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Q-voter model with independence on signed random graphs: Homogeneous approximations
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The q-voter model with independence is generalized to signed random graphs and studied by means of Monte
Carlo simulations and theoretically using the mean-field approximation and different forms of the pair approx-
imation. In the signed network with quenched disorder, positive and negative signs associated randomly with
the links correspond to reinforcing and antagonistic interactions, promoting, respectively, the same or opposite
orientations of two-state spins representing agents’ opinions; otherwise, the opinions are called mismatched.
With probability 1 − p, the agents change their opinions if the opinions of all members of a randomly selected q
neighborhood are mismatched, and with probability p, they choose an opinion randomly. The model on networks
with finite mean degree 〈k〉 and fixed fraction of the antagonistic interactions r exhibits ferromagnetic transition
with varying the independence parameter p, which can be first or second order, depending on q and r, and
disappears for large r. Besides, numerical evidence is provided for the occurrence of the spin-glass-like transition
for large r. The order and critical lines for the ferromagnetic transition on the p vs r phase diagram obtained
in Monte Carlo simulations are reproduced qualitatively by the mean-field approximation. Within the range of
applicability of the pair approximation, for the model with 〈k〉 finite but 〈k〉 � q, predictions of the homogeneous
pair approximation concerning the ferromagnetic transition show much better quantitative agreement with
numerical results for small r but fail for larger r. A more advanced signed homogeneous pair approximation is
formulated which distinguishes between classes of active links with a given sign connecting nodes occupied by
agents with mismatched opinions; for the model with 〈k〉 � q its predictions agree quantitatively with numerical
results in a whole range of r where the ferromagnetic transition occurs.
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I. INTRODUCTION

Social opinion formation is a collective phenomenon for
which various agent-based models have been proposed, differ-
ing by a spectrum of agents’ opinions (discrete or continuous),
rules governing changes of these opinions, the effect of in-
teractions between agents on their decisions, etc. [1]. In
particular, nonequilibrium models with binary-state dynam-
ics, in which agents are represented by spins with two possible
orientations corresponding to opposite opinions, are widely
investigated. The latter models belong to several paradig-
matic classes, e.g., the voter model [2–7], the noisy voter
model [8–10], different variants of the noisy q-voter model
(also called the nonlinear voter model) [11–21], the majority-
vote model [22–27], the q-neighbor Ising model [28–31],
etc. In most cases, interactions considered in these models
are reinforcing and promote identical opinions of interact-
ing agents, in analogy with ferromagnetic (FM) interactions
in equilibrium spin models. The structure of these interac-
tions is usually described by complex, possibly heterogeneous
networks [9,13,15–17,19,20,23–27,31] which reflect generic
features of empirical networks of social relationships [32,33].
In models with a certain degree of stochasticity, e.g., cor-
responding to human uncertainty in making decisions, the
reinforcing interactions between agents lead to the occurrence
of a phase transition to an ordered FM-like phase with one
dominant opinion as the level of internal noise is varied. Of
particular interest are discontinuous transitions, which under
certain conditions were observed in most above-mentioned
paradigmatic models [12–21,24,25,28–31], characterized by

a sudden appearance (disappearance) of the FM phase with
decreasing (increasing) the internal noise and by a possi-
ble presence of a hysteresis loop. This FM transition can
be described by an appropriate mean-field (MF) approxima-
tion, but in many cases, better agreement between theoretical
predictions and results of Monte Carlo (MC) simulations is
achieved by using a more advanced pair approximation (PA)
[6,7,10,15–17,19,20,31].

Recently, some interest has been attracted by models for
opinion formation with a random mixture of the reinforcing
and antagonistic interactions between agents [34–37], the lat-
ter promoting opposite opinions of the interacting agents, in
analogy with antiferromagnetic (AFM) interactions in equi-
librium spin models. The underlying network of interactions
then becomes a signed network, with positive links corre-
sponding to reinforcing interactions between agents in the
connected nodes and negative links corresponding to antag-
onistic interactions. Hence, the above-mentioned models for
the opinion formation with some forms of internal noise be-
come nonequilibrium counterparts for the equilibrium dilute
spin glass (SG) models [38–42]. In fact, in such models,
similar phenomena were observed as in the dilute SG models
[42], e.g., the disappearance of the FM transition (in particu-
lar, of the discontinuous transition) and the occurrence of an
SG-like transition to a phase with short-range local rather than
long-range global ordering as the fraction of the antagonistic
interactions is increased [34,35].

