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Site percolation threshold of composite square lattices and its agroecology applications
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We analyze the percolation threshold of square lattices comprising a combination of sites with regular and
extended neighborhoods. We found that the percolation threshold of these composed systems smoothly decreases
with the fraction of sites with extended neighbors. This behavior can be well-fitted by a Tsallis q-Exponential
function. We found a relation between the fitting parameters and the differences in the gyration radius among
neighborhoods. We also compared the percolation threshold with the critical susceptibility of nearest and next-
to-nearest neighbor monoculture plantations vulnerable to the spread of phytopathogen. Notably, the critical
susceptibility in monoculture plantations can be described as a linear combination of two composite systems.
These results allow the refinement of mathematical models of phytopathogen propagation in agroecology. In
turn, this improvement facilitates the implementation of more efficient computational simulations of agricultural
epidemiology that are instrumental in testing and formulating control strategies.
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I. INTRODUCTION

Percolation theory is usually associated with the study of
transport phenomena occurring through porous media [1–3].
This theory arises from the observations made by Broadbent
when he was designing charcoal filters for gas masks and
measuring their efficiency. Later, in collaboration with Ham-
mersley, Broadbent concluded that transporting a fluid (or
individual particles) through a random media with a certain
fraction of open (or closed) bonds defines a new kind of
diffusion process [4]. Between 1954 and 1957, the percolation
theory was formalized and thenceforth studied as a mathe-
matical framework based on geometry and probability [4–6].
In this theory, the simplest way of modeling a porous me-
dia is by means of a square lattice, wherein each cell is
assigned to be occupied with probability p or empty with
the complementary probability 1 − p [3,7]. This assignation
is carried out independently of the occupation state of the
neighbor cells. By construction, the transport phenomena can
only occur across the occupied cells. Notice that for small p
values, there are few occupied cells in the system, and then
the transport phenomenon cannot take place. On the other
hand, if p takes values close to 1, the occupied cells fill the
system, mostly grouped in a single giant cluster, named the
spanning cluster, that connects the system from one side to
the opposite side. The emergence of the spanning cluster in
the system guarantees that the transport phenomenon occurs.
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The fundamental problem to solve in percolation theory is
determining the minimal probability value required for the
emergence of the spanning cluster. This critical value is
known as the percolation threshold, which should be esti-
mated for each specific problem [8].

Percolation theory has a wide diversity of applications,
ranging from the study of the formation of galactic structures
to the description of the formation and properties of the quark-
gluon plasma [8–11]. Moreover, the analysis of the connection
properties of the graph defined by social interactions and the
main epidemiological parameters of diseases shed light on the
development of mobility public policies that avoid the spacial
propagation of epidemics [12,13].

Recently, in Refs. [14–17], the authors proposed a novel
application of percolation theory in agronomy as an agroe-
cological strategy to prevent the dissemination of harmful
phytopathogens on plantations. In particular, they analyze the
propagation of Phytophthora (from Greek, literally mean-
ing plant destroyer) zoospores, micro-organisms classified as
oomycetes that cause epiphytic interactions with the most
destructive effects that attack the root of plants and trees in
every corner of the world [18]. These zoospores swim chemo-
tactically toward the plants using flagella, which can disperse
through water films or soil moisture, including those on the
surface of plants [18,19]. Many species of Phytophthora
can persist as saprophytes if the environmental conditions
are not appropriate but become parasitic in the presence of
susceptible hosts [20,21]. Damages produced by this phy-
topathogen primarily concentrate in the root of plants but also
include rotting in seedlings, tubers, corms, the base of the
stem, and other organs. The diseases caused by exposure to
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Phytophthora generate tremendous losses in agronomy and
forestry. Due to the physiology of the oomycetes, most fungi-
cides or antibiotics have no effects on them, motivating the
research on nonchemical strategies that minimize or mitigate
the propagation of the pathogen [18,22,23].

