �= j. Here, only if j = N
are all other states damped and conditions (i) and (ii) fulfilled.
The corresponding eigenstate is �csyn ≡ �cN = 1√

N
(1, . . . , 1)ᵀ,

i.e., in-phase synchronization of all oscillators with frequency
ω̄ + 	. To achieve this situation, one again has to choose
g = 2.

c. Timescales. Let us briefly comment on the timescales
on which synchronization is established. We first focus on
the case where we are exactly at the dissipation-free point,
characterized by g = 2. Then, the relevant timescale is the
decay time of the eigenmode j with the slowest decay, i.e.,
the smallest value of |2 − 2 cos( 2π j

N )|. Thus, the decay rate
is given by r = |2 − 2 cos( 2π

N )| with corresponding timescale
τ ∼ 1/r. We note that for large N , this is approximately
given by r = 4π2/N2, which means that the time to reach the
synchronized state increases quadratically with the number of
oscillators.

Next, we investigate what happens if g is not perfectly
tuned but is given by g = 2 + ε. Now the synchronized state
is decaying or growing with a rate ε. For definiteness, we
take ε < 0, i.e., decaying oscillations. Importantly, the other
eigenstates will decay faster than the selected one ( j = N
for negative v and j = N/2 for positive v and even N).
The relevant decay rate of this state is now given by r̃ =
|2 + ε − 2 cos( 2π

N )|, with corresponding timescale τ̃ ∼ 1/r̃.
Thus, during the time interval 	τ = 1/|ε| − τ̃ one can see
synchronized motion.

2. Oscillators with different frequencies; case of small N

In this section, we discuss the case of arbitrary frequency
differences 	n for each oscillator on the ring. In this case,
the matrix M [cf. Eq. (10)] can no longer be diagonalized
analytically. Therefore, we discuss the basic behavior along
a few examples of 	n and solve the eigenvalue problem
numerically. Yet, these examples demonstrate that dissipation-
free synchronized motion also exists in such a general
setup.

A convenient way to investigate how the properties of syn-
chronization are affected by changes of 	n is to parametrize
the frequency difference according to

	n = sn	 (22)

and analyze the behavior of the eigenvalues and eigenvectors
of W as a function of 	 for a given (and fixed) set of sn.
Furthermore, we choose v to be negative such that for 	 = 0,
there exists a fully synchronized eigenstate if g = 2 (see the
discussion in Sec. III B 1 b). Note that a negative value of v

implies gj = Re(λ j ).
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FIG. 4. Examples of dissipation-free and (fully) synchronized dynamics in a ring of N = 5 oscillators with random frequency disorder.
The three different columns correspond to three different set of (scaled) frequency realizations �s. The value of v is taken to be negative. In
the top row we show the real part Re(λ j ) of the eigenvalues λ j of the matrix M as a function 	. The middle row shows the corresponding
imaginary part Im(λ j ) and the bottom row the degree of synchronization S(�c j ) of the corresponding eigenstates �c j . For all three considered
realizations, there exists an eigenstate (blue) with the maximum value of S (bottom row) for small values of 	 � 1. This eigenstate also has
the largest real part of its associated eigenvalue (top row), which allows tuning g in such a way that it becomes dissipation free while all other
eigenstates are damped.

In the following we consider as an example the case of N =
5 oscillators and show in Fig. 4 the results of the numerical
diagonalization of the matrix M for three different realizations
of �s = (s1, . . . , s5) (different columns). We choose the largest
difference between neighboring values of sn to be equal to 1,
i.e., max(sn − sn+1) = 1. Then, for 	 < 1, all frequency dif-
ferences between neighboring oscillators are always smaller
than the dissipative coupling between them (which has mag-
nitude one).

