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Optimized excitonic transport mediated by local energy defects:
Survival of optimization laws in the presence of dephasing
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In an extended star with peripheral defects and a core occupied by a trap, it has been shown that exciton-
mediated energy transport from the periphery to the core can be optimized [S. Yalouz et al., Phys. Rev. E
106, 064313 (2022)]. If the defects are judiciously chosen, then the exciton dynamics is isomorphic to that
of an asymmetric chain and a speedup of the excitonic propagation is observed. Here we extend this previous
work by considering that the exciton in both an extended star and an asymmetric chain is perturbed by the
presence of a dephasing environment. Simulating the dynamics using a Lindblad master equation, two questions
are addressed: How does the environment affect the energy transport on these two networks? and Do the two
systems still behave equivalently in the presence of dephasing? Our results reveal that the timescale for the
exciton dynamics strongly depends on the nature of the network. But quite surprisingly, the two networks behave
similarly regarding the survival of their optimization law. In both cases, the energy transport can be improved
using the same original optimal tuning of energy defects as long as the dephasing remains weak. However, for
moderate or strong dephasing, the optimization law is lost due to quantum Zeno effect.
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I. INTRODUCTION

Studying exciton-mediated energy transport in molecular
lattices has a long history that can be traced back to the
1960s–1970s [1–4]. At that time, and during the following
decades, the research was realized to understand the behavior
of translationally invariant molecular crystals, with particular
emphasis on the characterization of their optical properties
[5]. Different features were considered, i.e., the study of the
exciton-phonon interaction to explain relaxation processes,
optical line shapes, and quantum diffusion [6–11], the influ-
ence of defects to characterize specific optical response and to
investigate localization phenomena [12–15], and the analysis
of nonlinear effects to describe both the nonlinear excitonic
optical response [16] and the formation of nonlinear objects
such as solitons [17].

Nowadays, with the development of quantum technologies,
new ideas have emerged, and it has been pointed out that
exploiting exciton propagation in complex networks could
be used to carry either quantum information, or energy, at
nanoscale [18]. Indeed, on complex networks, the delocal-
ization of an exciton defines a physical realization of a
continuous time quantum walk (CTQW) [19]. Widely studied
in recent years, the concept of CTQW has been used to answer
a variety of questions in quantum information theory ranging
from the realization of perfect quantum state transfer [20]
to the development of high-performance algorithms [21–23].
On another note, this paradigm has been also widely used
to study the energy transfer on complex networks with a
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specific focus on the role of the topology [24,25], the effect
of disorder [18,26], and the presence of traps [27,28] to cite
but a few. In the present paper, we are interested in this second
aspect where complex networks architectures are considered
as a medium for efficient exciton-mediated energy transport
at the nanoscale. Such an idea was first pointed out by
Mukamel [29] who suggested that excitons could be exploited
in dendrimers to design artificial light-harvesting complexes
(LHC) [30–41]. A dendrimer is a chemical treelike structure
formed by several dendritic branches that emanate out from
a central core [42–44]. Therefore, the functionalization of the
terminal groups by chromophores favors light harvesting. The
absorbed light generates local photoexcitations, i.e., Frenkel
excitons, that propagate along the branches and converge to-
wards the central core which contains either a fluorescent trap,
a reaction center, or a chemical sensor [45,46].

Inspired by these treelike architectures, the excitonic
CTQW on an extended star was studied recently to highlight
the realization of an efficient photoexcitation transfer [47]. In
this context, it was considered that the periphery of the star
was functionalized by tunable energy defects, while the core
was occupied by a trap. The absorption of light by the defects
generates an exciton in an initial state uniformly delocalized
over the peripheral sites. The energy is then transferred via
an excitonic CTQW from the periphery to the core where an
irreversible absorption process occurs due to the presence of
the trap. The investigations realized on this prototype LHC
allowed to evidence the possibility to strongly optimize the
resulting energy transfer–absorption process. Depending on
both the number and the length of the branches, it has been
shown that if the energy defects are judiciously chosen, then
the initial state localized at the periphery may hybridize with
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FIG. 1. Illustration of the two networks considered in our study. Left: The extended star which is formed by a central core acting as a trap
with an absorbing rate � (blue output site on the right), connected to N branches containing L sites. Each branches carries on its extremity an
energy defect with a tunable amplitude � (red-circled input sites on the left). The exciton can hop between each connected site via a hopping
constant J . Right: The asymmetric chain which carries on its left extremity an energy defect with a tunable amplitude � (single red-circled
input site) and on the other side a trap with absorbing rate � (blue output site on the right). The exciton can hop between each connected site
via a hopping constant J , except between the two rightmost sites where it is J

√
N .

a state localized on the core (for a detailed demonstration, see
discussion section in Ref. [47]). Consequently, a speedup of
the excitonic propagation was observed revealing the potential
of the extended star as a prototype artificial LHC.

Interestingly, in Ref. [47] it was also highlighted that the
optimal excitonic transfer occurring on the extended star was
actually isomorphic to that of an asymmetric chain (when the
exciton is initially delocalized over the periphery of the star).
This chain, whose length is equal to that of the branches of
the star, involves sites whose meaning can be understood as
follows. The first site refers to the trap, the second site refers
to an exciton delocalized over the first site of the branches
of the star, the third site refers to an exciton delocalized over
the second site of the branches of the star, and so on. The
resulting isomorphism between the two networks reveals a
fundamental point: both the extended star and the asymmetric
chain act as equivalent LHC prototypes that can be designed
to produce the same optimal energy transfer and absorption.
At this step, it should be noted here that all these results
were obtained assuming that the two quantum systems were
closed. Naturally, we can wonder now about the evolution of
the optimal transport in both systems when a more realistic
description is considered, including for example the presence
of an external environment.

Indeed, in nature, excitons no longer propagate freely:
They behave as open quantum systems interacting with the
remaining degrees of freedom of the medium, usually associ-
ated with a phonon bath [3]. The phonons are thus responsible
for quantum dephasing [48–50] that drastically modifies the
way excitons delocalize. Generally acting as a disruptive
ingredient, the presence of a phonon bath tends to prevent
the conservation of superposed states. It thus generates a
transition between an efficient coherent propagation and an
inefficient incoherent diffusive motion [51,52].

Motivated by this view, in the present paper we want to
address two questions: How would the presence of the en-
vironment affect the energy transport on both the extended
star and the asymmetric chain? and Do the two networks
still behave equivalently in the presence of dephasing? To
this end, the excitonic dynamics on both networks will be
revisited in this work by considering the influence of an exter-
nal dephasing environment. To proceed, a standard stochastic
approach is used by assuming that the environment behaves as

a Gaussian Markovian δ-correlated stochastic potential field
acting on the exciton [53–57]. Within this model, a general-
ized master equation (GME) is established for describing the
time evolution of the exciton reduced density matrix (RDM).
The knowledge of the RDM allows us to compute in prin-
ciple all the observables needed to characterize the exciton
dynamics.