On the other hand, in laboratory experiments or in situ
observation, it has been noted that some plants manifest the
disease after the exposition to the pathogen, while others
do not get sick because some individuals can deploy de-
fense mechanisms against the infestation process (resistant
plants) [14,15]. There are no methods to distinguish what seed
will grow as a resistant plant. This fact allows us to define
the plant susceptibility χ as the probability of an individual
getting ill after the interaction with the phytopathogen, which
can be experimentally measured through the determination of
the survival rate of exposed plants.

In the context of percolation theory, the problem of Phy-
tophthora propagation on a plantation can be modeled as
a transport phenomenon on a regular lattice [14,16]. These
systems are proposed to be studied on square lattices for sim-
plicity. In a first approach, the lattice spacing can be chosen as
the maximal length distance that zoospores can travel before
starving or entering a state of dormancy. This guarantees that
the micro-organisms can be spread over the adjacent plants.
Under these considerations, this problem is directly mapped
to a propagation process occurring on a square lattice with
nearest neighbors, wherein occupied sites correspond to sus-
ceptible plants.

Another relevant ingredient of this model is the fraction
of cells with the pathogen presence at the beginning of the
propagation process. These cells are assumed to be uniformly
and randomly distributed on the plantation. The propagation
process is started in these inoculated cells. By construction,
the zoospores move only at the adjacent cells, and they repro-
duce if they reach a susceptible plant. On the contrary, the
zoospores die or enter into a dormancy state if they arrive
at a resistant plant or an empty cell. However, the inocu-
lated cells at the beginning of the propagation process have
a fascinating behavior if they are adjacent to a susceptible
plant and simultaneously occupy empty cells or cells with
resistant plants. Under this condition, the inoculated cells
act as bridges, connecting plants beyond the neighborhood
definition, as we depict in Fig. 1 for square lattices with
nearest and next-to-nearest neighbors. Moreover, the authors
of Refs. [15,16] suggest that the systems look like a square
lattice with regular sites together with a fraction of sites with
an extended neighborhood. The latter fact motivates the work
presented in this manuscript, wherein we explore the modi-
fications of the percolation threshold due to the existence of
sites with an extended neighborhood in the lattice.

In this work, we introduce the model of site percolation
with a combination of two different nearest neighbor defini-
tions, one with a neighborhood more extended than the other.
These sites with extended neighborhoods play a similar role
to the inoculated cells under the conditions described above.
In the same way as in the percolation-agroecological model,
the number of extended sites is controlled by the probability
I . We compute the percolation threshold through computer
simulations for a wide range of neighborhood combinations
and I ranging from 0 to 1.

FIG. 1. Sketch of the interaction of an inoculated empty cell
adjacent to a susceptible plant on (a) 2N and (b) 3N plantations.
Despite Phytophthora zoospores moving accordingly to the neighbor
definition (solid arrows), they can connect susceptible plants beyond
the vicinity (dotted arrows), forming bridges that promote the forma-
tion of the spanning cluster.

The plan of the paper is as follows. In Sec. II, we provide
the simulation and data analysis methods. In Sec. III, we show
our results of the percolation threshold for the systems of
interest. In Sec. IV, we discuss the applications of composite
systems to model the propagation of phytopathogens on plan-
tations. Finally, Sec. V contains the discussion of our results,
conclusions, and perspectives.

II. SIMULATION METHOD AND DATA ANALYSIS

We use the Newman-Ziff simulation scheme [24,25] to
determine the site percolation threshold of composite square
lattices. This algorithm consists of measuring a particular ob-
servable On after adding exactly n sites. Therefore, the average
〈O〉 is computed at a particular p value by convoluting the On

determinations with the fluctuations of the occupation prob-
ability. In Fig. 2 we show the neighborhood definitions used
in this work: (a) nearest neighbors (2N), (b) next-to-nearest
neighbors (3N). For the sake of notation, we denote as Ext1,
Ext2, and Ext3 the extended neighborhoods in Figs. 2(c), 2(d)
and 2(e), respectively. We explore the percolation threshold of
square lattices considering all the possible pair combinations
of these nearest neighbor definitions. In what follows, for a
given pair combination, we call extended sites those with the
larger neighborhood; meanwhile, the sites with the smaller
ones are named regular sites.