In this paper, a variant of the noisy q-voter model called
the q-voter model with independence [12,14–17,20,21] on
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complex signed networks is investigated. In this model, each
agent updates his or her opinion according to a modified
probabilistic rule which takes into account both the opinions
of a subset of his or her q neighbors and the signs of links
leading to them; besides, the agent can change opinion ran-
domly (independently), which introduces a certain level of
internal noise to the model. This work is a continuation and
extension of the recent studies on the related majority-vote
[34] and q-neighbor Ising models [35] on complex signed
networks, and the obtained results are to a large extent similar
to those reported in the two latter cases. In particular, in MC
simulations, depending on the parameters of the model, dis-
continuous and continuous FM transitions are observed as the
degree of agents’ independence is varied, as well as a tricriti-
cal point (TCP) separating the transitions of different orders,
corresponding to a certain fraction of the antagonistic interac-
tions in the network, and disappearance of the FM transition
for a large fraction of the antagonistic interactions. However,
the possible SG-like transition in the model under study with
a large fraction of the antagonistic interactions is very weak
and hard to confirm in simulations. As in Refs. [34,35], the
above-mentioned results concerning the FM transition can be
somewhat explained using the MF approximation or a simple
version of the PA called homogeneous PA (HPA). The former
approximation yields quantitatively correct predictions for the
model on networks with a large mean degree of nodes, and the
latter one also in the case of networks with a moderate (finite,
but still substantially larger than q) mean degree of nodes
and a small to moderate fraction of antagonistic interactions,
but its predictions become even qualitatively incorrect for
increasing fraction of the antagonistic interactions. In order
to resolve the latter discrepancy, an improved signed HPA
(SHPA) is developed in this paper, related to the PA for
the q-voter models with two kinds of agents with different
opinion update rules [17]. Predictions of the SHPA show
much improved quantitative agreement with results of MC
simulations of the FM transition in the model under study on
networks with a large and moderate mean degree of nodes
and for any fraction of the antagonistic interactions. Besides,
the SHPA provides heuristic confirmation of the occurrence
of the SG-like transition in the q-voter model on signed
networks.

The rest of this paper is organized as follows. In Sec. II, the
q-voter model on complex signed networks is defined, with
an appropriately generalized rule for the update of agents’
opinions. In Sec. III, theoretical approaches used in the study
of the model are presented in order of increasing complexity
and accuracy of predictions: mean-field approximation (MFA)
(Sec. III A), HPA (Sec. III B), and SHPA (Sec. III C). In
Sec. IV results of MC simulations of the model under study
are presented, numerical evidence for the occurrence of the
FM and SG-like transitions is provided, and the observed
properties of these transitions are compared with those pre-
dicted by the above-mentioned theories (Secs. IV B and IV C).
Section V is devoted to summary and conclusions.

II. THE MODEL

The model considered in this paper is the q-voter model
with independence on signed random networks, which is an

extension of the widely studied stochastic nonlinear q-voter
model for social opinion formation [11–17]. In the model
under study, agents are located in nodes of a random network,
indexed by j = 1, 2, . . . N , with degrees k j , and represented
by spins σ j = ±1 with the orientations up and down corre-
sponding to two opposite opinions on a given subject. The
agents interact via links (edges) of the network, and these
interactions influence the rate of the opinion changes (spin-
flip rate) for each agent, which is a mixture of the demand
for unanimity in a randomly selected subset of his or her q
neighbors and independence which allows the agent to change
opinion without taking into account his or her neighbors’
opinions. Decreasing the degree of independence of the agents
can lead to the appearance of one dominant opinion, analo-
gous to the FM transition with decreasing temperature. The
extension of the model proposed in this paper consists of
the introduction of two kinds of interactions, represented by
two kinds of links: reinforcing interactions preferring identical
opinions of the interacting agents, represented by positive
links in analogy with FM interactions, and antagonistic inter-
actions preferring opposite opinions of the interacting agents,
represented by negative links in analogy with AFM interac-
tions. The kind of interaction is randomly associated with
each link, and changing the proportion of the two kinds of
interactions allows modification of the sort and order of the
phase transitions observed in the model; in particular, for a
large fraction of antagonistic interactions, the SG-like rather
than the FM transition can be expected. In contrast with the
related majority-vote [34] and q-neighbor Ising [35] models
on signed networks, in the q-voter model, the association of
the sign with each link has only conventional character and
does not directly affect the spin-flip rate, which is sensitive to
the kind of interaction represented by each link rather than its
sign and exact value. Nevertheless, the network of interactions
in the model under study is treated as a signed network for
convenience.