The case of N = 2 in our network of oscillators allows
us to represent the full parameter space as shown in Fig. 2
and identify the dissipation-free subspaces and synchroniza-
tion within. However, for larger system sizes (as considered
now) a representation similar to Fig. 2 becomes very space
consuming. Yet, a dissipation-free subspace is always nec-
essary for synchronization, which corresponds to the white
lines in Figs. 2(a) and 2(b). Thus, in order to determine
whether conditions (i)–(iii) are fulfilled, it is sufficient to
only search along the parameters for which each eigenstate
becomes dissipation free. In particular, the relevant informa-
tion of Figs. 2(a) and 2(b) may be conveniently combined to
contain only g± = Re(λ±) as a function of 	. Accordingly,
the top row of Fig. 4 shows the real part of all eigenvalues
Re(λ j ) as a function of the parameter 	, and the middle
row shows the respective imaginary parts Im(λ j ). Last, in

the bottom row, we plot the degree of synchronization S of
each eigenvector also as a function of 	. The eigenvalues
of M are sorted in descending order of their real parts, i.e.,
Re(λ1) > Re(λ2) > · · · > Re(λN ).

In the following, we discuss different regimes of 	 and
its impact on the possibility of synchronized motion in accor-
dance with conditions (i)–(iii). We focus on the eigenstate �c1

with largest real part Re(λ1) (highlighted as thick blue lines
in Fig. 4). The reason is that for g = Re(λ1) the eigenstate
�c1 becomes dissipation free while all other eigenstates are
simultaneously damped. In contrast, if we would choose g
such that another eigenstate �c j �=1 would become dissipation
free, then there is at least one eigenstate that is exponentially
growing. It is thus sufficient to only analyze the possibility of
synchronization of �c1 in the following.

a. No frequency difference (	 = 0). This means that there
are no variations in the oscillator frequencies, and the situation
is exactly the same as discussed in Sec. III B 1 b. Conse-
quently, the eigenvalues of W are given by Eq. (18). From
the discussion in Sec. III B 1 b, we know that if g = 2 =
Re(λsyn ), then there exists a dissipation-free synchronized
state �csyn ≡ 1√

5
(1, . . . , 1)ᵀ with associated imaginary eigen-

value wsyn = −iω̄, i.e., all oscillators are in phase and oscillate
with frequency ω̄. This is exactly what we observe in Fig. 4:
The eigenvalue with the largest real part has Re(λ1) = 2 (blue
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thick lines in the top row). Note that Re(λ2) = Re(λ3) and
Re(λ4) = Re(λ5). Furthermore, Im(λ j ) = 0 (middle row),
which implies an oscillation frequency of ω̄.

b. Small frequency differences (0 < 	 < 1). In this
regime, the disorder in the frequency differences between
nearest-neighboring oscillators always remains smaller than
the coupling between them (which is 1). We thus expect that
the degree of synchronization also remains large [S (�c1) ≈
N], i.e., the full delocalization of the eigenstate �c1 per-
sists. In the bottom row of Fig. 4, we observe exactly this
behavior of the thick blue line corresponding to �c1: For
small values of 	, S (�c1) is maximal and slowly decreases
as 	 approaches the value of 1. Thus, the synchronized
state remains close to being fully synchronized within this
regime [condition (iii)]. Note that the values for which
S (�c1) starts to decrease depend on the specific realization of
disorder �s.

The real part of the corresponding eigenvalue (top row)
continues to be the largest value of all eigenvalues (blue thick
line), Re(λ1) > Re(λ j �=1). Thus, for g = Re(λ1) the eigenstate
�c1 becomes dissipation free while all other eigenstates are
damped, i.e., conditions (i) and (ii) are fulfilled. As 	 in-
creases, Re(λ1) decreases resulting from the larger amount
of frequency disorder. Simultaneously, the imaginary part
Im(λ1) remains close to 0 such that the oscillation frequency
of the synchronized state �c1 also continues to be close to
ω̄. Note, the value of Im(λ1) only affects the oscillation
frequency.

c. Large frequency differences (	 � 1). As 	 is increased
further, the frequency difference exceeds the nearest-neighbor
interaction such that—similarly to (Anderson) localization in
finite systems [52]—the degree of synchronization S (�c1) of
the previously delocalized eigenstate �c1 rapidly decreases as
	 increases; see the blue thick lines in the bottom row of
Fig. 4. Hence, only partial synchronization is possible in this
regime, and condition (iii) is not fulfilled.