In the simulation, we randomly add site by site. Each added
site is randomly chosen to be regular or extended with proba-
bilities 1 − I and I , respectively. Since in the lattice there are
sites with two kinds of neighborhood definitions, we must pay
special attention to the clustering process, which is performed
by using the Union-Find algorithm. To do this, we assign
different labels to sites in the system. However, if two sites
belong to the same cluster, we update their labels to have the
same value. For each site added, we first check the occupation
states of every cell in the regular vicinity, and the site is
merged with the cluster to which the occupied neighbor sites
belong. Then, the complementary extended neighborhood is
checked, but the clustering process fulfills the following rules:
(i) if the added site is regular, it is only merged with the
occupied extended sites; (ii) otherwise, the added extended
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FIG. 2. Neighborhoods discussed in this manuscript: (a) 2N, (b) 3N, (c) Ext1, (d) Ext2, and (e) Ext3.

site is merged with all the occupied sites. In the simulation
process, we consider systems with free boundary conditions.

The simulation is stopped when the spanning cluster
emerges in the system. This occurs when, for the first time,
sites on opposite sides of the lattice acquire the same label. At
this point, we store the number of sites added. Using the infor-
mation from 106 simulations, we construct the probabilities fn

and Fn = ∑n
k=1 fk of observing the emergence of the spanning

cluster after adding exactly and at most n sites, respectively.
In the Newman-Ziff simulation scheme for a square lattice

with L2 sites, the average of an observable O at an arbitrary
value of the occupation probability is computed as

O(p) =
L2∑

n=1

OnB(L2, n, p), (1)

where On is the value of the observable when there are exactly
n occupied sites in the system, and B(L2, n, p) is the probabil-
ity mass function of the binomial distribution, which counts
the fluctuations of the number of occupied sites for a system
filled with occupation probability p. Therefore, we compute
the percolation probability by plugging the distribution Fn

in (1), that is,

PL(p) =
L2∑

n=1

FnB(L2, n, p). (2)

In Eq. (2), we have added the subscript L to denote the per-
colation probability dependence on the system size. To avoid
the difficulties that carry the computation of the factorial of
large numbers, we compute the binomial weights by using the
following recursive formula [25]:

B(L2, n, p) =
⎧⎨
⎩

B(L2, n − 1, p) L2−n+1
n

p
1−p if n > nm,

B(L2, n + 1, p) n+1
L2−n

1−p
p if n < nm,

where nm = pL2 is the n-value where the probability mass
function of the binomial distribution takes its maximum value.
Moreover, we set B(L2, nm, p) = 1. In this way, the perco-
lation probability (2) must be normalized by dividing by∑L2

n=1 B(L2, n, p).
After the computation of the percolation probability, the

data set is fitted to the sigmoid function

PL(p) = 1

2

[
1 + tanh

(
p − pcL

�L

)]
, (3)

where pcL is the estimation of the percolation threshold under
the conditions of the systems in the simulation, and �L is
the width of the sigmoid transition [26]. To take into account

finite-size effects on the percolation threshold, we perform
simulations with different system sizes, L = 32, 48, 64, 96,
128, 192, 256, 384, and 512. Moreover, for each case under
study, we determine the percolation threshold for a wide va-
riety of values of the fraction of extended sites, starting at
I = 0 until I = 1 with increments of �I = 0.05. The data
analysis is performed with the information of 106 simulations
for each estimation of pcL. In all cases, the well-known scaling
relation �L ∝ L−1/ν for the width of the sigmoid transition is
satisfied with 1/ν ∼ 0.75, which is the universal value of the
exponent corresponding to the correlation length found for 2D
percolation systems [27].

Finally, we estimate the percolation threshold in the ther-
modynamic limit (pc) by analyzing the scaling relation of
pc − pcL as a function of L. It has been previously ob-
served that the free boundary conditions led to pc − pcL ∝
L−2/ν [10], which is a stronger finite-size effect than the
universal scaling relation for the percolation threshold for
finite lattices, given by pc − pcL ∝ L−1/ν [28]. We observe
a good agreement of our data sets with the latter scaling
relation. Therefore, we estimate the percolation threshold in
the thermodynamic limit (L → ∞) by extrapolating the trend
of pcL as a function of L−2/ν . In Sec. III, we summarize our
estimations of the percolation threshold for all the possible
combinations of neighborhood pairs depicted in Fig. 2.