The paper is organized as follows, in Sec. II the extended
star and the asymmetric chain are introduced and the exci-
ton Hamiltonians are defined. Then the relevant observables
required for characterizing the dynamics and the absorption
process are described. In Sec. III, a numerical analysis is
performed to characterize the absorption process. Finally, in
Sec. IV the results are discussed and interpreted using analyt-
ical approaches.

II. THEORETICAL BACKGROUND

A. Model Hamiltonians

The two networks we consider are the extended star and
the asymmetric chain, as illustrated in Fig. 1. In the absence of
the environment, both networks exhibit the same excitonic dy-
namics provided that the exciton starts from the sites carrying
the energy defects. More precisely, an exciton uniformly dis-
tributed over the input sites on the extended star (red-circled
sites in Fig. 1) exhibits a time evolution that is isomorphic
to that of a single exciton starting from the input site of the
asymmetric chain (single red-circled site). This similarity has
been highlighted in our previous work (see Ref. [47]) and will
be discussed and illustrated again in the present work (later
on in Sec. III A). In both networks, the resulting dynamics is
entirely ruled by a common set of parameters that define the
tight-binding Hamiltonians of each system. In the following,
we will introduce the form of these Hamiltonians and explain
the signification of all the associated parameters.

1. Extended star graph

The excitonic dynamics on the extended star network is
described by a standard tight-binding model [3] that closely
follows the graph’s architecture (see Fig. 1). Within this
model, we assume that each site of the network is occupied by
a molecular subunit whose internal dynamics is described by
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a two-level system. Let |b, s〉 stand for the state in which the
(b, s)th two-level system (i.e., site) occupies its first excited
state, the other two-level systems remaining in their ground
state. Here (b, s) denotes the sth site (s = 1, . . . , L) of the
bth branch (b = 1, . . . , N) of the star. The site (b, s) = (0, 0)
refers to the core of the star. Note that the star involves
NS = 1 + NL sites. Let ε0 denote the excited state energy
of the two-level systems except those of the periphery and
of the core of the graph. As illustrated in Fig. 1, the termi-
nal groups are occupied by energy defects whose excitation
energy is shifted by an amount � according to ε0 + �. The
core of the graph is occupied by a trap that is responsible
for the irreversible decay (i.e., absorption) of the exciton. It
is characterized by a complex self-energy ε0 − i�/2, where �

defines the exciton decay rate [58,59]. Finally, the exciton can
jump between connected nodes via a hopping constant J .

Following these notations, the Hamiltonian governing the
exciton dynamics on the extended star is defined as (the con-
vention h̄ = 1 is used throughout the paper)

H =
(

ε0 − i
�

2

)
|00〉〈00| +

N∑
b=1

L∑
s=1

(ε0 + �δsL )|b, s〉〈b, s|

+
N∑

b=1

J (|00〉〈b, 1| + |b, 1〉〈00|)

+
N∑

b=1

L−1∑
s=1

J (|b, s〉〈b, s + 1| + |b, s + 1〉〈b, s|), (1)

where δ is the Kronecker symbol.

2. Asymmetric chain

Following the same philosophy, the exciton dynamics on
the asymmetric chain (right part of Fig. 1) is described ac-
cording to a tight-binding model,

H =
L∑

s=0

(
ε0 + �δsL − i

�

2
δs0

)
|s〉〈s|

+
L−1∑
s=1

J (|s〉〈s + 1| + |s + 1〉〈s|)

+ J
√

N (|1〉〈0| + |0〉〈1|). (2)

Here the state |s〉 describes the situation where the exciton
occupies the sth site of the chain. All sites have a local exci-
tation energy ε0 except the two extremities of the chain: The
site s = L carries an energy defect ε0 + �, and the site s = 0
acts as a trap with a complex energy ε0 − i�/2. All sites are
connected to their nearest neighbors with a hopping constant
J , except the couple of sites s = 0 and 1 connected by an
amplitude J

√
N . The presence of the parameter N originates

in the equivalence between the dynamics of the asymmetric
chain and that of the extended star, as established in details
in Appendix A. Note that the total number of sites is NS =
1 + L.

B. Open quantum system dynamics

To describe the open quantum dynamics of the exci-
ton, we consider a pure dephasing phononic environment
modeled by the so-called Haken-Strobl-Reineker master
equation [2,53,54]. In this model, the time evolution of the
excitonic RDM ρ(t ) is governed by the GME,

∂tρxy = −i
∑

z

(Hxzρzy − ρxzH
†
zy) − γ (1 − δxy)ρxy, (3)

which is expressed in the local site basis with generic indices
x, y and z (a local state |x〉 refers either to a state |b, s〉 for
the star graph or to a state |s〉 for the chain). Here H repre-
sents the non-Hermitian network Hamiltonian, and γ is the
dephasing rate responsible for the irreversible decay of the
quantum coherence ρxy = 〈x|ρ|y〉 between two distinct sites
with generic indices x and y. In the scope of this work, the
master equation represented by Eq. (3) accounts solely for the
dephasing environment. Nevertheless, practical scenarios may
encompass additional relaxation sources, such as excitonic
finite lifetime attributed to phenomena like optical recombi-
nation. While these elements have been explored in various
prior studies (see, for example, Refs. [60,61]), we have opted
for simplicity in our model for this study, thereby excluding
such effects.

To simulate the open quantum dynamics of the exciton,
one employs the so-called Fock-Liouville space (FLS) method
[16] which consists in a vectorization of the master equa-
tion [see Eq. (3)]. In this approach, the density matrix ρ is
encoded into a single vector noted |ρ〉〉 (i.e., |ρ〉〉 is a flattened
version of the RDM ρ). This allows us to rewrite the GME
under the form of a generic set of linear differential equations.
The constant coefficients of this set (associated to the Hamil-
tonian matrix elements and the dephasing rate) are gathered
into the so-called Liouvillian matrix L, and the GME reads
then

∂t |ρ(t )〉〉 = L |ρ(t )〉〉 . (4)

The formal exponential solution of this equation gives access
to the time evolution of the RDM at time t such that

|ρ(t )〉〉 = exp(Lt ) |ρ(0)〉〉 , (5)

where exp(Lt ) is the time-evolution superoperator

exp(Lt ) =
NS

2∑
k

exp(	kt )
|	R

k

〉〉〈〈
	L

k

∣∣〈〈
	L

k

∣∣	R
k

〉〉 , (6)

where |	L
k 〉〉 and |	R

k 〉〉 are the left and right eigenvectors of
the Liouvillian matrix L and 	k their associated complex
eigenvalue. Note that the numerical cost of the FLS method
scales in NS

6 which can be problematic when addressing
large systems such as the star network. Fortunately, for this
network this can be alleviated by using the symmetries of the
problem (see Appendix B).