This paper considers the q-voter model with independence
on complex random networks with degree distribution P(k)
and mean degree of nodes 〈k〉. For simplicity, MC simulations
are performed, and their results are compared with theoretical
predictions only for the model on homogeneous and weakly
heterogeneous complex networks, e.g., random regular graphs
(RRGs) with P(k) = δk,K , 〈k〉 = K , and Erdös-Rényi graphs
(ERGs) with P(k) = (N−1

k

)
ρk (1 − ρ)N−1−k , 〈k〉 = (N − 1)ρ,

ρ � 1 [32,43]; however, the derived HPA and SHPA are valid
also for more heterogeneous networks, e.g., scale-free net-
works with P(k) ∝ k−γ , γ > 2 [32,44]. With each link in the
network, antagonistic or reinforcing interaction is associated
with probability r or 1 − r, respectively. Hence, as explained
above, the network can be treated as a signed network, with
the signs of the links drawn randomly from a two-point distri-
bution with the −1 sign occurring with probability r and +1
sign with probability 1 − r. For each realization of the random
graph, both the structure and signs of the links remain constant
during MC simulation (quenched disorder).

In order to define the rule for the opinion change of the
agents in the model under study, the concept of mismatched
opinions is introduced. The opinions of the two interacting
agents are mismatched if they are opposite while the interac-
tion between the agents is reinforcing or if they are identical
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while the interaction between the agents is antagonistic. Then,
the unanimity rule for the opinion change followed by agents
in the q-voter model on networks [11–17], i.e., that the agent
changes opinion (the corresponding spin flips) if opinions
of all agents in a randomly selected subset of his or her
q neighbors are opposite to his or her opinion, is replaced
by a generalized unanimity rule, i.e., that the agent changes
opinion if opinions of all agents in a randomly selected sub-
set of his or her q neighbors are mismatched with his or
her opinion. Besides, each agent is endowed with a certain
degree of independence, such that he or she ignores the above-
mentioned generalized unanimity rule and, with probability
p, 0 � p � 1, called the independence parameter, makes de-
cisions randomly [12–16]. In the MC simulations, random
sequential updating of the spins is performed according to
the above-mentioned rules, which is a standard procedure
even though the model is nonequilibrium, and a single MC
simulation step (MCSS) corresponds to the update of opinions
of all N agents, without repetitions. Eventually, in numerical
simulations of the q-voter model on signed networks, each
MCSS is performed as follows.

(i) A node j, 1 � j � N , with degree k j is picked ran-
domly.

(ii) A set of its q neighbors (q-neighborhood) is chosen
randomly and without repetitions. It is assumed that 0 < q �
k j ; otherwise, the node is excluded from the simulation.

(iii) With probability 1 − p, the picked agent follows a
generalized unanimity rule and flips his or her opinion if the
opinions of all members of the chosen q-neighborhood are
mismatched with his or her opinion.

(iv) With probability p, the picked agent behaves indepen-
dently and flips or preserves his or her opinion with equal
probability p/2.

(v) Steps (i)–(iv) are repeated until all N spins are updated
without repetition, to complete the MCSS.

III. THEORY

A. Mean-field approximation

This section presents simple MFA for the FM transition in
the q-voter model on signed networks, valid for the model on
fully connected graphs, and approximately valid for the model
on random graphs with a large mean degree of nodes, 〈k〉. It is
a straightforward extension of the MFA for the FM transition
in the q-voter model on a fully connected graph with only
reinforcing interactions [12,13], corresponding to r = 0 in the
distribution of the signs of links. In the MFA, the macroscopic
quantity characterizing the model is the concentration c↑ ≡ c
of spins with orientation up (hence, c↓ = 1 − c), related to
the order parameter, the usual magnetization m, by c = (1 +
m)/2. It is assumed that the signs of links are not correlated
with the orientations of spins in the connected nodes; thus,
the probability that a spin with orientation up or down has a
neighbor with a mismatched opinion is (1 − r)(1 − c) + rc or
(1 − r)c + r(1 − c), respectively. Since in a single simulation
step, a node occupied by spin with orientation up or down is
picked with probability c or 1 − c, respectively, and taking
into account rules (ii)–(iv) of Sec. II determining the dynam-
ics of the model under study, a dynamical equation for the

concentration c can be written as a rate equation,

∂c

∂t
= (1 − c)

{
(1 − p)[(1 − r)c + r(1 − c)]q + p

2

}
− c

{
[(1 − r)(1 − c) + rc]q + p

2

}
. (1)

The following calculations are slightly simplified by perform-
ing a linear change of variables:

ξ = c(1 − 2r) + r, (2)

which transforms Eq. (1) into

∂ξ

∂t
= (1 − p)�(ξ ) + p

2
(1 − 2ξ ) ≡ F (ξ ), (3)

where

�(ξ ) ≡ (1 − ξ − r)ξ q − (ξ − r)(1 − ξ )q. (4)

Fixed points of Eq. (3) are solutions of the equation F (ξ ) =
0. Different stable fixed points correspond to different phases
of the model, i.e., paramagnetic (PM) or FM. In particular,
for any p, a (stable or unstable) fixed point with ξ = c = 1/2
exists, corresponding to the PM phase. The critical values of
the independence parameter and the order of the FM transition
for fixed q, r, and varying p can be obtained by performing the
analysis of the stability of the PM fixed point and of the bifur-
cations of Eq. (3), as for the HPA in Sec. III B. Alternatively
[12], the equation F (ξ ) = 0 can be solved with respect to p,
which for fixed q, r yields p as a function of ξ only,

p(ξ ) = 1 + 1 − 2ξ

2�(ξ ) − (1 − 2ξ )
. (5)

The plot of the inverse function ξ (p) (which cannot be ob-
tained analytically) is rotated with respect to that of p(ξ ) by a
right angle; thus, for any 0 � p � 1, the number and positions
of the fixed points of Eq. (3) can be determined from the
crossing points of the plot of the function p(ξ ) with the line
p = const. In particular, at ξ = c = 1/2, the function p(ξ ) is
finite and has an extremum, since using l’Hôpital’s rule one,
two, and three times, respectively, yields

lim
ξ→ 1

2

p(ξ ) = q(1 − 2r) − 1

q(1 − 2r) − 1 + 2q−1
, (6)

lim
ξ→ 1

2

∂ p

∂ξ
= 0, (7)

lim
ξ→ 1

2

∂2 p

∂ξ 2
= 22q−2

3

q(q − 1)[(q − 2)(1 − 2r) − 3]

[q(1 − 2r) − 1 + 2q−1]2 . (8)

From Eq. (8) it follows that for q � 4 and r � 0 as well as
for q = 5 and r > 0, the extremum at ξ = 1/2 is always a
maximum, while for fixed q � 6, it can be a minimum or a
maximum, depending on r. Plotting the function p(ξ ) reveals
that if it has a maximum at ξ = 1/2, it is a single maximum
in the interval 0 � ξ � 1, and if it has a minimum at ξ = 1/2,
it also has two maxima, which can be evaluated only numer-
ically, one at 0 < ξ < 1/2 and the other one at 1/2 < ξ < 1,
symmetric with respect to the minimum.

From the foregoing considerations it follows that the MFA
for the q-voter model with independence on signed networks
depending on q, r predicts the continuous or discontinuous
FM transition with varying the independence parameter p. If
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q and r are such that the function p(ξ ) has a maximum at ξ =
c = 1/2, the transition from the PM to the FM phase with de-
creasing p is second order and occurs at p(FM)

c,MFA = p(ξ = 1/2)

given by Eq. (6). For p > p(FM)
c,MFA, the only stable fixed point of

Eq. (3) is the PM one with ξ = 1/2, and for p < p(FM)
c,MFA there

are two stable fixed points at 0 < ξ < 1/2 and 1/2 < ξ < 1
(at 0 < c < 1/2 and 1/2 < c < 1, respectively), correspond-
ing to two symmetric FM phases. In particular, for r = 0

p(FM)
c,MFA = q − 1

q − 1 + 2q−1
, (9)

which is the critical value of the independence parameter in
the q-voter model with independence and purely reinforcing
interactions [12]. If q and r are such that the function p(ξ )
has a minimum at ξ = c = 1/2, the transition from the PM to
the FM phase with decreasing p is first order. For p > p(FM)

c2,MFA
(which is the value of the function p(ξ ) at the two symmetric
maxima) the only stable fixed point of Eq. (3) is the PM
one with ξ = 1/2. For p(ξ = 1/2) = p(FM)

c1,MFA < p < p(FM)
c2,MFA

there are three stable fixed points, separated by two unstable
ones: the PM one with ξ = 1/2 and two symmetric FM ones
at 0 < ξ < 1/2 and 1/2 < ξ < 1, so the PM and FM phases
coexist, and a hysteresis loop is expected to appear as p is
varied in opposite directions. Finally, for p < p(FM)

c1,MFA only
the two stable FM fixed points exist, separated by the unstable
PM fixed point.