III. RESULTS

We recall that there are sites with two different neighbor-
hood definitions in the system. The number of each type of
site is controlled by the parameter I . Given the value of I , the
probability of adding a regular or extended site is 1 − I or I ,
respectively. Notice that there are two limit cases. When I = 0
or 1, only regular or extended sites are added to the system.
These results are summarized in Table I. Our estimations of pc

for square lattices with 2N and 3N neighbors are in agreement
with the best estimation of the percolation threshold reported
in the literature. Moreover, for the extended neighborhoods

TABLE I. Percolation threshold, coordination number, and gyra-
tion radius of the neighborhoods discussed in this manuscript.

Neighborhood Coordination number pc R2
g

2N [Fig. 2(a)] 4 0.592741(5) 4/5
3N [Fig. 2(b)] 8 0.40721(1) 4/3
Ext1 [Fig. 2(c)] 12 0.289117(9) 28/13
Ext2 [Fig. 2(d)] 16 0.20900(1) 60/17
Ext3 [Fig. 2(e)] 24 0.16466(2) 4
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FIG. 3. Percolation threshold of composite square lattices (figures) together with their corresponding fitting function (solid lines). The
neighborhood combinations are the following: (a) 2N+3N (empty red squares), (b) 2N+Ext1 (empty red circles), (c) 2N+Ext2 (empty red
triangles), (d) 2N+Ext3 (empty red inverted triangles), (e) 3N+Ext1 (empty red diamonds), (f) 3N+Ext2 (filled green squares), (g) 3N+Ext3
(filled green circles), (h) Ext1+Ext2 (filled green triangles), (i) Ext1+Ext3 (filled green inverted triangles), and (j) Ext2+Ext3 (filled green
diamonds).

Ext1, Ext2, Ext3, we have improved the previous estimations
performed by Malarz in two digits [29,30].

In Fig. 3, we show our estimations of the percolation
threshold in the thermodynamic limit for square lattices with
a combination of regular and extended sites as a function of
I . In all cases, pc smoothly decreases from pc,reg to pc,ext

as I increases, where pc,reg and pc,ext denote the percolation
threshold for square lattices with only regular or extended
sites, respectively. Despite the fact that the mean coordina-
tion number of the composite system z̄ = zreg + I (zext − zreg)
has a linear dependence on I , the percolation threshold for
these systems does not response linearly nor inversely as a
function of I . Notice that, at low values of the fraction of
extended sites, the percolation threshold rapidly varies from
pc,reg because of the presence of the extended sites. In fact,
pc decays exponentially for low values of I , as further dis-
cussed below. On the contrary, for values of I close to 1, pc

asymptotically reaches the value of pc,ext, which means that
the connectivity of the system is primarily due to the extended
sites.

Additionally, we found that the percolation threshold of the
system with combined neighbor definitions can be well fitted
with a Tsallis q-Exponential function

pc = pc,ext + (pc,reg − pc,ext )

(
1 − I

λn

)n

, (4)

where n = 1/(1 − q) defines the q parameter of the Tsallis
function. In particular, for the cases 2N+Ext2 and 2N+Ext3,
it is found that n takes large values; thus, we replace the
Tsallis q-Exponential function for an exponential function.
Table II summarizes the value of the fitting parameters for the
cases discussed in this paper. The obtained fitting functions
are shown as solid lines in Fig. 3. It is worth mentioning that
the obtained n-values lead to q < 1, so the range of the fitting
function is restricted to be I < λn [31], for which in almost
all cases it occurs that λn > 1, except for the combination

2N+3N. In this case, we obtain λn ≈ 0.98, and pc takes
complex values for I > 0.98. However, the imaginary part of
pc is of the order of 10−6 for 0.98 < I � 1, which can be
neglected, and the fitting function is extended to the rest of
the interval [0,1] by taking the real part of (4).

