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Theory and data analysis of player and team ball possession time in football
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In this study, the stochastic properties of player and team ball possession times in professional football matches
are examined. Data analysis shows that player possession time follows a gamma distribution and the player
count of a team possession event follows a mixture of two geometric distributions. We propose a formula for
expressing team possession time in terms of player possession time and player count in a team’s possession,
verifying its validity through data analysis. Furthermore, we calculate an approximate form of the distribution of
team possession time and study its asymptotic property.
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I. INTRODUCTION

Competitive team sports are complex systems involving
the collective dynamics of players. Owing to weather condi-
tions, situation-dependent changes of team strategy, and other
factors, a game can be viewed as a noisy dynamical system
and deterministic predictions for game situation and flow are
extremely difficult. Primarily, the human movement is com-
plex and uncertain and clear and simple physical laws are not
necessarily directly applicable. However, at least statistically,
it is observed that human movement exhibits a certain pat-
tern or predictability [1,2] and phenomenological models for
human movement [3,4] have been developed. Similarly, so-
cial systems based on interaction of people exhibit statistical
regularities [5,6]. Effective modeling that can reproduce the
properties of real data is a major approach to analyze social
and other complex systems and is valid for sports as well.

Recently, large and precise digital data sets are collected
in various sports, which are helpful in providing an effective
understanding of the complexity of sports [7,8]. In particular,
football (soccer) is a team sport on which considerable re-
search in physics has been conducted, owing to its worldwide
popularity [9,10] and availability of online data sets [11,12].
Previously, statistical and phenomenological studies on scores
[13,14], formations [15,16], and network structures [17,18] in
football matches have been investigated using empirical data
analysis, numerical simulation, and theoretical calculations.
Artificial intelligence and machine learning have emerged as

additional tools in sports analytics [19], providing new in-
sights into sports data.

In football matches, it is natural to expect ball possession
to be an important factor in team success; intuitively, a team
holding the ball for a longer period has a greater chance of
achieving a goal and win. However, this issue is controversial
[7,20,21]. Some articles have suggested that successful teams
garner greater ball possession than unsuccessful teams [22]
and that ball possession is correlated with match outcome
[23]. However, other studies have argued that there is no
correlation [24]. According to Ref. [21], “in recent years,
the role of possession percentage in the analysis of technical
indicators has gradually weakened.” To further complicate
the issue, ball possession has been reported to depend on
formation [24], match location (home or away) [25], and game
situation (winning or losing) [26]. Analysis of ball possession
is important, not only practically in taking the initiative and
creating an effective attack in matches, but also scientifically
as a fundamental temporal property in ball sports.

Ball possession percentage is the ratio of total ball pos-
session time for a given team to the total possession time
of both the given teams and their opponent and is a macro-
scopic indicator in that it is computed over an entire match.
The macroscopic ball possession can be hierarchically de-
composed as follows. Possession time for a given team in
an entire match is the sum of the times the team possessed
the ball over all its possession, composed of the possession
times of all its players. The statistical properties for these two
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levels of possession time have been previously investigated.
Player possession time was analyzed by Mendes et al. [27]
in South American and European matches and was found to
approximately follow the gamma distribution or its q analog.
Chacoma et al. [28] analyzed team possession time as a part of
the analysis of a large data set created by Pappalardo et al. [12]
and proposed the inverse Gaussian distribution as a candidate
for its probability distribution.

Although player and team possession times have been in-
dependently analyzed, the relation between these two levels
of possession times has not been explicitly formulated. As
team possession time can be decomposed into the possession
times of individual players, it is natural that these two levels
of possession times should be closely related to each other.
Nevertheless, there appears to be no known theoretical rela-
tion connecting the gamma distribution (for player possession
time) and inverse Gaussian distribution (for team possession
time). The current situation is not satisfactory, in which a
consistent framework for player and team possession time has
not been established.

In this study, the authors propose a theoretical formula
relating player and team ball possession times along with the
player count of a team ball possession event. Through the
analysis of player-tracking data for matches in the Japan Pro-
fessional Football League, we confirm that player possession
time follows the gamma distribution, qualitatively consistent
with the findings of Mendes et al. [27]. We find that player
count of a team ball possession is effectively approximated
by a mixture of two geometric distributions and propose that
this distribution is composed of geometric distributions that
depend on the spatial location of the possession. Using the
proposed formula and these results, we can obtain an estimate
for the distribution of team possession time that is similar to
the real distribution. In this manner, a bottom-up formulation
for team possession time from player possession time and
player count can be successfully attained.