For fixed q the dependence of the above-mentioned critical
values of the independence parameter on the fraction of
antagonistic interactions can be plotted on the p vs r phase
diagram, which yields the critical lines for the discontinuous
FM transition p(FM)

c1,MFA(r), p(FM)
c2,MFA(r) and for the continuous

FM transition p(FM)
c,MFA(r). From Eq. (8), it follows that

for q � 6, the transition changes from discontinuous to
continuous with increasing r as the second derivative
∂2 p
∂ξ 2 |ξ=1/2 changes sign. Thus, the three above-mentioned
critical lines meet in a TCP at

r (FM)
TCP,MFA = q − 5

2(q − 2)
, (10)

p(FM)
TCP,MFA = p(FM)

c,MFA

(
r (FM)

TCP,MFA

) = p(ξ = 1/2)|r=r(FM)
TCP,MFA

= q + 1

q + 1 + 2q−2(q − 2)
. (11)

Besides, the MFA predicts that a maximum value r (FM)
max,MFA

exists of the fraction of repulsive interactions below which
the FM transition is possible, determined from the condition
p(FM)

c,MFA(r (FM)
max,MFA) = 0 which yields

r (FM)
max,MFA = q − 1

2q
. (12)

Predictions of the MFA are qualitatively correct for the
model on networks with large 〈k〉 (Sec. IV B). In particular,
the FM transition observed in MC simulations is continuous
for q � 5 and r > 0, while for q � 6 a TCP separating the dis-
continuous and continuous FM transition occurs at r (FM)

TCP,MC >

0. There is also a maximum value r (FM)
max,MC of the fraction of the

antagonistic interactions for which the FM transition appears
at p > 0. However, for any finite 〈k〉, predictions based on the
PA discussed below are quantitatively more accurate.

FIG. 1. Illustration of the notation used in the derivation of the
equations of motion for the macroscopic quantities in the HPA: black
arrows denote active links, gray arrows denote inactive links, solid
arrows denote reinforcing interactions, dashed arrows denote antag-
onistic interactions. The central spin with orientation up or down is
placed in a node with degree k which has x active and k − x inactive
links attached; the concentrations of active and inactive links are b
and 1 − b, respectively.

B. Homogeneous pair approximation

The PA forms a basis for various more or less de-
tailed theoretical descriptions of the FM transition in models
on networks, which can be applied to the q-voter model
[15–17,19,20] and are considered to be more accurate than
the MFA. A new concept introduced in the PA is that of active
links. In the case of models with binary-state dynamics on
signed networks, a link is active if it connects nodes occupied
by agents with mismatched opinions, as defined in Sec. II.
Thus, active links are reinforcing links connecting nodes
occupied by spins with opposite orientations ν, −ν, and an-
tagonistic links connecting nodes occupied by spins with the
same orientations ν; the remaining links are called inactive.
In other words, the link is active (inactive) if the product of its
sign and the signs of the two interacting spins is negative (pos-
itive). In this section, the simplest HPA for the q-voter models
on signed networks is presented, in which all nodes are treated
as statistically equivalent, independently of their degrees, and
no distinction is made between reinforcing and antagonistic
active links (the latter distinction is taken into account in
the more advanced SHPA in Sec. III C). Eventually, in the
framework of the HPA, the macroscopic variables describing
the q-voter model on networks are the concentration c↑ = c
of nodes occupied by spins with orientation up (normalized
to the number of nodes, N , thus the concentration of nodes
occupied by spins with orientation down is c↓ = 1 − c) and
concentration of active links b (normalized to the total number
of links, N〈k〉/2). Below, a simplified derivation of dynamical
equations for the variables c and b in the HPA for binary-state
models on signed networks is presented (for the notation, see
Fig. 1); more details can be found in Refs. [34,35].

A basic assumption in the PA is that orientations of differ-
ent spins in the neighborhood of a given node are not mutually
correlated. Thus, the number of active links, x, attached to
the node with degree k (x � k) occupied by spin with ori-

014302-4



Q-VOTER MODEL WITH INDEPENDENCE ON SIGNED … PHYSICAL REVIEW E 109, 014302 (2024)

entation ν ∈ {↑,↓} obeys a binomial distribution Bk,x(θν ) =(k
x

)
θ x
ν (1 − θν )k−x. Here, θν is the conditional probability that a

link is active, provided that it is attached to a randomly chosen
node occupied by spin with orientation ν. Due to the above-
mentioned homogeneous approximation, these probabilities
can be expressed in terms of the macroscopic concentrations
c, b as [34,35] (see also the Appendix)

θ↓ = b − r

2(1 − c)
+ r, (13)

θ↑ = b − r

2c
+ r. (14)