From the knowledge of the time-evolution superoperator,
different time-dependent observables may be evaluated. In
this work, we will mainly focus on the absorption probability
PA(t ) expressed as

PA(t ) = 1 − Tr{ρ(t )}. (7)
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The measure PA(t ) describes the probability for the exciton
to be absorbed by the trap at time t . To characterize the
absorption process on both networks, we also introduce the
absorption time τ defined as

τ −→ PA(τ ) = 50%, (8)

which gives the characteristic time when half of the excitonic
population is absorbed by the trap. In practice, the absorption
time τ is determined via a numerical minimization (over the
parameter t) of the cost function C(t ) = [0.5 − PA(t )]2 using
the Nelder-Mead method from the scipy package [62].

III. NUMERICAL RESULTS

In this section, the previous formalism is applied to study
the absorption process on both the extended star graph and
the asymmetric chain. In a first part, we will recall the main
features observed without dephasing (i.e., γ = 0). In a sec-
ond part, we will include the environment (i.e., γ > 0) and
illustrate the changes that occur in the absorption process.
Note that in all our simulations, the initial conditions of the
dynamics are always the same: a uniform excitonic delo-
calization on the star’s peripheral defects and an excitonic
localization on the single defect of the asymmetric chain (see
Fig. 1). The hopping constant J is used as the energy reference
(i.e., J = 1), the absorption rate is fixed to � = 0.1J , and we
consider N > 2.

A. Absorption without dephasing (γ = 0): Optimal energy
defects tuning

When γ = 0, both the extended star and the asymmetric
chain behave in the same way. In this case, we have shown
previously the existence of an optimal value of the energy
defect amplitude that is [47]

�opt ≈ √
N − 1J. (9)

Around this value, the absorption process presents a strong
speedup, namely a reduction of the absorption time τ , pro-
vided that the length L is sufficiently short. To illustrate this
feature, we show in Fig. 2(a) the � dependence of the absorp-
tion time τ for N = 5 and for L = 4, 6, 8, and 10. As readily
seen here, a local minimum of the absorption time system-
atically appears around the critical value �opt ≈ √

N − 1J ,
whatever L. In some cases, this local minimum can go even
below the absorption time obtained in the absence of defects
(i.e., when � = 0). This is the case for example with L � 6
where the absorption time τ reaches a global minimum when
� → �opt [see black curve with circles and brown curve with
triangle in Fig. 2(a)]. However, this is no longer the case for
larger L values like L = 8 or 10 (see red curve with crosses
and orange curve with diamonds).

These results highlight the existence of a “speedup” for
the absorption process which depends on both N and L. To
better evidence this feature, we introduce a measure S of the
absorption speedup, which is

S = 1 − τ (�opt)

τ (� = 0)
. (10)

FIG. 2. Evidence of an excitonic absorption speedup by energy
defect tuning (with γ = 0). (a) Evolution of τ as a function of � for
N = 5 and L = 4 (black curve with circles), L = 6 (brown curve with
triangles), L = 8 (red curve with crosses), and L = 10 (orange curve
with diamonds). The particular value � = √

N − 1J where a strong
acceleration of the absorption process occurs is marked by a dashed
blue vertical line. (b) Speedup S [Eq. (10)] of the absorption process
in the (N, L)-parameter space. Dark colors show where a speedup
occurs (i.e., S > 0), whereas white areas reveal where there is none
(i.e., S � 0). The dotted black curve describes the logarithmic limit
[see Eq. (11)] defining the region where a speedup is produced.

With this measure, we evaluate the reduction (or increase) in
the absorption time obtained in the presence of energy defects
tuned as � = �opt compared to the case where no defect is
considered (i.e., when � = 0). By definition, S ∈] − ∞, 1] so
that the closer S gets to 1, the more important is the speedup.
Conversely, S < 0 indicates that no speedup is produced at
all. In the latter case, the absorption time τ at � = �opt is just
a local minimum in the � space but not a global one.

Figure 2(b) shows a heatmap of S in the (L, N )-parameter
space. In this figure, we deliberately choose to rescale the col-
ormap to only highlight regions where a reduction is produced
(i.e., where S > 0) using a dark color gradient. White regions
refer to situations in which no reduction in absorption time
is produced (when � = �opt). The present results clearly ev-
idence a region in the (L, N )-parameter space where a strong
speedup S > 0 is produced. This region can be delimited by
the following rule for the structural parameter L and N :

S > 0 	⇒ L � L∗, with L∗ ≈ a0

ln(N )
, (11)
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FIG. 3. Time evolution of the absorption probability PA(t ) in
both networks with dephasing γ > 0 (N = L = 5 and �opt =√

N − 1J). (a) Weak dephasing γ = 0.02J . (b) Moderate dephasing
γ = 0.1J . Full red lines (with diamonds) show the results for the
asymmetric chain, while dashed curves (with circles) are for the
extended star. Full black lines show the reference result when no de-
phasing is considered and both networks admit the same absorption
process.

where a0 = 12.5 is a numerical coefficient. For both networks
we see here that the architectural parameter L is the main
limiting factor for the appearance of the absorption process
speedup.

B. Absorption with dephasing (γ > 0)

In this second section, we include the presence of a de-
phasing environment (γ > 0) and we illustrate the changes
involved in the absorption process.

1. Evidence of different timescales for the absorption processes
on the two networks

Let us first highlight an important feature observed in
all our simulations: In the presence of the dephasing, the
timescale for the realization of the absorption process is very
different between both networks. To illustrate this feature, we
show in Fig. 3 the time evolution of the absorbed population
PA(t ) for both networks with weak [γ = 0.02J in Fig. 3(a)]
and moderate [γ = 0.1J in Fig. 3(b)] dephasing. In this figure,
dashed red lines with circles illustrate the results obtained for
the extended star, while full red lines with diamonds are used
for the asymmetric chain. As a reference, we also show with

full black curves PA(t ) when γ = 0 (i.e., the case where both
networks behave the same).

In Fig. 3(a), we see that the presence of even a very weak
dephasing amplitude leads to a different time evolution of the
absorption process, depending on the considered network. For
the asymmetric chain, PA(t ) is barely affected by the dephas-
ing, and the resulting absorption time 45J−1 is still quite close
to that obtained without dephasing 37J−1. Conversely, more
significant changes occur in the case of the extended star.
Here the absorption process is slowed down and the absorp-
tion time becomes τ ∼ 75J−1, which is almost twice as long
as in the case where no dephasing is considered. As shown
in Fig. 3(b), this slowdown becomes even more important
when the dephasing rate reaches γ = 0.1J . In this case, the
absorption time on the extended star increases considerably to
τ ∼ 200J−1 (four times more than in the reference case with-
out dephasing). Conversely, the asymmetric chain shows only
a very moderate increase in absorption time, which becomes
50J−1 (still fairly close to the case without dephasing).