Note that the series expansion of (4) around I = 0 approxi-
mates the Tsallis q-Exponential to an exponential decay given
by

pc − pc,ext ∝ 1 − I

λ
+ O(I2) ≈ e−I/λ, (5)

where the factor 1/λ is the decay constant. In Fig. 4, we show
this exponential behavior for all the neighborhood combina-
tions discussed in this manuscript. In some instances, the pc

curve is scaled by a factor of 10A to improve visualization.
Note the agreement of the estimated percolation threshold for
low values of I with the exponential function with a constant
decay 1/λ, where λ is taken from Table II.

TABLE II. Fit parameter values obtained for the percolation
threshold of all the composite systems discussed in this manuscript.

Neighborhood λ n

2N+3N 0.488(7) 2.01(2)
2N+Ext1 0.33(1) 3.8(1)
2N+Ext2 0.201(1) > 10
2N+Ext3 0.183(1) > 10
3N+Ext1 0.428(5) 2.54(3)
3N+Ext2 0.28(3) 6.7(5)
3N+Ext3 0.25(3) 9.0(8)
Ext1+Ext2 0.40(1) 2.95(7)
Ext1+Ext3 0.33(1) 4.0(1)
Ext2+Ext3 0.432(5) 2.48(2)
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FIG. 4. Exponential behavior of composite systems at low values
of I (figures) together with their exponential approximation (dashed
lines). Figures and colors are the same as in Fig. 3.

Moreover, we found relationships between the fitting pa-
rameters and the difference in the radius of gyration of the
extended and regular neighborhoods (see Fig. 5) as follows:

λ = c2e−c1(Rg,ext−Rg,reg ), (6)

1

n
= m(Rg,ext − Rg,reg) + b, (7)

with c1 = 1.13(3), c2 = 0.62(2), m = −0.62(4), and b =
0.61(3). Rg,ext and Rg,reg are the gyration radius of the extended
and regular neighborhoods, respectively. The gyration radius
is computed as

R2
g = 1

z + 1

∑
k

zkr2
k , (8)

where zk is the number of possible neighboring sites at a
distance rk from the center of the figure, and z is the coor-
dination number. In Table I, we show the values of R2

g for the
neighborhood definitions under study. For the cases 2N+Ext2

 0.2
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 0.5

 0.2  0.4  0.6  0.8  1  1.2

(a)
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(b)

1/
n

Rg,ext-Rg,reg

FIG. 5. Trend of the fit parameters (a) λ and (b) 1/n as functions
of the difference in the neighborhood gyration radius of composite
systems (figures). Solid lines correspond to the fitting functions of
Eqs. (6) and (7), respectively. Shaded regions are the error propaga-
tion of the fitting functions. Figures and colors are the same as in
Fig. 3.

and 2N+Ext3, we take 1/n →0. In Sec. IV, we discuss how
our results could be useful for understanding and modeling
the propagation of phytopathogens on plantations.

IV. APPLICATION TO AGROECOLOGY

The propagation of Phytophthora zoospores has been pre-
viously studied as a percolation problem in Refs. [14–16]. In
these studies, the authors discussed the characteristics needed
for the formation of a spanning cluster of diseased and sus-
ceptible plants. The latter situation marks the onset of the
outbreak on the plantation. It was shown that the percolation
threshold depends substantially on the geometry of the plan-
tation and the percentage of inoculated cells at the beginning
of the propagation process. Inoculated sites that, at the same
time, are empty or occupied with a resistant plant play the
role of bridges connecting sites further away from the neigh-
borhood definition.