II. DATA SET

We analyzed player-tracking and play-by-play data from
95 matches in the top division of the Japan Professional Foot-
ball League. Of these, 45 matches were played in 2020 and
50 matches were played in 2021. The data set was provided
by DataStadium Inc., Japan, and the authors received explicit
permission to use the data in this study. The player-tracking
data contain the positional coordinates of each player and the
ball every 0.04 s and the play-by-play data indicate which
player touched the ball and when, as well as what action
(e.g., a trap, home or away pass, or throw in) was taken. By
combining these two types of data, we can investigate ball
possession events based on spatial location.

According to our experience of watching football matches,
goalkeepers (GKs) tend to possess the ball much longer than
the other players. More quantitatively, in our data set, the
player mean possession time, not including GKs, is 2.49 s,
whereas the GK mean possession time is 4.61 s. Because of
this exceptionality, we excluded GK possession times from
the analysis. Moreover, we assumed that the chain of ball
possession within a team was interrupted even when the GK
of the same team held the ball. The study of player possession

time by Mendes et al. [27] did not consider GK possession;
meanwhile, the study of team possession time by Chacoma
et al. [28] did not specify that GK possession was excluded.

III. CHARACTERISTIC QUANTITIES

In this study, we focus on three quantities connecting ball
possession: player possession time, team possession time, and
player count of team possession.

The player ball possession event is assumed to begin when
a player touches the ball and continues until another player
touches the ball or the match is interrupted (e.g., owing to a
foul or ball leaving the field of play). Player possession time
is defined as the time duration of the player ball possession
event. Similarly, we define team possession time as the dura-
tion in which players of the team continuously maintain the
ball. Moreover, as noted in the previous section, we consider
that the team ball possession event ends when the GK touches
the ball. In particular, we consider the probability densities
fplayer (t ) and fteam(t ) of player and team possession times,
respectively.

Generally, a possession event of a team contains multiple
players. The last characteristic quantity, the player count of a
team’s possession, represents how many players touch the ball
in the possession event. The player count is increased each
time the player in possession of the ball changes if the ball
is maintained by the same team, including if the same player
appears more than once in the chain of possession. Hence this
number is identical with the number of succeeded passes in a
team’s possession event plus one. We use the symbol n for the
player count and define P(n) as the probability or fraction of
team possession events with a player count of n.

Figure 1 illustrates the flow of ball possession in a real
match and the definitions of our characteristic quantities. The
match was played by Shonan Bellmare (home) and Kawasaki
Frontale (away) on Sept. 27, 2020. The two-way arrows ap-
pearing in the middle of the graph indicate the possession
times and the arrows above the graph indicate team posses-
sion times. The numbers represent the player counts of team
possession events.

IV. ANALYSIS OF PLAYER POSSESSION TIMES

Figure 2 shows the probability density fplayer (t ) of player
possession time. The histogram represents the empirical den-
sity calculated from all 95 matches in the data set. The
total number of player ball possessions is 1225 per match.
The histogram displays a unimodal distribution with a mean
of 2.49 s.

The solid curve represents the gamma distribution

g(t ; β, τ ) := 1

�(β )τβ
tβ−1e−t/τ ,

where � is the gamma function. Using the maximum likeli-
hood estimation [29], we obtained β = 2.29 and τ = 1.09 s.
(The shape parameter β is always dimensionless and the scale
parameter τ has the dimension of time in this case.) The over-
all shape of the empirical distribution is well approximated by
the gamma distribution.
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FIG. 1. Illustration of the characteristic quantities, considering as an example the flow of ball possession during the initial 60 s in Shonan
vs Kawasaki (Sept. 27, 2020). Each horizontal line segment represents the interval of ball possession by each player, sorted by positions:
GK, DF (defender), MF (midfielder), and FW (forward). Player possession times are shown with two-way arrows aligned in the middle, team
possession times are shown with two-way arrows above the graph, and player counts in team possession are indicated slightly below the middle
of the graph.