2. Evolution of the energy absorption optimization law
in the �-parameter space

At this point, a fundamental question arises: Is the
energy-defect tuning � = √

N − 1J still optimal for energy
absorption in the presence of the environment? To address this
question, the � dependence of the absorption time in differ-
ent dephasing regimes is shown in Fig. 4 for the extended
star [Fig. 4(a)] and for the chain [Fig. 4(b)]. We consider
N = L = 5 and a color gradient is used to illustrate the be-
haviors obtained for three increasing dephasing amplitudes
γ = 0.01J , 0.1J , and 0.5J . As a reference, we also show here
the absorption time obtained when γ = 0 with a black dashed
curve.

By comparing the results obtained for both networks, we
see that the two systems present similarities and differences.
First, let us highlight the most important property shared
by the two systems: the survival of the optimal energy de-
fect amplitude � = √

N − 1J . Indeed, for both networks the
�-dependent absorption time curves still exhibit a global
minimum for this specific energy defect amplitude, as long
as the dephasing amplitude is γ � 0.1J (i.e., weak regime).
Beyond this value (moderate and strong dephasing regimes),
the minimum disappears and no optimization is produced.
Second, we can see from Fig. 4 that increasing γ tends to con-
verge the profile of the curves around different central values.
In the strong dephasing limit, the absorption time becomes
almost � independent. It converges towards ∼ 200 J−1 for the
extended star and ∼ 50 J−1 for the asymmetric chain. Note
that these two limit values compare well with the order of
magnitude defined by the analytical ratio ln(2)NS/� (refer
to Sec. IV for a comprehensive explanation of its derivation)
which gives here 180J−1 for the extended star and 42J−1 for
the chain. We will show in Sec. IV that this analytical ratio
is a key quantity for interpreting the evolution of absorption
time in the presence of dephasing. Finally, let us mention that
after converging around different limit values, an increase of
the dephasing amplitude like γ 
 0.5J (very strong regime)
tends to generate an overall shift of the absorption time curves
towards greater values for both networks (not shown here).
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FIG. 4. Evolution of the absorption time τ with � for increasing
values of dephasing rate γ = 0.01J (dark blue curves with circles),
γ = 0.1J (blue curves with triangles), and γ = 0.5J (cyan curves
with diamonds) for N = L = 5. Dashed black lines show the ref-
erence result when no dephasing is considered. (a) Results for the
extended star. (b) Results for the asymmetric chain.

Note that the � dependence of the absorption time τ is very
general and is not limited to the case presented in Fig. 4.
Indeed, many other numerical simulations (not shown here)
have revealed that all the features presented here (i.e., survival
of the optimization law, flattening of the curves, etc.) are re-
current features arising for both systems whatever the chosen
architecture (N and L values), as long as this latter respects
the architectural law L < a0/ ln(N ) [given in Eq. (11)].

3. Assessing the survival of the excitonic absorption optimization
law in the (L, N)-parameter space

All our results suggest that both networks present some
similarities regarding the survival of the optimal setting of en-
ergy defects in the presence of dephasing. In this final part of
our numerical study, we show that these similarities actually
hold for different (L, N ) configurations. To demonstrate this
point, we introduce a γ -dependent measure of the absorption
time speedup S (γ ) that reads

S (γ ) = 1 − τ (γ ,�opt)

τ (γ ,� = 0)
. (12)

This measure is inspired by the one introduced in Eq. (10)
(with γ = 0) with the difference that it now includes the effect
of the dephasing on absorption time. We use this measure as
an indicator for assessing the survival of the optimal tuning

FIG. 5. Evolution of the dephasing-dependent measure S(γ ) [as
given in Eq. (12)] in the (L, N )-parameter space for both networks
and increasing values of dephasing rate. Left and right columns re-
spectively show the results for the extended star and the asymmetric
chain. Top to bottom rows show results for γ = 0.01J , 0.1J , and
0.5J . A color gradient (ranging from orange to black) is used to
show the regions where the absorption optimization mediated by
the energy defects is still present [i.e., S(γ ) > 0]. White color is
used wherever the optimization is lost S(γ ) � 0. Note that we only
focus here on the region below the red dashed curves where the
optimization was originally detected in the absence of dephasing (see
Sec. III A). The rest of the space (on top of the red dashed curves) is
thus represented with a uniform gray area.

�opt = √
N − 1J of the energy defects. Here S (γ ) > 0 in-

dicates a survival of the optimal tuning, i.e., the absorption
time still presents a minimum when � = �opt. Conversely,
S (γ ) � 0 indicates that the minimum has been removed and
no optimization can be produced. Note that S (γ ) only evalu-
ates the survival of the minimum for the absorption time, but it
does not quantify the presence of a global offset as discussed
in Sec. III B 2. In Fig. 5, we illustrate the evolution of S (γ ) in
the (L, N )-parameter space for increasing values of dephasing
(from γ = 0.01J to 0.5J) with a series of heatmaps. Left and
right columns respectively show the results obtained for the
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FIG. 6. Illustration of the change of behavior for the two networks considered in our study in the presence of strong dephasing. When γ

is assumed to be large enough, both networks act as directed chains with rates kA, kB, kC , and �. The two directed networks are very similar,
except for the rates connecting the trap to its first neighbor (right part of the chains).

extended star network and the asymmetric chain. The rows
from top to bottom show results for weak to moderate de-
phasing. Note that one focuses only on the (L, N )-parameter
subspace where optimization was initially detected in the
absence of dephasing [below the red dashed curves defined
by Eq. (11)]. The rest of the (L, N )-parameter space (on top
of the red dashed curves) is thus represented with a uniform
gray area. The orange-black gradient shows regions where
optimization is still present, while white areas show regions
where it has been lost.

As readily seen in Fig. 5, both networks exhibit very
similar behaviors for the evolution of S (γ ) as γ increases.
For weak dephasing γ = 0.01J (see first row in Fig. 5), we
observe a positive amplitude S (γ ) > 0 almost everywhere in
the (L, N )-parameter space, which indicates the survival of the
optimization for all the configurations. Then, when the value
of dephasing increases to γ ∼ 0.1J (see second row in Fig. 5),
one can see that this general property does not hold anymore.
Around this value of dephasing, one begins to detect the aris-
ing of (L, N ) configurations for which the measure becomes
null or negative S (γ ) � 0, as indicated by the arising of large
white areas below the red curve. When the dephasing reaches
the moderate regime with γ = 0.5J , we observe an (almost)
complete transition in the (L, N )-parameter space (third row
in Fig. 5). In the latter case, the white zone extends over a large
part of (L, N ) configurations, revealing that the absorption op-
timization mediated by energy defects at � = √

N − 1J is lost
on both networks. Note that additional simulations (not shown
here) have shown that the absorption optimization completely
disappears when one increases the dephasing to even larger
values γ 
 0.5J (i.e., the white area spreads everywhere).