Let us comment on the computational implementation for a
monoculture plantation. The plantation is modeled as a regular
lattice where its cells are assigned two independent occupancy
states: inoculation and occupation by a susceptible plant. In
this way, it is convenient to designate the cells containing
active phytopathogens at the beginning of the propagation
process. These inoculated cells are considered uniformly dis-
tributed and independent of the inoculated states of their
neighbors. Then, using the Newman-Ziff algorithm, suscep-
tible plants are added one by one. The clustering process
between adjacent cells satisfies the following rules: (i) both
sites are occupied with susceptible plants, or (ii) the neigh-
boring site is inoculated. Although they are simple rules, the
presence of the inoculated cells has a relevant impact on the
formation of clusters, and thus on the percolation threshold.
The simulation is stopped with the emergence of the spanning
cluster of susceptible or diseased plants. The estimation of the
percolation threshold is carried out by analyzing the generated
data. Figure 6 shows the results of the percolation threshold as
a function of the percentage of inoculated cells at the begin-
ning of the propagation process for a plantation configured
by square lattices with nearest and next-to-nearest neighbors,
previously reported in Refs. [15,16].

In the context of this model, the Phytophthora propagation
can only occur on susceptible plants, so the susceptibility
takes the role of the occupation probability of traditional
percolation lattices. Therefore, the percolation threshold is
directly associated with the critical susceptibility χc of the
plants. This means that the plantation should be sowed with
plants having a susceptibility less than χc to avoid the out-
break. Similarly to the cases of square lattices with a fraction
of extended neighbors, the critical susceptibility decreases as
I grows. It is worth mentioning that there exists a minimal
susceptible value that allows sowing the entire plantation even
when all the cells are inoculated. However, considering that
Phytophthora can survive under adverse environmental con-
ditions, the management of the plantation is crucial in order
to prevent outbreaks in future farming cycles.

We recall that this agroecological model connects sites
over the regular neighborhood definition. However, the per-
colation threshold evolves similarly to square lattices with a
fraction of extended neighbor sites. Here, the regular sites
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FIG. 6. Comparison between the percolation threshold of com-
posite square lattices, the critical susceptibility of the agroecological
model, and the linear combination approximation of Eqs. (9) and (10)
(solid lines). (a) Case of 2N plantations. Squares and circles are the
percolation thresholds of 2N+3N and 2N+Ext1 composite systems,
respectively. Pentagons are the critical susceptibility of the agroe-
cological model. (b) Case of 3N plantations. Squares and circles
are the percolation thresholds of 3N+Ext2 and 3N+Ext3 composite
systems, respectively. Semifilled circles are the critical susceptibility
of the agroecological model.

correspond to the neighborhood definition used for cluster-
ing. Meanwhile, the extended sites must be determined by
analyzing how the presence of the inoculated cells modifies
the neighbor definition to connect susceptible plants, as de-
picted in Fig. 1. In what follows, we refer to 2N and 3N
plantations as those sowed in a configuration based on 2N and
3N neighborhoods, respectively. Particularly for 2N and 3N
plantations, we determine that the extended neighborhoods
are 3N and Ext2 at low I-values but become Ext1 and Ext3
at high I-values, respectively.

Notice that the critical susceptibilities for 2N and 3N plan-
tations are bounded as follows (see Fig. 6):

pc,2N+3N � χ2N � pc,2N+Ext1,

pc,3N+Ext2 � χ3N � pc,3N+Ext3,

where pc,reg+ext denotes the percolation threshold for the
combination of neighborhoods reg and ext. For the sake
of notation, we indicate the critical susceptibility by χ .
Moreover, we found that the critical susceptibilities can be
well-reproduced by the following linear combinations:

χ2N = (1 − I )pc,2N+3N + I pc,2N+Ext1, (9)

χ3N = (1 − I )pc,3N+Ext2 + I pc,3N+Ext3. (10)

Equations (9) and (10) are shown in Fig. 6 as solid lines. We
also find an exponential behavior for the critical susceptibili-
ties at low I values:

χ2N ∝ 1 − I

λ′
1

+ O(I2) ≈ e−I/λ′
1 , (11)

χ3N ∝ 1 − I

λ′
2

+ O(I2) ≈ e−I/λ′
2 , (12)

where

λ′
1 = λ2N+3N

1 − pc,3N

pc,2N

and λ′
2 = λ3N+Ext2

1 − pc,Ext2

pc,3N

. (13)