The gamma distribution in player possession time was
reported by Mendes et al. [27] and Fig. 2 is qualitatively
consistent with their result. However, compared to 2.6 � β �
4.2 and 0.68 s � τ � 1.06 s by Mendes et al. [27], our result
β = 2.29 is small and τ = 1.09 s is large. We have no concrete
ideas for the reason and meaning of this deviation; however,
perhaps the team style of play is captured in β and τ . Mendes
et al. [27] hypothesized that matches played by highly ranked
teams have larger β and smaller τ , but a comparative study is
necessary to validate this hypothesis.

Next, we provide the autocorrelation function of player
possession times within a team possession event. For the total
number of team possession events of S, with the sth event
involving ns players, and the ith player possession time in the
sth event of t (s)

i (s = 1, . . . , S and i = 1, . . . , ns), the autocor-
relation function [30] is defined as

ρ(l ) =
∑S

s=1

∑ns−l
i=1

(
t (s)
i − 〈T 〉)(t (s)

i+l − 〈T 〉)∑S
s=1

∑ns
i=1

(
t (s)
i − 〈T 〉)2 ,

where 〈T 〉 is player mean possession time. The argument l is
called the lag. Figure 3(a) shows the numerical result of ρ(l ).
The autocorrelation function ρ(l ) takes on values near 0 for
l � 1, indicating that successive player possession times have

FIG. 2. Probability density of player possession time. The empir-
ical density calculated from all matches in the data set is shown by the
histogram and the approximated gamma distribution with β = 2.29
and τ = 1.09 s is represented by the solid curve.

almost no correlation. This result is used in the theoretical
argument presented in Sec. VI.

To magnify ρ(l ) ≈ 0, the semilog graph of |ρ(l )| is pre-
sented in Fig. 3(b). Some l give negative correlation; thus
we take the absolute value of ρ(l ) in this graph. The sign
of ρ(l ), whether ρ(l ) > 0 or ρ(l ) < 0, is distinguished by
circles and squares, respectively. The graph roughly shows a
decrease as a whole; however, the decay rate cannot be pre-
cisely determined owing to fluctuation. Some time series data,
such as stock prices [31] and neuron activity [32], have been
reported to exhibit exponential decay in the autocorrelation
function, but player possession time does not display such
clear behavior.

V. ANALYSIS OF THE PLAYER COUNT INVOLVED
IN TEAM POSSESSION

A. Geometric mixture distribution

Next we analyze the probability distribution P(n) of player
count n in team ball possession. Circles plotted in Fig. 4
represent the empirical P(n) calculated from all matches in
the data set on a semilog scale. The data size (total number of
team possession events) is 421.1 per match and the mean value
of player count n is 2.91. As stated in Sec. III, the player count
is the number of passes plus one, so the mean pass number in
a team possession event becomes 2.91 − 1 = 1.91 ≈ 2. Thus
the mean number of possession events of a team in a match
is 210.6(= 421.1/2), each of which contains two passes on
average.

The empirical P(n) in Fig. 4 exhibits exponential decay
with different slopes in n � 5 and n � 5. Based on this obser-
vation, we heuristically apply

P(n) = w1(1 − q1)qn−1
1 + w2(1 − q2)qn−1

2 (n = 1, 2, . . .).

(1)

Each term is composed of the geometric distribution (i.e., the
discrete version of the exponential distribution) Pgeo(n; q) :=
(1 − q)qn−1 (0 < q < 1) times positive constant w. In this
paper, we refer to the probability distribution in Eq. (1) as
the geometric mixture distribution. Owing to the normaliza-
tion of P(n), we consider a constraint for the mixture ratios:
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(a) (b)

FIG. 3. (a) Autocorrelation function ρ(l ) of players possession times within a team’s possession event. (b) Semilog graph for |ρ(l )|. Circles
and squares indicate ρ(l ) > 0 and ρ(l ) < 0, respectively.

w1 + w2 = 1. Therefore, the geometric mixture distribution
has three independent parameters q1, q2, and either w1 or
w2. Using the expectation-maximization algorithm [33], the
optimal value is calculated as

q1 = 0.34, q2 = 0.77, w1 = 0.52, w2 = 0.48. (2)

The corresponding geometric mixture distribution is shown by
the solid curve in Fig. 4.

B. Origin of geometric mixture distribution

This result raises the question of why the geometric mix-
ture distribution describes P(n) so well.

We classify team possession events into three types, de-
pending on the location of the ball: (i) an own-half event, in
which the ball is always in the own half, (ii) an opponent-half
event, in which the ball is always in the opponent half, and (iii)
a transversal event, which includes the ball located in both the
own and opponent halves. Note that the own and opponent
halves are relative divisions, that is, the own half for one
team is the opponent half for the other team and vice versa.
In our data set, the fractions of own-half, opponent-half, and
transversal events are 38.1%, 30.5%, and 31.4%, respectively.