IV. INTERPRETATION OF THE ABSORPTION PROCESS

Our numerical study allowed to evidence a series of fea-
tures. First, it has been shown that the presence of dephasing
rescales the time evolution of the energy absorption process
depending on the considered network. The process becomes
globally much slower for the extended star than for the asym-
metric chain. Second, one observed that both networks present
very similar behaviors regarding the survival of the energy
absorption optimization law. In both cases, a minimum of
the absorption time τ still arises around the value of energy
defect �opt = √

N − 1J , as long as the dephasing remains

weak enough. Finally, as γ increases to reach intermediate
and strong dephasing regimes (typically γ > 0.1J), it has
been shown that the optimization law no longer holds in both
networks, whatever the (L, N )-configuration considered.

A. Excitonic diffusion view: From undirected
to directed networks

To interpret our numerical results, we realize an analytical
development based on the strong dephasing limit. In this con-
text, the GME Eq. (3) can actually be replaced by a classical
“rate equation” that reads

∂t P(t ) = KP(t ). (13)

This equation describes the time evolution of the excitonic
populations ρss on the sites of a network, which are collected
into the vector P of size NS (with Ps = ρss). Here K is
the matrix whose elements encode the different rates gov-
erning the kinetic of the excitonic populations. As explained
in Ref. [63], the determination of the excitonic rates in the
strong dephasing limit is achieved following several steps.
First, one starts from the GME expressed in the site basis
[see Eq. (3)]. Then, assuming that the dephasing is strong
enough, we consider stationary conditions for the quantum
coherences (∂tρxy = 0) between nearest neighbor sites, orig-
inally connected by a hopping constant (see Fig. 1). Every
other “long-range” quantum coherences are neglected. Next,
the short-range coherences ρxy are expressed in terms of the
populations ρxx and ρyy. Using this redefinition, one can fi-
nally rewrite the GME under the form of a purely classical
rate equation [as given by Eq. (13)] that governs the kinetic of
the excitonic site populations.

By applying this scheme to the extended star and the asym-
metric chain, one shows that the two networks transform into
two pretty similar “directed chains” as illustrated in Fig. 6.
These directed chains include three types of rates noted kA,
kB, and kC (plus the irreversible trapping �) that read

kA = 2J2γ

γ 2 + �2
, kB = 2J2

γ
, kC = 2J2

γ + �/2
. (14)

Note that the form of these rates (obtained from the scheme
introduced in Ref. [63]) are similar to the ones present in
other works focusing on excitonic diffusion (see for example
Refs. [64–66] and references therein). As illustrated in Fig. 6,
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the transformation of the asymmetric chain into a directed
chain is straightforward. However, this is not the case for
the extended star, for which two steps are required. First, the
extended star is transformed into a directed star (as shown
on the right part of Fig. 6) following the steps described
previously. Then, starting from the associated rate equation,
one introduces a change of variable to replace the total pop-
ulation of each set of symmetrical sites of the directed star
(following the circular symmetry of the network) by a single
effective population. The resulting L + 1 effective populations
will be associated with the effective sites of the directed chain
shown at top right of Fig. 6. Using this mapping, one can
show that the resulting directed chain exhibits a very special
feature: an anisotropy in the rates linking its two rightmost
effective sites (see in Fig. 6). The excitonic transfer towards
the trapping core is governed by a rate kC which is N times
lower than the rate NkC governing the transfer in the oppo-
site direction. Comparatively, note that the directed network
obtained for the asymmetric chain does not present such an
asymmetry (here both rates are kCN as shown in Fig. 6).
This exotic phenomenon of anisotropic rate has already been
highlighted in numerous studies of dendritic architectures (see
Refs. [45,67]). It is directly associated with the connectivity of
the central core site, which exhibits a notably higher number
of connections (N) than sites located along the branches of the
directed star structure.

B. Evolution of the absorption process in the presence
of dephasing

Starting from this mapping on directed chains, one can then
derive an analytical form for the absorption time. This is in-
deed possible in the case of directed chains, using approaches
based either on the analytical properties of the inverted rate
matrix K−1, or on waiting time distribution formalism (see
Refs. [63,68–70] and references therein). We refer interested
readers to Appendices C and D, where we provide more
details on these two methods. Based on this, one can obtain
an analytical form of the excitonic absorption time for both
directed chains that reads τ ≈ ln(2)τ̄ , with

τ̄ = NS
�

+ 1

kA
+ (L + 1)(L − 2)

2kB
+ L

kC

(
1 + 1 − N

N
δCh

)
.

(15)

Here kA, kB, and kC are the rates defined in Eq. (14), and
δCh is a term equal to one only for the asymmetric chain
(zero otherwise). Note that the first term NS/� depends on
the total size NS of the given network (NS = 1 + L for the
asymmetric chain, and NS = 1 + NL for the extended star).
In the following, we will use the analytical form Eq. 15 to
interpret the absorption time evolution with dephasing. To
this end, we illustrate in Fig. 7 the numerical and analytical
results of the variations of τ as a function of γ . The white,
gray, and dark gray areas are used to delimit weak, mod-
erate, and strong dephasing regimes respectively. Solid red
lines with circles show the analytical results Eq. (15), while
solid black curves are for pure numerical simulation. Left
and right columns show results for the extended star and the
asymmetric chain respectively. Top and bottom rows show

results for two energy defects amplitudes with � = 0 (top),
and � = √

N − 1J (bottom). As a reference, we also report
on this plot the absorption time obtained without dephasing
(horizontal black dotted lines).

To begin, let us focus on the weak dephasing regime γ <

0.1J (white area in Fig. 7). As readily seen in the plot, the
analytical results fail here to reproduce the numerical simula-
tions. This discrepancy is in fact expected, as in this regime
the dephasing is not dominant: Excitonic transport is still
strongly coherent (Sec. IV A). With the survival of coherent
excitonic transport, it is therefore natural to expect the survival
of optimal energy transfer. This is in line with what has been
observed in our numerical study (see Sec. III B) regarding the
survival of the absorption optimization law in both networks
for γ < 0.1J . Interestingly, even if the excitonic dynamics is
still fundamentally coherent in this regime, the presence of
dephasing will nevertheless affect the timescale of the absorp-
tion process. Indeed, we see in Fig. 7 that an increase in γ

causes the absorption time τ (solid black curve) to deviate
progressively from the reference time obtained without de-
phasing (dotted black line). Here the amplitude of τ gradually
converges to a plateau that is typically reached when the
dephasing enters the moderate dephasing regime γ → 0.1J
(see horizontal dashed red lines in all panels).