At the same time, the largest real value Re(λ1) continues
to decrease as a function of 	. Yet, close to 	 = 1, it remains
well separated from the second-largest real value Re(λ2) such
that a suitable choice of g still allows for dissipation-free dy-
namics with a single oscillation frequency. However, Re(λ1)
may coalesce with Re(λ2) for larger values of 	 depending on
the specific realization of �s. An example of such degeneracy
is observed for 	 ≈ 1.6 in the top right panel of Fig. 4. As
a result, both eigenstates would be dissipation free, result-
ing in the beating pattern discussed previously in Sec. III A.
However, as mentioned above, only partial synchronization is
possible in this regime anyway.

d. Very large frequency differences (	 � 1). In the regime
of very large frequency differences, we expect that the degree
of synchronization takes its minimum value S (�c j ) = 1 for all
eigenstates j since the scaling follows 	 � v. This implies
that the values 	n = 	sn are much larger than the dissipative
coupling strength v. Then M is approximately diagonal with
eigenvectors �c j nearly localized. Note that in this limit, there
is no synchronized state. We have checked numerically that
for 	 larger than the smallest difference between the sn, the
synchronization measure of all eigenstates approaches one, as
expected (not shown here).

FIG. 5. Dynamical behavior of Re(ai(τ )) given by Eq.(13)
for different values of the scaling factor 	. In all three cases
the mean frequency of the oscillators is ω̄ = 10 and the dis-
order is the same of the first panel of Fig. 4, namely �s =
(1.14, 0.20, 1.20, −0.46, −1.1). The coupling strength v is taken
to be negative and all frequencies are given in units of |v|. The
initial condition is �a0 = (1, 1, 2, −1, −1). Panels (a) and (b) show
fully synchronized motion, while panel (c) is an example of partial
synchronization.

Last, to demonstrate that the dynamics of the sys-
tem of oscillators is consistent with our discussion of the
different regimes above (obtained from analyzing the eigen-
vectors and eigenfrequencies), we show in Fig. 5 examples
of Re(an(τ )) as a function of the scaled time τ for �s =
(1.14, 0.20, 1.20,−0.46,−1.1) (corresponding to the first
column of Fig. 4) for three different values of 	. In all cases,
we choose the initial state �a0 = (1, 1, 2,−1,−1)ᵀ.

Figure 5(a) corresponds to the case of vanishing frequency
difference, i.e., 	 = 0. We choose the dissipation g = 2 such
that only the eigenstate with the largest real part is dissipation
free. As expected, after a short transient time of τ ≈ 2.5, all
oscillators are in-phase synchronized.

In Fig. 5(b), we increase the frequency difference to be
	 = 0.5. Hence, the synchronized state is dissipation free
for g = 1.91. Analogously to Fig. 5(a), all oscillators are
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FIG. 6. Scaling of the maximal standard deviation σfull of the
distribution of 	n for which one still finds full synchronization.
The blue dots are the numerically obtained mean values of the σ f

distribution and the red dots are these mean values plus or minus
the respective standard deviation obtained from 1000 realizations for
each N (for a more detailed discussion see the main text). The orange
solid line is the analytical scaling relation Eq. (23), σfull = b · N−3/2

with b = 11.5. The inset shows the data on a log-log scale (the red
dots have been omitted for better visibility).

synchronized after a transient time of τ ≈ 2.5, yet with a
small phase shift. Importantly, all oscillators have the same
amplitude consistent with the finding of Fig. 4 that the degree
of synchronization is maximal [S (�c1) = 5 for this value of 	].

Contrarily, in Fig. 5(c) where 	 = 1.1 (and g = 1.51 to
match the condition of dissipation-free dynamics), the ampli-
tudes vary among the oscillators. This is in accordance with
S (�c1) < 5. However, still only a single oscillation frequency
is present (after some transient time). This is an example of
partial synchronization.