In Fig. 5(a), inverted triangles, upright triangles, and dia-
monds represent the frequency distributions of player count

FIG. 4. Probability distribution P(n) of player count n on a
semilog scale. The empirical distribution calculated from all matches
is shown as circles and the optimal geometric mixture distribution (1)
is given by the solid curve.

n for the own-half, opponent-half, and transversal events,
respectively. Each graph approximately exhibits exponential
decay, with the distribution for the transversal events decaying
slowly compared to the other two types. The solid lines indi-
cate the geometric distribution Pgeo(n; q) = (1 − q)qn−1 with
qown = 0.55, qopp = 0.64, and qtrans = 0.79. The distribution
of transversal events decays slower than those of own-half
and opponent-half events. There are several reasons for the
difference in their decay rates. First, transversal events require
carrying the ball from the own half to the opponent half, which
necessarily involves a number of players. Second, if a player
succeeds in getting possession of the ball from an opponent in
the own half, he may clear the ball to avoid conceding a goal
or may pass the ball to GK to allow his team to rebuild its
formation, leading to rapid decay in P(n) for own-half events.
Third, when a player possesses the ball in the opponent half,
the opponent players try to dispossess the ball in a desperate
attempt to defend their goal, which causes P(n) for opponent-
half events to decay rapidly.

The frequency distribution of the own-half or opponent-
half events, which we term as nontransversal events, is shown
as circles in Fig. 5(b). This distribution is the simple sum of
the own-half and opponent-half distributions in Fig. 5(a). The
nontransversal distribution can be approximated by a single
geometric distribution with q = 0.61 in n � 15, shown as a
solid line.

By the definition of the transversal and nontransversal
events, the entire distribution P(n) for player count n can
be computed by the sum of the transversal and nontransver-
sal distributions. Corresponding to the slopes of the lines
in Fig. 5(b), we set q1 = 0.61 (nontransversal) and q2 =
0.79 (transversal). As transversal events account for 31.4%
as written above, w1 = 1 − 0.314 = 0.686 and w2 = 0.314.
Figure 6 shows the geometric mixture distribution, with these
parameter values represented as a dashed curve and the
empirical distribution P(n) shown as circles. Although this
estimated distribution is inferior to the optimal distribution
shown in Fig. 4, it captures the tendency of the empirical
distribution well. Therefore, we consider that the geomet-
ric mixture distribution for P(n) is accounted for by two
geometric distributions representing the transversal and non-
transversal events.

To be precise, the distribution of the player count n for
nontransversal events [circles in Fig. 5(b)] deviates from the
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(a) (b)

FIG. 5. (a) Frequency distribution of player count n for the own-half (inverted triangles), opponent-half (upright triangles), and transversal
(diamonds) events. Three solid lines indicate the optimal geometric distributions. (b) Circles represent the distribution of nontransversal events,
calculated as the sum of the own-half and opponent-half distributions in (a). Diamonds are the same as in (a).

geometric distribution for n = 1 and n � 15. We do not be-
lieve that division into transversal and nontransversal events
is the best and most decisive explanation for the geometric
mixture distribution; accordingly, there may be more suitable
classifications for team possession events.

VI. ANALYSIS OF TEAM POSSESSION TIMES

A. Relation between player and team possession time

In this section, we propose a relation between the proba-
bility density fplayer (t ) of player possession time and fteam(t )
of team possession time and compare this relation with actual
football data.

According to Fig. 3, player possession times in a team’s
possession event have almost no correlation; thus we can
reasonably assume that player possession times are indepen-
dent random variables. As it is known in probability theory
[34] that the distribution of the sum of independent random
variables is expressed by the convolution of their individ-
ual distributions, the probability density of the sum of the

FIG. 6. Comparison of the empirical distribution P(n) of player
count n (circles) and the geometric mixture distribution estimated
by the transversal and nontransversal events: q1 = 0.61, q2 = 0.79,
w1 = 0.69, and w2 = 0.31 (dashed curve).

possession times of two players can be written as

( fplayer ∗ fplayer )(t ) =
∫ t

0
fplayer (t

′) fplayer (t − t ′)dt ′.