By discussing the case of 2N plantations, we now illustrate
the applicability of Eqs. (9) and (10). Equation (9) indicates
that the combinations 2N+3N and 2N+Ext1 are picked with
probabilities 1 − I and I , respectively. By construction, the
regular and extended sites are also determined with probabil-
ities 1 − I and I , respectively. All the possibilities combine
to give the probabilities 1 − I , I (1 − I ), and I2 of the added
site has vicinity 2N, 3N, and Ext1, respectively. In the limit
of low I , the added sites in simulations are mostly 2N, with a
few ones with the 3N vicinity. As I rises, the number of sites
with extended neighborhoods takes place and the percolation
threshold decreases. In the limit of high I , the system is mainly
formed by Ext1 sites. At this point, the system becomes homo-
geneous, and the critical susceptibility approaches pc,2N+Ext1.
Using this framework, all the effects of inoculated cells are
taken into account at once by incorporating sites with ex-
tended neighborhoods. Note that Eqs. (9) and (10) imply that
composite systems discussed in this manuscript accurately
describe the agroecology model in the limits I = 0 and 1.
Nevertheless, this model resembles percolation systems com-
prising three neighbor definitions for intermediate I values.
Therefore, agroecological applications can be described by a
percolation system comprising more than two neighborhood
definitions.

V. CONCLUSIONS

In this work, inspired by the problem of the propagation
of Phytophthora zoospores on plantations, we introduced a
percolation model on square lattices that includes sites with
a combination of two different neighborhood definitions. In
particular, we explore all possible pair combinations of five
neighborhoods that extend beyond the next-to-nearest defini-
tion, which are depicted in Fig. 2. By using computational
simulations, we estimate the percolation threshold for all
those systems as a function of the fraction of sites with
extended vicinity.

We found that the percolation threshold of systems with
combined neighborhoods smoothly decreases from pc,reg to
pc,ext, which can be well-fitted by the q-Exponential func-
tion as seen in Eq. (4). In the limit of low values of the
fraction of sites with the extended neighborhood, the perco-
lation threshold exponentially decays with I , where the rate
constant is the inverse of the scale (λ) of (4). Moreover, we
related the q-Exponential parameters to the differences in the
radius of gyration between the regular and extended neigh-
borhoods. Explicitly, λ ∝ e−m(Rg,ext−Rg,reg ) and 1/n ∼ (Rg,ext −
Rg,reg). However, the latter relations may no longer be valid
for combinations with very small differences in the radius of
gyration, as in the case of the combination Ext2+Ext3, whose
fitting parameters deviate from the trend of the other cases.
Further analysis is required to corroborate this hypothesis for
systems with neighborhoods extended beyond those discussed
in this manuscript.

Additionally, we compared our estimations of the per-
colation threshold with the results reported for the critical
susceptibility of monoculture plantations. In the context of
the agroecological model, I corresponds to the fraction of
inoculated cells at the beginning of the propagation process.
Similar to the extended sites in the model presented in this

014304-6



SITE PERCOLATION THRESHOLD OF COMPOSITE … PHYSICAL REVIEW E 109, 014304 (2024)

manuscript, these cells act as bridges that connect suscepti-
ble plants beyond the neighbor definition of the lattice that
models the plantation when they are placed in empty cells or
with a resistant plant. It is worth mentioning that the critical
susceptibilities for 2N and 3N plantations are well-described
by the linear combinations [see Eqs. (9) and (10)] of the perco-
lation threshold of the composites 2N+3N and 2N+Ext1 and
3N+Ext2 and 3N+Ext3 (see Fig. 6), respectively. We also
found that the critical susceptibility behaves as an exponential
decay in the limit of low values of I . In Eq. (13) we report
the decay constant for 2N and 3N plantations. Note that the
agroecological model can also motivate the study of systems
with more than two extended neighborhoods.

This work can be broadened in different directions. One
possibility is to consider other regular lattices, for instance
the triangular or the honeycomb. Analyzing the bond or the
joint site-bond percolation model under this approach would

be meaningful. Another possibility consists of including the
linear combination approach in more complex situations, for
example in polyculture or structured plantations. It is worth
noticing that all these perspectives are inspired by the agroe-
cological model.
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