3. Oscillators with different frequencies; N-scaling law for total
synchronization and the time interval during
which synchronized motion can be observed

a. Scaling law for full synchronization. In the previous
example, we have seen that there is an extended range of 	

values for which there is total synchronization. In the fol-
lowing, we will investigate how this range changes with the
number N of oscillators.

We use similar arguments as have been used to obtain scal-
ing laws for the width of the J-band of molecular aggregates
[52–54]. Note that from the definition (2), a reduction of the
synchronization corresponds to localization of the eigenvector
on a reduced number of oscillators. As discussed above in
Sec. III B 1, for the case of identical frequencies, we found
that states j = N (negative v) and j = N/2 (positive v, even
N) are the ones that lead to totally synchronized dynamics
of all oscillators. Localization (i.e., a reduction of synchro-
nization) happens when other eigenstates are mixing with this
state. Such mixing happens because the fluctuations of the fre-
quencies lead to coupling between the eigenstates defined in
Eq. (19). When this coupling is comparable to the difference
in eigenvalues between the eigenstates, then strong localiza-
tion happens. We focus on negative v, for which the closest
states to the totally delocalized one ( j = N) are the ones with
j = N − 1 and j = 1 [55] As discussed in Sec. III B 1 c, the

corresponding difference in the values of the real parts of
these states and the synchronized one scales as λdiff ∼ 1/N2

for N � 10. Similarly to the case of a finite chain (discussed
in detail in Ref. [52]) the strength of coupling between these
states is K = 1

N

∑N
n=1 	n exp(2π in/N ) (see Appendix B for

details). When each 	n is chosen from a Gaussian distribution
with zero mean and standard deviation σ , then K is also a
random number with zero mean but with a scaled standard
deviation of σ̃ (N ) = σ/

√
N . Thus, the strength of the cou-

pling is reduced as 1/
√

N with increasing N . This decrease is
slower than the decrease of the difference of the eigenvalues,
which scales as 1/N2. We denote by σfull the largest standard
deviation for which one still has total synchronization (for
nearly all realizations of 	n). Equating K = λdiff then gives
σfull/

√
N ∼ 1/N2, which results in the scaling

σfull ∼ N−3/2. (23)

This means that on increasing the number of oscillators N ,
the maximal width of the disorder σfull, for which there is full
synchronization, decreases as N−3/2.

We have numerically verified the scaling of Eq. (23).
To this end, for each N we have drawn a set of 	n from
independent Gaussian distribution with zero mean and stan-
dard deviation σ and increased σ until the synchronization
S was only a fraction f of the maximal synchronization
Smax = N , i.e., S = f · N . In the example below, we have
chosen f = 0.95, but choosing larger values, e.g., f = 0.99,
give the same scaling. The so obtained σ we denote by σ f .
It depends on the specific realization of 	n. Repeating this
procedure for many realizations one obtains for every N a
distribution of σ f values. In Fig. 6, the mean of 1000 realiza-
tions is plotted as blue dots. The red dots indicate the spread
of the σ f values (quantified via the corresponding standard
deviation of the distribution of σ f values). The orange curve
is the analytic scaling relation of Eq. (23). We see perfect
agreement between the analytical scaling and the numerically
obtained values for the mean of the distribution of σ f . Also,
the standard deviation of the σ f distribution decreases with
the same scaling. Note that in the analytic description, we
have σfull = b · N−3/2, with a prefactor b that depends on the
specific criterium of “localized.” Similarly, in the numerical
case the values of σ f depend on the choice of f . Therefore,
in Fig. 6, we have adjusted this prefactor b for the orange
curve.