In the framework of the HPA, the dynamical equations for
the concentrations c and b have a form of rate equations. Let
us assume that the flip rate for a spin with any orientation,
given that it occupies a node with degree k, depends only
on the number of active links, x, attached to this node; this
rate is denoted as f (x|k). The average flip rate for spins
with orientation ν is obtained by averaging f (x|k) over the
degree distribution of nodes, P(k), and over the appropriate
distribution Bk,x(θν ) of the number of active links attached to
the node with degree k. Thus,

∂c

∂t
= (1 − c)

∑
k

P(k)
k∑

x=0

Bk,x(θ↓) f (x|k)

− c
∑

k

P(k)
k∑

x=0

Bk,x (θ↑) f (x|k). (15)

If, in an elementary simulation step, a spin in a node with
degree k and x attached active links flips, the x active links
become inactive, and k − x links become active, thus the
concentration b of active links is changed by

�b(x|k ) = 2

N〈k〉 (k − 2x). (16)

Since the attempts to flip a spin take place at a rate 1/N , N →
∞, the rate equation for the concentration of active links is

∂b

∂t
= 2

〈k〉
∑

ν∈{↑,↓}
cν

∑
k

P(k)
k∑

x=0

Bk,x(θν ) f (x|k )(k − 2x).

(17)

In the case of the q-voter model with independence on
signed networks, the flip rate for a spin occupying a node with
degree k and with attached x active links is

f (x|k) = (1 − p)

(x
q

)
(k

q

) + p

2
. (18)

Inserting Eq. (18) into Eqs. (15) and (17) and performing sum-
mations as in Ref. [15] the following system of equations for
the macroscopic concentrations c, b is obtained:

∂c

∂t
= (1 − c)R(θ↓) − cR(θ↑) ≡ A(c, b), (19)

∂b

∂t
= (1 − c)[〈k〉R(θ↓) − 2S(θ↓)]

+ c[〈k〉R(θ↑) − 2S(θ↑)] ≡ B(c, b), (20)

where

R(θ ) = (1 − p)θq + p

2
, (21)

S(θ ) = (1 − p)θq[(〈k〉 − q)θ + q] + p

2
〈k〉θ. (22)

Fixed points of the system of Eqs. (19) and (20) are solu-
tions of a system of algebraic equations A(c, b) = 0, B(c, b) =
0. Different stable fixed points correspond to different phases
of the model, i.e., PM or FM, and different bifurcations af-
fecting the stability of the fixed points correspond to the
discontinuous and continuous FM phase transitions. Predic-
tions of the HPA concerning the FM transition in the q-voter
model on signed networks are qualitatively similar to those
reported previously for the majority-vote model [34] and the
q-neighbor Ising model [35], but to a large extent can be
obtained analytically rather than numerically.

For fixed 〈k〉, q, the (stable or unstable) fixed point with
c = 1/2 (m = 0), which corresponds to the PM phase, exists
in a whole range of the parameters p, 0 � p � 1, and r,
0 � r � 1. At this point θ↓ = θ↑ ≡ θ = b from Eqs. (13) and
(14), and, as a result, the equation A(c = 1/2, b = θ ) = 0 is
trivially fulfilled. The value of θ at the PM fixed point depends
on p, r and is a solution of the equation B(c = 1/2, θ ) = 0.
The stability of the PM fixed point c = 1/2, b = θ can be an-
alyzed by evaluating eigenvalues λ1, λ2 of the Jacobian matrix
of the system of Eqs. (19) and (20) at the fixed point. It can
be easily checked that ∂A

∂b |c=1/2,b=θ = ∂B
∂c |c=1/2,b=θ = 0, thus

the eigenvalues at the PM fixed point are λ1 = ∂A
∂c |c=1/2,b=θ ,

λ2 = ∂B
∂b |c=1/2,b=θ . Besides, it can be verified numerically that

for any values of the parameters 〈k〉, q, p, r, there is λ2 < 0,
and λ1 can change sign with, e.g., varying p and other param-
eters fixed. Thus, the critical value pc at which the PM point
becomes unstable, and the corresponding value bc = θc, are
obtained as solutions of a system of algebraic equations,

λ1 = ∂A

∂c

∣∣∣∣
c=1/2,b=θ

= 2(1 − pc)[q(θc − r) − θc]θq−1
c − pc = 0, (23)

B(c, b)|c=1/2,b=θ = 2

〈k〉
{

(1 − pc)θq
c [〈k〉−2q − 2(〈k〉 − q)θc]

+ pc
〈k〉
2

(1 − 2θc)

}
= 0. (24)

In general, there are two solutions for θc,

θ±
c = 〈k〉(1 + 2r) − 2 ±

√
〈k〉2(1 − 2r)2 − 4(〈k〉 − 1)