Similarly, the probability density of the sum of the possession
times of n players is given by the n-fold convolution

f ∗n
player (t ) := (

n︷ ︸︸ ︷
fplayer ∗ · · · ∗ fplayer )(t ).

Recalling that a team’s possession event comprising n players
occurs with probability P(n), we obtain

fteam(t ) =
∞∑

n=1

P(n) f ∗n
player (t ). (3)

This is the formula for the distribution of team possession
time using the distributions of player possession time and
player count. The right-hand side represents the superposition
of f ∗n

player (t ) with weight P(n) over n = 1, 2, . . ..
In Fig. 2, we see that fplayer (t ) can be approximated by

the gamma distribution g(t ; β, τ ). It is known that the sum
of independent gamma-distributed random variables having
identical τ follows a gamma distribution, which is termed
as the reproductive property of the gamma distribution [34].
More specifically, the sum of two independent random vari-
ables of probability densities g(t ; β1, τ ) and g(t ; β2, τ ) has
the probability density g(t ; β1 + β2, τ ). That is, the probabil-
ity density of the sum of the possession times of n players
becomes g(t ; nβ, τ ). Meanwhile, the distribution of player
count n can be well approximated by the geometric mixture
distribution (see Fig. 4). Therefore, fteam(t ) for our data set
can be expressed as

fteam(t ) =
∞∑

n=1

2∑
j=1

w j (1 − q j )q
n−1
j g(t ; nβ, τ ). (4)

Using parameter values (β, τ ) = (2.29, 1.09 s) as in
Sec. IV and (q1, q2,w1,w2) = (0.34, 0.77, 0.52, 0.48) as in
Eq. (2), we can numerically compute fteam(t ) using Eq. (4).
Figure 7 shows the probability density of team possession
time directly computed from the team possession data from all
matches, displayed as squares, and the numerical result from
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FIG. 7. Probability density fteam(t ) of team possession time on a
semilog scale. Squares are computed from the empirical data of team
possession events and the solid curve is given by Eq. (4). The inset
shows the enlarged graph in t < 15 s.

Eq. (4) shown as a solid curve. Our formula (4) yields a good
approximation for empirical fteam(t ), except for t � 80 s for
which possession events occur only infrequently.

The mean of team possession time is 7.24 s. By using
Eq. (3), the mean can be calculated as

∫ ∞

0
t fteam(t )dt =

∞∑
n=1

P(n)
∫ ∞

0
t f ∗n

player (t )dt

=
( ∞∑

n=1

nP(n)

)(∫ ∞

0
t fplayer (t )dt

)
,

where ∫ ∞

0
t f ∗n

player (t )dt = n
∫ ∞

0
t fplayer (t )dt

by induction. That is, it is theoretically expected that the mean
of team possession time is expressed by the product of the
mean player possession time and mean player count of a pos-
session. In fact, as in previous sections, player possession time
and player count in team possession have means of 2.49 s and
2.91, respectively, and their product 2.49 s × 2.91 = 7.25 s is
very close to the empirical mean 7.24 s of team possession
time.

As shown in the frequency distribution of player count n in
Fig. 5(b), we can split the team possession times into transver-
sal and nontransversal events. Figure 8 shows the probability
density functions of transversal (diamonds) and nontransver-
sal (circles) team possession times. Transversal events more
likely have longer possession times than nontransversal ones,
corresponding to the decay rates in distribution P(n) of player
count n as shown in Fig. 5(b). The solid curves are the esti-
mated functions using Eq. (3) using empirical distributions of
P(n) and fplayer(t ). The proposed formula is consistent with
the division of team possession events into transversal and
nontransversal ones.

B. Theoretical approximated distribution

In the previous subsection, we have managed to calculate
the mean of team possession time from Eq. (3), but this is a
fortunate exception. It appears to be very difficult to derive
other theoretical properties of fteam(t ), e.g., its asymptotic
behavior, directly from Eq. (3), which involves an infinite
sum. Moreover, the exact calculation of the sum in Eq. (4)
is likely infeasible, particularly owing to the gamma function
�(nβ ) in g(t ; nβ, τ ). In this subsection, we introduce several
approximations and derive a closed form for fteam(t ).