b. Locating the dissipation-free space and the time interval
of synchronized motion. As we have seen from the discussion
above, sufficiently small fluctuations of 	n do not pose a prob-
lem to achieve a large synchronization measure. For the case
of a small number of oscillators (N ∼ 5) we have explicitly
shown examples for specific choices of the realizations of 	n.
We now investigate shifts of the real part of λ caused by 	n.
Such shifts imply, on the one hand, that for each realization
of 	n, one has a different value of g in order to be in the
dissipation-free subspace. On the other hand, the timescale on
which the synchronized state is reached is also affected. In the
following, we focus on the regime where full synchronization
is obtained. We also restrict the discussion to the case of nega-
tive v, where the synchronized state in the case of no disorder
is characterized by j = N . As discussed in Sec. III B 1 c, the
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relevant timescale τ̃ in which the synchronized state is reached
is given by 1/τ̃ = r̃ = |g − Re(λ j̃ )|, where j̃ labels the state
that has a real part that is closest to that of the synchronized
state (in the disorder-free case we have j̃ = 1 and j̃ = N − 1).
We now consider the case when 	n are randomly distributed
according to independent identical Gaussian distributions for
each oscillator with zero mean and standard deviation σ .
For sufficiently small disorder, we find analytically (see Ap-
pendix B) and numerically that the average value (denoted by
〈·〉) of the real part of the synchronized state is reduced by
|Re(〈	λsync〉)| ≈ N

12σ 2 with respect to the disorder-free value
Re(λN ) = 2, i.e., Re(〈λsync〉) = 2 − N

12σ 2. This holds when σ

is so small that one is in the fully synchronized regime. For
definiteness, we discuss in the following the case g = 2, i.e.,
the value according to the disorder-free case. Then one can
show that for all individual realizations this state is damped,
and the average decay is τsync ≈ 12

Nσ 2 . The disorder also in-
fluences the timescale τ̃ on which the synchronized state is
reached. We find (see Appendix B) that for g = 2 and N larger
than 20, one has τ̃ ≈ | 4π2

N2 |−1 = 1
4π2 N2, which is independent

of σ . With this, one finds the time during which synchronized
motion can be seen 	τ = τsync − τ̃ ≈ τsync ≈ 12

Nσ 2 . Note that
this holds for σ � 10 · N−3/2.

This expression is derived using the individual mean
values 〈λ j〉 to calculate the time interval according to
	τ = 1

|Re〈wN 〉| − 1
|Re〈w1,±〉| . In a numerical test, we have also

considered the more accurate expression 	τ = 〈 1
|Re(wN )| −

1
|Re(w1,± )| 〉, i.e., the average of the observable time of syn-
chronization for each realization. We found that both con-
siderations result in basically the same estimates of the
synchronization time, namely 	τ ≈ 12

Nσ 2 , where as above
σ � 10 · N−3/2.

IV. CONCLUSIONS

In this work we have investigated the possibility of long-
lived synchronized motion in a ring of harmonic oscillators,
which are subject to gain or loss and interact via nearest-
neighbor dissipative couplings. In this context, we refer to
synchronization as the existence of a single eigenstate of the
dynamical matrix, which is dissipation free. Furthermore, if it
attains the maximum value of the (inverse) participation ratio,
then we refer to it as “fully synchronized.” We find that in
the case of only two coupled oscillators, synchronization may
always be achieved by tuning the gain appropriately as long as
the frequency difference between the two oscillators is smaller
than their interaction strength.

Similar behavior is observed in larger networks, i.e., many
oscillators arranged on a ring with nearest-neighbor inter-
actions, yet the possibility of synchronization then depends
on the specifics of the system at hand: If all oscillators
are identical, then synchronized collective motion may be
achieved for an even number of sites with repulsive dissipa-
tive couplings (v positive) or an odd number of sites with
attractive dissipative interactions (v negative). For small fre-
quency differences compared to the coupling between the
oscillators, this behavior remains, which we show specifically
for the case of N = 5. If all frequency differences between

neighboring oscillators are much smaller than their coupling,
then one still has synchronized motion For larger frequency
differences, the synchronization decreases quickly with in-
creasing differences. This is similar to Anderson localization
[53] in tight-binding Hamiltonians with real matrix elements
and on-site disorder. We note that in the present case with a
non-Hermitian Hamiltonian, we observe a different behavior
for the real and imaginary parts; in particular, we observe
“localization” in the real part but not the imaginary part.