4(〈k〉 − 1)
,

(25)

and two corresponding critical values of p,

p±
c = 2[q(θ±

c − r) − θ±
c ](θ±

c )q−1

1 + 2[q(θ±
c − r) − θ±

c ](θ±
c )q−1 ≡ p±

c (r), (26)

where the notation p±
c (r) means that p±

c are considered as
functions of r only, with the parameters 〈k〉, q fixed. In the
interval 0 � r � 1 the function p+

c (r) is positive and decreas-
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ing, while the equation p−
c (r) = 0 has two roots at

r1 = 0, r2 = (q − 1)(2q − 〈k〉)

2q(q − 〈k〉)
. (27)

Thus, for q < 〈k〉/2, the function p−
c (r) for 0 < r < r2 is

negative, and for r > r2 is a positive and increasing function
of r; while for 〈k〉/2 < q < 〈k〉 the function p−

c (r) for r > 0
is positive and increasing. The two solutions p±

c (r) merge at
r = r which from Eq. (25) is

r = 1

2

(
1 − 2

√〈k〉 − 1

〈k〉
)

. (28)

Hence, the HPA predicts that in the range of parameters 0 �
r � 1, 0 � p � 1 the PM fixed point with c = 1/2 (m = 0),
b = θ is stable for p > p+(r) if r � r and for any p if r > r;
besides it is stable for p < p−(r) if q � 〈k〉/2 and r2 < r � r

as well as if q > 〈k〉/2 and 0 � r � r.
From the above-mentioned discussion, it follows that the

HPA predicts the transition from the PM to the FM phase with
fixed r and decreasing p provided that r � r. For 〈k〉 → ∞
predictions concerning this transition obtained from the HPA
and MFA coincide for any q. For the model on signed net-
works with finite 〈k〉, provided that q � 〈k〉, predictions of the
HPA and MFA are still qualitatively similar, with quantitative
differences becoming more pronounced with decreasing 〈k〉
or increasing q. For q comparable with 〈k〉, predictions based
on the HPA are qualitatively different from those based on
the MFA. In general, predictions of the HPA show better
quantitative agreement with results of MC simulations of the
FM transition in the model under study than those of the MFA
in the case of finite 〈k〉, q � 〈k〉 and small to moderate r
(Sec. IV B), but become incorrect for any q and r → r or
for any r and q comparable with 〈k〉. The main predictions of
the HPA concerning the FM transition with decreasing p and
other parameters fixed can be summarized as follows.

(i) For 〈k〉 � q and r < r the HPA predicts that the FM
transition can be first or second order, depending on the pa-
rameters 〈k〉, q, r. The first-order transition is predicted only
for q � 6 and small r, while the second-order transition is
predicted for q � 6 and larger r as well as for q � 5 and all
r < r. The different kinds of phase transitions are related
to different bifurcations of the fixed points of the system of
Eqs. (19) and (20), corresponding to the PM and FM phases.
In particular,

(a) In the case of the first-order transition, which occurs for
q � 6 and small r,

(1) As p is decreased, two pairs of stable and unsta-
ble equilibria appear via two saddle-node bifurcations taking
place simultaneously at p = p(FM)

c2,HPA > p+
c , which can be de-

termined only numerically.
(2) For p+

c < p < p(FM)
c2,HPA the two above-mentioned

stable equilibria, one with c > 1/2 (m > 0), b < 1/2,
and the other with c < 1/2 (m < 0), b < 1/2, cor-
responding again to the FM phase with positive or
negative magnetization, respectively, coexist with the
stable equilibrium with c = 1/2 (m = 0), b � 1/2
corresponding to the PM phase; the basins of attraction
of the three stable equilibria are separated by stable manifolds
of the two unstable equilibria.

(3) Eventually, at p = p(FM)
c1,HPA = p+

c , the fixed point cor-
responding to the PM phase loses stability via a subcritical
pitchfork bifurcation by colliding with the above-mentioned
pair of unstable equilibria, and for p < p(FM)

c1,HPA the only two
stable fixed points are those corresponding to the FM phase.

Hence, for p(FM)
c1,HPA < p < p(FM)

c2,HPA stable PM and FM
phases coexist, and a hysteresis loop is expected to appear as
p is varied in opposite directions.

(b) In the case of the second-order transition, which occurs
for q � 6 and larger r as well as for q � 5 and r < r, the
PM fixed point loses stability via a supercritical pitchfork
bifurcation at p = p(FM)

c,HPA = p+
c and for p < p(FM)

c,HPA a pair of
stable equilibria with c > 1/2 (m > 0), b < 1/2, or c < 1/2
(m < 0), b < 1/2 emerges, corresponding to the FM phase
with positive or negative magnetization, respectively.