The regime of moderate dephasing γ ∈ [0.1J, 10J] (cen-
tral gray region in Fig. 7) is precisely where a turning point
occurs in the nature of excitonic dynamics. In this case, the
dephasing amplitude γ becomes comparable to the hopping
constant J , so that the diffusive transport point of view begins
to be valid (see Sec. IV A). This can be clearly observed in
Fig. 7, as the analytical results here start to match the numer-
ical simulations very well. This holds whatever the network
and the � value considered. Interestingly, in this regime, the
absorption time systematically converges towards a plateau
value. The latter depends on the network but remains the same
whatever � (see rows in the same column in Fig. 7). This
behavior is consistent with what was highlighted earlier in the
�-parameter space in Sec. III B 2 (see Fig. 4). Based on the
good correspondence between the analytical and numerical
behaviors here, one can actually relate the amplitude of this
plateau to the first term of Eq. (15), that is, τ = ln(2)NS/�

(which represents an approximate low bound of the equation).
With this analytical form, one can better understand the fea-
tures evidenced in our numerical study when γ ∼ J . First,
the NS dependence of the plateau explains why we observe a
different timescale in the absorption process occurring on the
two networks when the dephasing increases. Indeed, the total
number of sites for the extended star NS = 1 + LN is larger
than for the asymmetric chain NS = 1 + L. The resulting
plateau is thus higher in the first case than in the second. As
a consequence, the closer we get to the moderate dephasing
regime, the slower the absorption process will be for the
star compared to the asymmetric chain. This is in line with
what has been observed in our numerical study (see Figs. 3
and 4). Second, it is interesting to note that the plateau value
τ = ln(2)NS/� is � independent. As a result, we understand
here that the absorption time will always converge in the
moderate dephasing regime to the same plateau whatever �

(as shown in Fig. 7). This property explains why previously
in Fig. 4 (Sec. III B 2) we observed a global flattening of
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FIG. 7. Evolution of the absorption time τ with the dephasing rate γ for different values of energy defects amplitudes � parameters (with
N = 5, L = 4). Left column: Extended star network. Right column: Asymmetric chain. The results on the top row are for a configuration
� = 0, whereas the bottom row shows results for � = √

N − 1J . Full and dotted black curves respectively show results with and without
dephasing. Red curves with circles show the results of the analytical behavior as given in Eq. (15). Horizontal red dashed lines show the
amplitude ln(2)NS/�. In each panel, white, gray, and dark gray areas are used to delimit weak, moderate, and strong dephasing regimes
respectively.

the absorption time curves in the �-parameters space when
γ → 0.5J .

Finally, when the strong dephasing regime is reached (dark
gray area in Fig. 7), a second turning point occurs for the
excitonic dynamics. In this case, the dephasing is so strong
that the excitonic transfer gets hindered, leading to the slow-
down of the energy absorption process. This can be readily
seen in Fig. 7 with the increase of the absorption time τ with
the dephasing amplitude γ . Here again, note the excellent
correspondence between the analytical results and the numer-
ical simulations. Based on this, one can understand that the
behavior of the absorption time is actually described by the
three additional contributions of Eq. (15) that depend on the
rates kA, kB, and kC [as defined in Eq. (14)]. Globally, these
contributions reveal that the absorption time τ scales (approx-
imately) linearly with the dephasing amplitude, i.e., τ ∝ γ

when γ 
 J . Note the presence of a difference in the last
term of Eq. (15) which yields L/kC for the star, and L/(NkC )
for the asymmetric chain. This reveals that, in the case of the
asymmetric chain, the absorption time increases less rapidly
with γ than for the star. This feature can directly be related to
the anisotropic rates present in the directed chain associated to
the extended star (see Fig. 6). In this case, the excitonic energy
transfer is biased: The transfer with the rate kC towards the
trap is N times weaker than in the opposite direction where the
rate is NkC . To conclude our discussion, one should mention

that the arising of the general exciton transfer slowdown in
the strong dephasing regime may be in fact linked to the
arising of the “quantum Zeno effect” [71] (also known as
the “watch-dog effect”). This effect has been extensively dis-
cussed in studies focusing on excitonic quantum transport (see
for example Refs. [61,72,73]) as an explanation for the limited
motion of excitons under extremely strong dephasing condi-
tions. In such scenarios, the exciton’s environment acts akin to
an observer, engaging in rapid and frequent measurement-like
interactions. These interactions obstruct the coherent spread
of the exciton, preventing its delocalization and compelling it
to stay localized at its initial site. As a result, this leads to a
substantial slowdown in the transfer to the trap, leading to a
significant increase in absorption time.

V. CONCLUSION

In this work, we studied the open quantum system dy-
namics of an exciton and its absorption on two networks:
an extended star and an asymmetric chain. The specificity
of these two networks was recently highlighted in Ref. [47]
where we showed that both architectures actually present a
similar energy absorption process that can be optimized by
the inclusion of tunable energy defects (in the absence of
environment). As a direct extension to this work, our inves-
tigations here focused on the question of how this absorption
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optimization is affected by the presence of a dephasing, and
whether, in practice, the two networks respond differently to
the presence of an environment.

Our work revealed that both networks actually present very
similar behaviors concerning the survival of the optimization
law when the dephasing is increased. In both cases, the ab-
sorption process can still be optimized by the use of energy
defects as long as the dephasing remains weak enough. In
this regime, the only difference between the two networks
is the appearance of an offset in the absorption time, which
is more significant in the case of the extended star than in
the asymmetric chain. Analytical developments based on the
diffusive limit of the excitonic transport allowed to connect
this behavior to the size of the networks (i.e., the number of
sites NS ). Additionally, our results have shown that for both
networks the optimization law is totally lost as soon as we
enter moderate and strong dephasing regimes. In this case,
analytical developments revealed that the absorption time in-
creases linearly with the dephasing amplitude. This feature
can be interpreted as the arising of the so-called quantum Zeno
effect.

Therefore, our work evidenced the possibility for both
networks to exhibit an absorption optimization mediated by
energy defects in the presence of an environment (to some
limit). These results naturally motivate new questions that
could represent interesting starting points for future devel-
opments. For example, it would be interesting to see if the
similarities shared by the two networks would resist to the
presence of a static disorder (e.g., site energies and/or hop-
ping constants modulations). In this context, the symmetry
breaking induced by disorder should open new paths on
the networks for the excitonic dynamics leading to poten-
tial different absorption mechanisms. Moreover, we could
also consider exploring different types of architecture (e.g.,
dendrimers, Cayley trees and other hyperbranched networks).
Finally, it would be also interesting to see if more realistic
excitonic environment modeling would lead to new behav-
iors (e.g., full quantum description of the phonons). Indeed,
in the current work we employed a Lindblad master equa-
tion (i.e., HSR model) which is fundamentally Markovian and
thus excludes the possibility of observing long-term quantum
coherence in the system. This description prevents us from ob-
serving any potential exotic non-Markovian effects that would
naturally arise in the excitonic transport. All these ideas will
be considered in future projects and papers.