For a larger number N of oscillators, we use the standard
deviation σ of the frequency variations of the oscillators to
quantify their inhomogeneity. We find that the range of σ

values for which there is full synchronization scales as N−3/2.
This means that for a larger number of oscillators, the range
of σ values that give full synchronization is strongly reduced.
For example, for N ≈ 100, one has full synchronization for σ

smaller than approximately 1% of the interaction.
Synchronization, as discussed in this work, is intimately

related to the existence of dissipation-free dynamics and, thus,
isolated points or submanifolds in parameter space. Hence,
they require a very precise tuning of gain and loss in order
to obtain periodic steady states. This is, however, hard to
achieve in any realistic experiment, and the synchronized state
will experience some gain or loss. We can relax the condi-
tion Re(w j ) = 0 by solely requiring |Re(w j )| � |Im(w j )|,
which means that the change of amplitude of oscillation is
small over many oscillations. In addition, we then require
Re(w j ) � Re(wsync), which means that all other eigenstates
decay much faster than the “synchronized” one. In principle,
one may relax the condition even further and demand that
there exists only one state with Re(w j ) > 0, while all other
states fulfill Re(wi) � 0. Then, the synchronized state would
grow while all other states are exponentially damped.

For the case of disorder in the oscillator frequencies and
gain and loss chosen according to the disorder-free case, we
have investigated the time interval during which synchronized
motion can be observed. For this case, all the eigenstates
are exponentially damped. We find that for σ � N−3/2 the
time during which synchronization can be observed scales as
	τ ≈ τsync ≈ 12

Nσ 2 .
Finally, we want to comment on the role of the connectivity

of the oscillators. In the present work, the oscillators are in
a ring arrangement, with nearest-neighbor interactions and
equal interactions. The results obtained are specific for this
arrangement. For example, if one removes one interaction
(“linear chain”), then one sees that the maximum synchroniza-
tion is 2

3 N . Apart from this we expect that such a configuration
shows very similar scaling behavior as the ring. However,
in general, every configuration has its specific maximal
synchronization and its specific scaling laws. Such a sensi-
tivity of the system’s dynamical properties to the network
topology has been studied recently in the context of Kuramoto
oscillators [56]. Thus, also for linear oscillator models, every
arrangement needs a new analysis.
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APPENDIX A: DIFFERENT REPRESENTATIONS
OF THE EQUATIONS OF MOTION

Here we provide different representations of Eq. (3).

1. Separation in real and imaginary parts

Introducing an = xn + ipn and Wnm = W R
nm + iW I

nm in
Eq. (3) gives

ẋn + i ṗn =
∑

m

(
W R

nm + iW I
nm

)
(xm + ipm). (A1)

Or written explicitly as a linear system of coupled equation for
the real and imaginary parts,

ẋn =
∑

m

(
W R

nmxm − W I
nm pm

)
, (A2)

ṗn =
∑

m

(
W R

nm pm + W I
nmxm

)
. (A3)

2. Representation with real amplitude and phase

Introducing an = rneiφn with real rn and real φn allows one
to write Eq. (3) as

d

dt
(rneiφn ) =

∑
m

Wnmrmeiφm . (A4)

Note that both rn and real φn depend on time.

APPENDIX B: SCALING LAWS

In this Appendix we provide the main steps to derive the
scaling laws of Sec. III B 3.

1. Perturbation theory for disorder in the frequencies

We write Eq. (10) as M = M0 + M ′, where M0 =
M({	n = 0}) is the matrix M with all 	n = 0 and M ′ =
−i diag[	1, . . . ,	N ] is the diagonal matrix with the elements
−i	n on the diagonal. Using the eigenbasis of M0 we can
write Eq. (10) as

M =
∑



λ�v�v†
 +

∑


∑
′

�vK,′ �v†
′ (B1)

with the matrix elements of the matrix K given by

K,′ = − i

N

N∑
n=1

	ne2π i(−′ )n/N . (B2)

Note that K is anti-Hermitian and therefore K∗
i j �= Kji. It is

convenient to introduce a corresponding Hermitian operator,

KH = iK. (B3)

Note also that �v†
 �v′ = δ′ .