As written in the previous subsection, the sum of n inde-
pendent random variables drawn from the gamma distribution
with (β, τ ) follows the gamma distribution with density
g(t ; nβ, τ ). It is well known that the mean and variance of
the gamma distribution g(t ; nβ, τ ) are nβτ and nβτ 2, respec-
tively. Hence, owing to the central limit theorem, we get the
following normal approximation:

g(t ; nβ, τ ) � 1√
2πnβτ 2

exp

(
− (t − nβτ )2

2nβτ 2

)
. (5)

Although this normal approximation is only valid for suffi-
ciently large n, we shall apply it to all n = 1, 2, . . ..

Next, we use the continuum approximation to replace
the discrete sum for n = 1, 2, . . . with a continuous inte-
gral for 1 � x < ∞. The geometric distribution Pgeo(n; q)
in the geometric mixture distribution is a discrete distri-
bution and its continuous counterpart is the exponential
distribution

fexp(x; κ ) = κ e−κ (x−1) (x � 1).

The usual exponential distribution is defined on x � 0, but we
shift the lower bound to x = 1 in this study. As we can write
Pgeo(n; q) = (1 − q)qn−1 = (1 − q)q−1 exp[−n ln(1/q)], the
appropriate relation between q and κ is

κ = ln
1

q
= − ln q.

FIG. 8. Probability density functions of team possession time for
transversal (diamonds) and nontransversal (circle) events. The solid
curves show the estimated distribution using Eq. (3) with P(n) and
fplayer(t ).
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Applying these approximations, we have

fteam(t ) �
∫ ∞

1

2∑
j=1

w jκ je
−κ j (x−1) 1√

2πβτ 2x
exp

(
− (t − xβτ )2

2xβτ 2

)
dx

=
2∑

j=1

w j
κ jeκ j+t/τ√

2πβτ 2

∫ ∞

1

1√
x

exp

[
−

(
κ j + β

2

)
x − t2

2βτ 2x

]
dx

=
2∑

j=1

w j
2κ jeκ j+t/τ√

2πβτ 2

∫ ∞

1
exp

[
−

(
κ j + β

2

)
u2 − t2

2βτ 2u2

]
du,

where we put u = √
x in the last equality. The integral can be calculated using the following formula [35] for a > 0 and b � 0:∫ ∞

1
exp

(
−a2u2 − b2

u2

)
du =

√
π

4a
[e2aberfc(a + b) + e−2aberfc(a − b)],

where

erfc(z) := 2√
π

∫ ∞

z
e−x2

dx

is the complementary error function. Finally, the approximate form becomes

fteam(t ) �
2∑

j=1

w j
κ jeκ j+t/τ

2
√

β(2κ j + β )τ

⎡
⎣exp

⎛
⎝√

1 + 2κ j

β

t

τ

⎞
⎠erfc

(√
κ j + β

2
+ t√

2βτ

)

+ exp

⎛
⎝−

√
1 + 2κ j

β

t

τ

⎞
⎠erfc

(√
κ j + β

2
− t√

2βτ

)⎤
⎦. (6)

As several approximations have been employed to derive
Eq. (6), we need to check that the approximated fteam(t ) is
still consistent with the empirical distribution. Figure 9 shows
this approximated function of fteam(t ) as a solid curve, along
with the empirical fteam(t ) shown in squares. The approxi-
mated distribution is deviated from the empirical distribution
particularly in t � 15 s (see the inset of Fig. 9). Among the
approximations used, the normal approximation of the gamma
distribution in Eq. (5) probably has a large influence on the
deviation. The central limit theorem guarantees that Eq. (5) is

FIG. 9. Semilog graph of the empirical distribution fteam(t ) of
team possession time (squares) and its approximate form (6) (solid
curve). The asymptotic exponential decay (7) is shown as the dashed
line, shifted downward to avoid overlap with the squares and solid
curve. The inset shows the enlarged graph in t < 15 s.

valid for sufficiently large nβ, but its accuracy decreases for
small n. A major difference between the normal and gamma
distributions is that the normal distribution can take negative
values, whereas the gamma distribution cannot. Therefore, the
normal approximation will cause a great deviation for small t .
Meanwhile, the approximated distribution decays similarly to
the solid curve in Fig. 7 for t � 20 s. Hence Eq. (6) can be
reliably used for the asymptotic form of fteam(t ).