APPENDIX A: SIMILARITY IN THE EXCITONIC
TRANSPORT ON THE EXTENDED STAR NETWORK AND

THE ASYMMETRIC CHAIN

Let us consider the extended star graph with N branches
of length L on which the exciton dynamics is governed by
the Hamiltonian H Eq. (1). H being invariant under the dis-
crete rotation of angle θ = 2π/N and centered on the core
of the star, its diagonalization is simplified when one works
with an intermediate basis involving the state localized on the
core |0, 0〉 and a set of orthogonal Bloch states |χ (k)

s 〉 with
s = 1, 2, . . . , L and k = 1, 2, . . . , N . A given Bloch state is

defined as ∣∣χ (k)
s

〉 = 1√
N

N∑
b=1

e−ikbθ |b, s〉. (A1)

Within this basis, H is expressed as a direct sum H = H (1) ⊕
H (2) · · · ⊕ H (N ), where H (k) is the block Hamiltonian associ-
ated to the good quantum number k. For all k �= N , all the
block H (k) are identical. They are expressed as

H (k �=N ) =
L∑

s=1

(ε0 + �δsL )
∣∣χ (k)

s

〉〈
χ (k)

s

∣∣
+

L−1∑
s=1

J
(∣∣χ (k)

s+1

〉〈
χ (k)

s

∣∣ + ∣∣χ (k)
s

〉〈
χ

(k)
s+1

∣∣). (A2)

For k = N , the Hamiltonian H (N ) is defined as

H (N ) =
(

ε0 − i
�

2

)
|0, 0〉〈0, 0|

+
L∑

s=1

(ε0 + �δsL )
∣∣χ (N )

s

〉〈
χ (N )

s

∣∣
+

√
NJ

(|0, 0〉〈χ (N )
1

∣∣ + ∣∣χ (N )
1

〉〈00|)
+

L−1∑
s=1

J
(∣∣χ (N )

s+1

〉〈
χ (N )

s

∣∣ + ∣∣χ (N )
s

〉〈
χ

(N )
s+1

∣∣). (A3)

One sees here that when the exciton is initially uniformly
delocalized over the peripheral sites of the star (i.e., with an
initial state |χ (N )

s 〉), its dynamics is confined in the k = N sub-
space. Restricting our attention to that subspace, the notations
can be simplified by renaming the basis vectors as

|s) =
{ |0, 0〉 if s = 0∣∣χ (N )

s

〉
if s > 0

. (A4)

Within these notations, the restriction of the Hamiltonian in
the k = N subspace is rewritten as

H (N ) =
L∑

s=0

(
ε0 − i

�

2
δs0 + �δsL

)
|s)(s|

+
L−1∑
s=1

J (|s)(s + 1| + |s + 1)(s|)

+ J
√

N (|0)(1| + |1)(0|). (A5)

Equation (A5) corresponds to the Hamiltonian given in Eq. (2)
which governs the exciton dynamics on the asymmetric chain
shown in Fig. 1.

APPENDIX B: REDUCED SET OF EQUATIONS FOR THE
EXCITONIC DYNAMICS ON THE EXTENDED

STAR NETWORK

Studying the absorption process on the extended star needs
the knowledge of the time evolution of the absorption prob-
ability PA(t ) [Eq. (7)]. Because, it depends only on the trace
of the exciton RDM ρ(t ), its characterization does not require
to resolve the full set of NS

2 coupled equations describing
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the dynamics of the GME Eq. (3) (which numerically scales
in NS

6 for the FLS method). Instead, one can only focus on
a reduced number of quantities thus reducing drastically the
numerical cost needs to solve the problem.

To proceed, let us define the four key quantities we should
focus on: First, the core population,

P0 = ρ00,00; (B1)

second, the peripheral intrabranches populations and coher-
ences,

Pss′ =
N∑

b=1

ρbs,bs′ , (B2)

which represent a (L × L) matrix whose elements are inde-
pendent on the number of branches and depend only on the
size of the branches. The diagonal elements contain the popu-
lations of each generation of the graph while the nondiagonal
elements characterize the coherences between sites of the

same branch. Third, we have the interbranches coherences,

Css′ =
N∑

b=1

N∑
b′=1

(1 − δbb′ )ρbs,b′s′ , (B3)

which represent a (L × L) matrix whose elements characterize
the coherences between different branches only. And finally,
there are the core-branch coherences,

Ks =
N∑

b=1

ρbs,00, (B4)

which represents a column vector of dimension L whose el-
ements characterize the coherences between the core and the
branch sites.

Using these key quantities, the excitonic dynamics is
governed by a reduced set of nS = 1 + 2L + 2L2 coupled
equations reading

∂t P0 = − �P0 − iJ (K1 − K∗
1 )

∂t Pss′ = − i
∑

s′′
(hss′′Ps′′s′ − Pss′′hs′′s′ ) + iJ (Ksδs′,1 − K∗

s′δs,1) − γ Pss′ (1 − δss′ )

∂tCss′ = − i
∑

s′′
(hss′′Cs′′s′ − Css′′hs′′s′ ) + iJ (N − 1)(Ksδs′,1 − K∗

s′δs,1) − γCss′

∂t Ks = −
(

�

2
+ γ

)
Ks − i

∑
s′′

hss′′Ks′′ + iJ (Ps1 + Cs1) − iJNP0δs1

∂t K
∗
s = −

(
�

2
+ γ

)
K∗

s + i
∑

s′′
hss′′K∗

s′′ − iJ (P1s + C1s) + iJNP0δs1, (B5)

where h represents a (L × L) reduced Hamiltonian matrix
defined as

h =

⎛⎜⎜⎜⎜⎝
0 J
J 0 J

J . . .

0 J
J �

⎞⎟⎟⎟⎟⎠. (B6)

The reduced set of differential equations Eq. (B5) can be
put into a compact matrix form

∂t v = Gv, (B7)

where v is a column vector (dimension nS) containing all the
elements of the key quantities introduced before (the matrices
have been flattened), and G is the square generatrix matrix
encoding the coefficients of the differential equations (with
dimension n2

S). A left or right eigendecomposition can be
conducted on G to exponentiate the associated matrix and
consequently to solve the time evolution of the key quantities
as

v(t ) = exp(Gt ) v(0). (B8)

With this approach, the absorbed population at time t is ob-
tained by summing the pertinent elements of the vector v

returning

PA(t ) = 1 − P0(t ) −
∑

s

Pss(t ). (B9)

Note that the numerical cost of the FLS method based on this
reduced set of equations will scale in n3

S , which is drastically
lower compared to the original cost in NS

6 (i.e., exact diago-
nalization of a matrix with dimension nS instead of NS

2).

APPENDIX C: ANALYTICAL FORM OF THE EXCITONIC
ABSORPTION TIME ON A DIRECTED LINEAR
NETWORK USING THE PROPERTIES OF THE

INVERSE RATE MATRIX

When considering an intermediate or strong dephasing
(γ � J), the excitonic dynamics on both networks reduces to
a random walk on a directed chain with a trap, as depicted
in Fig. 8. Starting from this view, we will detail in this Ap-
pendix how to estimate the excitonic absorption time using
the concept of “mean first passage time” (MFPT) [74].