We consider the case v < 0. Then the matrix M reads [cf.
Eq. (10)]

M =

⎛
⎜⎜⎜⎜⎝

−i	1 1 0 . . . 1
1 −i	2 1 . . . 0
0 1
...

1 0 . . . 1 −i	N

⎞
⎟⎟⎟⎟⎠ (B4)

and the eigenvalues of the matrix M0 are

λ = 2 cos(2π/N ). (B5)

a. Corrections to the state j = N

The first-order correction to the state j = N is

K (1)
N = �v†

N K�vN = −iKH
N,N = − i

N

N∑
n=1

	n. (B6)

When the 	n are independent Gaussian random variables
with mean zero and standard deviation σ , then K (1)

N is also
a Gaussian random variable with zero mean but standard
deviation σ/

√
N . Note that K (1)

N is purely imaginary. Since we
are primarily interested in the decay times, which are related
to the real part of the eigenvalues of M, we need to evaluate
the second-order correction,

K (2)
N = −

∑
 �=N

(v†
KHvN )(v†

N KHv)

λN − λ

= − 1

N2

N∑
n=1

N∑
m=1

	n	m

∑
 �=N

ei2π(n−m)/N

2 − 2 cos(2π/N )
. (B7)

This quantity is purely real.
Calculating the mean over a disorder distribution for uncor-

related fluctuations of the 	n we find using 〈	n	m〉 = δnm,

〈
K (2)

N

〉 = − 1

N2

∑
 �=N

1

2 − 2 cos(2π/N )

N∑
n=1

〈
	2

n

〉
. (B8)

The sum over  can be calculated explicitly,

−1

N2

∑
 �=N

1

2 − 2 cos(2π/N )
= 1

12

−N2 + 1

N2

= 1

12

(
− 1 + 1

N2

)
, (B9)

such that we arrive at

〈
K (2)

N

〉 = 1

12

(
− 1 + 1

N2

) N∑
n=1

〈
	2

n

〉
. (B10)

Taking all 〈	2
n〉 ≡ σ 2 to be identical and choosing 〈	n〉 = 0

we have K (2) ≈ − 1
12 Nσ 2. The second-order correction to the

state j = N is λ
(2)
N = λN + K (1) + K (2). For the real part we

then obtain

Re
〈
λ

(2)
N (σ )

〉 ≈ 2 − 1
12 Nσ 2. (B11)

b. Corrections to the degenerate states j = N − 1 and j = 1

For v < 0, i.e., the case we consider here, the two states
j = N − 1 and j = 1 are degenerate, with eigenvalue λ1 =

014308-11
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λN−1 = 2 cos(2π/N ). The coupling elements between these
two states are

K1,N−1 = − i

N

∑
n

	ne4π in/N ≡ −ireiφ, (B12)

KN−1,1 = − i

N

∑
n

	ne−4π in/N = −ire−iφ, (B13)

where r = |K1,N−1| and φ is the corresponding phase. Both
quantities depend on 	n. Diagonalizing this degenerate sub-
space gives the new zeroth-order states,

�v± = 1√
2
(eiφ�v1 ± �vN−1) λ± = λ1 ∓ i

∣∣KH
1,N−1

∣∣. (B14)

The correction to the eigenvalues is purely imaginary. Since
we are interested in the real part, we perform perturbation
theory with the states �v± and �v j with j �= 1, N − 1. The
second-order corrections to the degenerate states are given by

K (2)
1,± =

∑
j �=±

(�v†
j K�v±)(�v†

±K�v j )

λ± − λ j

=
∑
j �=±

Kj,1K1, j + Kj,N−1KN−1, j

2(λ± − λ j )

±
∑
j �=±

[eiφKj,1KN−1, j]

2(λ± − λ j )
±

∑
j �=±

[e−iφKj,N−1K1, j]

2(λ± − λ j )
.