To further simplify Eq. (6), we use the asymptotic expan-
sion of the erfc function [35]:

erfc(z) ∼ e−z2

√
πz

, erfc(−z) ∼ 2 − e−z2

√
πz

as z → ∞. In addition, although (q1,w1) and (q2,w2) in the
geometric mixture distribution (1) are symmetric by defini-
tion, we set q1 < q2 as in Eq. (2). We then have κ1 > κ2, so
that j = 2 in Eq. (6) becomes dominant for large t and j = 1
can be neglected. Finally, we obtain the asymptotic form

fteam(t ) ∝∼ exp

⎡
⎣−

⎛
⎝√

1 + 2κ2

β
− 1

⎞
⎠ t

τ

⎤
⎦

= exp

⎡
⎣−

⎛
⎝√

1 − 2 ln q2

β
− 1

⎞
⎠ t

τ

⎤
⎦. (7)

That is, fteam(t ) exhibits exponential decay asymptoti-
cally. Substituting β = 2.29, τ = 1.09 s, and q2 = 0.77, the
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corresponding relaxation time is computed as

⎛
⎝√

1 − 2 ln q2

β
− 1

⎞
⎠−1

τ ≈ 10.1 s.

This exponential slope is shown as a dashed line in Fig. 9 and
effectively describes the decay of the empirical distribution.

VII. DISCUSSION

In this study, the relation between player and team pos-
session times, Eq. (3), is established; these two levels of
possession times have been previously analyzed separately.
The proposed result will provide an accurate understanding
of the ball possession, which is a fundamental property in ball
sports.

We analyze the stochastic properties of player and team
ball possession times by summing over the 95 total matches.
A similar analysis for individual match, team, and player is a
subject for a future study. For example, there is a possibility
that the parameters (β, τ ) for each player quantify the player’s
style of play and parameters (q1, q2,w1,w2) for each team
quantify the team’s strategy.

While the gamma distribution for player possession time
has been reported in the analysis of data from various leagues
and championships [27], the geometric mixture distribution
for player count has not been previously investigated. Cha-
coma et al. [28] investigated the number of passes in team ball
possession, which is our player count minus one. However,
only the graph of the distributions obtained by data analysis
and a simplified simulation were provided, neglecting any
theoretical discussion. In addition, because their graph was
drawn on a log-log scale, it could not be determined whether
the geometric mixture distribution was represented in their
data. Further study of the player count in team possession
is required to assess the prevalence of the geometric mixture
distribution.

In this study, we have determined that the player count
in team possession event follows the geometric mixture dis-
tribution and proposed that this distribution is attributed to
the geometric distributions for own-half, opponent-half, and
transversal events. The geometric distribution Pgeo(n; q) for
player count n is derived mathematically under the assump-
tion that the ball advances to the next teammate with a
constant probability q, independent of past events. This fact
may lead to simplified Markovian modeling as in studies on
passing networks in football [36] and rally length in volley-
ball [37]. Yet, this simplified assumption does not exactly
represent the dynamics in real football matches. We expect
that stochastic modeling based on detailed data analysis al-
lows an evaluation of the validity of the simple geometric
distribution, attaching additional meaning to the parameter q
and providing an improvement of the geometric distribution.

FIG. 10. Semilog graph for the distribution of team possession
time. The squares and solid curve indicate the empirical distribution
and inverse Gaussian distribution, respectively. The inset shows the
enlarged graph in t < 15 s.

Chacoma et al. [28] proposed that team possession time
follows the inverse Gaussian distribution, with a probability
density of √

λ

2πt3
exp

(
−λ(t − μ)2

2μ2t

)
.

The maximum likelihood estimation [38] for μ and λ does
not adequately fit the entire data; however, a better result was
obtained by dropping team possession times less than 1 s as a
trial. Figure 10 shows a semilog graph for the distribution of
team possession time. The solid curve represents the inverse
Gaussian distribution with μ = 8.10 s and λ = 5.76 s. The
inverse Gaussian distribution appears to be consistent with the
decay of the empirical distribution; however, the evaluation of
this result has to consider that short possession times less than
1 s, accounting for 11.3% of the data, were neglected. If μ

and λ of the inverse Gaussian distribution can be expressed
in terms of the distributions fplayer (t ) and P(n), football data
analysis makes considerable progress.

The distribution of team possession time in Eq. (4) and
subsequent results (6) and (7) depend on the specific form
of fplayer (t ) and P(n). Thus these expressions may vary for
other football matches or other ball sports. In contrast, Eq. (3)
provides a general framework and is valid for any sports.
We believe that this formula can assist in determining the
theoretical properties of player and team possession times.
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