The MFPT, noted τ̄ , defines the typical time for a ran-
dom walker starting from an initial node of a given directed
graph to reach another specific distant targeted node. If the
target node contains a trap, then τ̄ can be seen as the typical
time required for the random walker to initiate its irreversible
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FIG. 8. Directed chain of length NS = L + 1 with an irreversible
trapping process occurring on the first site with a rate �.

trapping process. In our study, we will focus on the case of a
random walker evolving on the directed chain of length L + 1
as shown in Fig. 8. We will assume here that the initial node
occupied by the walker is on the right extremity of the chain
(site L + 1). The targeted node will be the one at the other
extremity of the chain (site 1) where an irreversible trapping
process takes place (with rate �). On this chain, the walker
hops between nodes with left or right oriented rate constants
noted kleft

s /kright
s with “s” the index of the site from which the

hops come from. All this information is collected in a rate
matrix K that reads

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−� − kright
1 kleft

2

kright
1 −kright

2 − kleft
2 kleft

3

kright
2 . . . . . .

. . . . . . kleft
L+1

kright
L −kleft

L+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(C1)

From the knowledge of K, the time evolution of the random
walker is formally given by

P(t ) = exp(Kt )P(0), (C2)

where P(0) = (P1(0), P2(0), . . . , PL+1(0))T is a column vec-
tor that encodes the initial sites populations (walker starting
on site L + 1) and P(t ) the resulting time-evolved vector at
time t . Within these notations, the MFPT is defined as

τ̄ =
L+1∑
s=1

∫ +∞

0
Ps(t )dt . (C3)

Formally, this quantity can be seen as the sum of the residence
time of the walker on all the sites (see Ref. [74]), which
provides an estimate of how long the walker “survives” on the
network before starting to feel the effect of the trap on site 1.
Due to the irreversible trapping, we know that for t → +∞
we have exp(Kt ) → 0. Using this property, one can inte-
grate Eq. (C3) and shows that the MFPT takes the following
form:

τ̄ = −
L+1∑
s=1

[K−1P(0)]s. (C4)

As shown here, the elements of the inverse rate matrix K−1

provide an estimate of the MFPT. In practice, getting access
to the analytical form of K−1 is a very difficult task. However,
it has been shown (see Ref. [68]) that this information can be
exactly accessed in the case of directed chains via recurrence

FIG. 9. Directed chain of length NS = L + 2 with an irre-
versible trapping process occurring between sites 1 → 0 with a
rate �.

relations. In this case, the exact form of K−1 allows us to
derive an analytical form of the MFPT that reads (see Eq. (19)
in Ref. [68])

τ̄ =
L+1∑
m=1

rm +
L∑

m=1

1

rmkright
m

L+1∑
n=m+1

rn, (C5)

with the amplitudes rm defined as

rm =
⎧⎨⎩

1
�
, for m = 1.

1
�

kright
1 kright

2 ...kright
m−1

kleft
2 kleft

3 ...kleft
m

, for m > 1.
(C6)

We can determine the shape of these amplitudes for the two
directed chains associated to the extended star network and the
asymmetric chain. In the case of the extended star we have

rm =
{

1/�, for m = 1.

N/�, for m > 1.
(C7)

While for the case of the asymmetric chain we have

rm = 1

�
, for m � 1. (C8)

By injecting these amplitudes in Eq. (C5), one can finally
derive the analytical form of the MFPT τ̄ given in Eq. (15)
for both networks.

APPENDIX D: ANALYTICAL FORM OF THE EXCITONIC
ABSORPTION TIME ON DIRECTED LINEAR NETWORKS
USING THE WAITING TIME DISTRIBUTION FORMALISM

In complement to Appendix C, let us describe an alterna-
tive approach to determine the absorption time in the strong
dephasing limit. This approach is based on the “waiting time
distribution” formalism (see Ref. [69]), which is a mathemat-
ical tool that has been used in various fields ranging from
excitonic transport [63] to single-molecule chemical chain
reactions [69,75–78].

As depicted in Fig. 9, the linear chain considered here
now extends to a length of L + 2 (and not L + 1, as in Ap-
pendix 9 and throughout the paper). This extension includes
an additional “virtual” site (highlighted in green in Fig. 9), re-
sponsible for irreversible absorption of excitonic population at
a rate �. This alteration transforms the system behavior away
from strict dissipativity: The chain is now “closed” and the
excitonic population is irreversibly stored within the virtual
site with a rate �. Importantly, this adjustment does not com-
promise the core problem under investigation but serves as
a crucial element supporting the mathematical developments
outlined in this Appendix.
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Consequently, the directed chain considered here differs
from the dissipative chains shown in our work (see Fig. 6).

Here, the associated rate matrix K̃ [with dimension (L + 2) ×
(L + 2)] is defined as

K̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 � 0

0 −� − kright
1 kleft

2

kright
1 −kright

2 − kleft
2 kleft

3

kright
2 . . . . . .

. . . . . . kleft
L+1

kright
L −kleft

L+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (D1)

It encodes the irreversible excitonic transfer towards the vir-
tual site (with index 0 in Fig. 9).

Based on the rate matrix K̃, one can introduce the matrix
Q(z) [size (L + 2) × (L + 2)] whose elements Qi j (z) (ex-
pressed in the Laplace domain) encode the “waiting time
distribution functions” as

Qi j (z) =
[

K̃
1

Iz + K̃D

]
i j

. (D2)

As explained in Ref. [69], this element is the Laplace trans-
form of the time-dependent transition probability for a walker
to travel from site j to site i on the network. Here, K̃D refers to
the diagonal matrix associated to the whole rate matrix K̃, I is
the identity matrix and z denotes the Laplace variable. From
this matrix, one could determine the associated “probability
distribution functions” noted φi(z) (still in Laplace domain).
It describes the probability for the exciton to occupy a given
site i assuming that it started from the rightmost site on the

network shown in Fig. 9. These quantities are defined via
recurrence relations (see Ref. [69]) which read

φi(z) = φi+1(z)Qi+1,i(z) + φi−1(z)Qi−1,i(z). (D3)

Within this context, the key quantity one needs to compute
is φL+1(z). It represents the Laplace transform of the first
passage time distribution for reaching the virtual site (indexed
0 in Fig. 9) provided that the process starts from the rightmost
site. It can be determined recursively using Eq. (D3), while
verifying the boundary conditions φL+1(z) = φL(z)QL,L+1(z)
and φ0(z) = 1. Once φL+1(z) is defined, one can then obtain
directly the associated excitonic absorption time τ̄ by evaluat-
ing the following first-order derivative [63,70,75,77]:

τ̄ = − δφL+1(z)

δz

∣∣∣∣
z=0

. (D4)

Applying this method to the directed chain shown in Fig. 9,
one recovers the analytical form of the excitonic absorption
time given in Eq. (14).
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