(B15)

Using the definition (B3), K (2)
1,± may be expressed as

K (2)
1,± = −

∑
j �=±

∣∣KH
j,1

∣∣2 + ∣∣KH
j,N−1

∣∣2

2(λ± − λ j )
∓

∑
j �=±

[
eiφKH

j,1KH
N−1, j

]
2(λ± − λ j )

∓
∑
j �=±

[
e−iφ

(
KH

N−1, j

)∗(
KH

j,1

)∗]
2(λ± − λ j )

. (B16)

Then the eigenvalues including the second-order correction
are given by

λ
(2)
1,± = λ1 ∓ i

∣∣KH
1,N−1

∣∣
−

∑
j �=±

∣∣KH
j,1

∣∣2 + ∣∣KH
j,N−1

∣∣2 ± 2Re
[
eiφKH

j,1KH
N−1, j

]
2(λ± − λ j )

.

(B17)

Note that KH
j,i, φ, and λ± depend on all 	n. We found that,

on averaging, the term containing the phase φ is always small
compared to the other terms such that we neglect it in the

following. For the mean of the real part we then obtain

Re
〈
λ

(2)
1,±

〉 = λ1 −
∑
j �=±

Re

〈 ∣∣KH
j,1

∣∣2 + ∣∣KH
j,N−1

∣∣2

2(λ1 − λ j ) ∓ i
∣∣KH

1,N−1

∣∣
〉
, (B18)

= λ1 − 2
∑
j �=±

(λ1 − λ j )

〈 ∣∣KH
j,1

∣∣2 + ∣∣KH
j,N−1

∣∣2

4(λ1 − λ j )2 + ∣∣KH
1,N−1

∣∣2

〉
.

(B19)
To evaluate the average, we approximate |KH

1,N−1|2 in the
denominator by its average and obtain

Re
〈
λ

(2)
1,±

〉 =λ1 − 2
∑
j �=±

(λ1 − λ j )

〈∣∣KH
j,1

∣∣2〉 + 〈∣∣KH
j,N−1

∣∣2〉
4(λ1 − λ j )2 + 〈∣∣KH

1,N−1

∣∣2〉 .
(B20)

We may now evaluate the expectation values. It holds [cf.
Eq. (B2)]

〈∣∣KH
j, j′

∣∣2〉 = 1

N2

N∑
n=1

N∑
m=1

e
2π i( j− j′ )(n−m)

N 〈	n	m〉, (B21)

= 1

N2

N∑
n=1

〈
	2

n

〉
. (B22)

The second line follows from the fact that different 	n are
statistically independent. Assuming that the variance is equal
for all 	n, i.e., 〈	2

n〉 = σ 2, we obtain

Re
〈
λ

(2)
1,±

〉 ≈λ1 − 2
∑
j �=±

(λ1 − λ j )
σ 2/N + σ 2/N

4(λ1 − λ j )2 + σ 2/N
.

(B23)

Note that the condition j �= ± is equivalent to j �= 1, N − 1.
The smallest difference is given by λ1 − λ2 ≈ 12π2/N2. Fur-
thermore, since in the above derivation we assume that one
is in the fully synchronized regime, σ has to be sufficiently
small. This requires σ ∼ N−3/2 as discussed in the main text.
Then, we can safely neglect the term σ 2/N in the denominator
and obtain

Re
〈
λ

(2)
1,±

〉 ≈ λ1 −
∑
j �=±

1

N |λ1 − λ j |σ
2. (B24)

We have λ1 = 2 cos(2π/N ) ≈ 2 − 4π2/N2. It turns out that
for values of σ such that one is in the fully synchronized
regime the second term in Eq. (B24) is small compared to
4π2/N2 and can be neglected, so that one finally obtains

Re
〈
λ

(2)
1,±

〉 ≈ 2 − 4π2/N2. (B25)

The timescale on which the synchronized state is reached is
thus τ̃ ≈ 1/|g − 2 + 4π2/N2|. We compared these analytical
estimates with results obtained by full numerical diagonaliza-
tion of the matrix W and averaging over realizations of the
	n. We found nearly perfect agreement.
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