(c) Possibly, for given q � 6 the critical lines p(FM)
c,HPA(r) cor-

responding to the second-order FM transition and p(FM)
c1,HPA(r),

p(FM)
c2,HPA(r) corresponding to the first-order FM transition meet

in a TCP (r (FM)
TCP,HPA, p(FM)

TCP,HPA) separating regions in which the
FM phase emerges as a result of the saddle-node and pitchfork
bifurcations, respectively. The location of this TCP can be
determined only numerically.

(ii) For q > 〈k〉/2 the HPA predicts that the FM transi-
tion is always second order and occurs for 0 < r < r via a
supercritical pitchfork bifurcation at p = p(FM)

c,HPA = p+
c . Unex-

pectedly, it can be followed by another first-order transition
with a hysteresis loop of nonzero width, leading to a sudden
increase of |m|. These predictions differ significantly from the
results of MC simulations in the whole range of r (Sec. IV B).

(iii) Another prediction of the HPA, which has no analogy
in the MFA, is that for r2 < r < r (if q < 〈k〉/2) or for
0 < r < r (if q > 〈k〉/2) as p is further reduced the two sym-
metric stable fixed points with m > 0 or m < 0 and b < 1/2
which exist for p < p(FM)

c,HPA or p < p(FM)
c2,HPA, corresponding to

the FM phase, approach each other and eventually at p =
p′(FM)

c,HPA = p−
c the PM fixed point with m = 0 regains stability

via inverse supercritical pitchfork bifurcation. This means that
for a range of r below r for given q the HPA predicts the
occurrence of another critical line p′(FM)

c,HPA(r), corresponding
to a continuous transition from the FM to the PM phase
with decreasing p. This line merges with that for the usual
continuous transition from the PM to the FM phase p(FM)

c,HPA(r)
at r = r, and the two critical lines form a characteristic cusp
marking the border of stability of the FM phase on the (r, p)
phase diagram.

The occurrence of the transition (iii) from the FM to the
PM phase for p → 0 is not confirmed by MC simulations
(Sec. IV B); moreover, this transition is not predicted by a
more exact SHPA (Sec. III C) which shows better agreement
with results of MC simulations for larger r. In the case of
the majority-vote model [34] and the q-neighbor Ising model
[35] on signed networks, it was speculated that the presence of
the additional critical line similar to p′(FM)

c,HPA(r) is related to the
possibility of destabilization of the FM phase and occurrence
of the SG-like phase. However, in view of the results of the
SHPA it is rather the outcome of the crude approximation
made in the HPA, which does not distinguish between concen-
trations of the reinforcing and antagonistic active links, which
are characterized by a single concentration b.
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C. Signed homogeneous pair approximation

The signed homogeneous PA (SHPA) derived below gen-
eralizes the HPA of Sec. III B in such a way that the nodes
of the network are still treated as statistically equivalent, but
links are divided into classes consisting of links with a given
sign connecting spins with given orientations. Thus, in the
SHPA the dynamical variables are the concentration of nodes
occupied by spins with orientation up and concentrations of
active and inactive links corresponding to reinforcing or an-
tagonistic interactions between spins with given orientations
at their ends. The rate equations for the dynamical variables
can be obtained in a similar way as in the case of the PA for
the q-voter model with quenched disorder on networks [17];
it should be emphasized that in the latter case, the quenched
disorder originated from random assignment of two different
opinion update rules to the agents rather than opposite signs
to the links, which leads to a different formulation of the PA.

Henceforth it is convenient to consider each link con-
necting nodes with spins with orientations ν, ν ′ ∈ {↓,↑} as
a junction of two directed links, one attached to the node
occupied by the spin with orientation ν and pointing at the
node occupied by the spin with orientation ν ′, and the other
one in the opposite direction [17]. The directed links can be
reinforcing (positive) or antagonistic (negative), according to
the kind (sign) of the link they belong to; thus, junctions of
directed links with the same signs are only allowed, form-
ing reinforcing (positive) or antagonistic (negative) links, and
junctions of directed links with opposite signs are forbidden.
The concentrations of reinforcing and antagonistic directed
links attached to the nodes with the spins with orientation ν
and pointing at the nodes with spins with orientation ν ′ are
denoted as e(+)

ν,ν ′ and e(−)
ν,ν ′ , respectively. It should be emphasized

that the model under study is defined on undirected networks,
but the introduction of the above-mentioned directed links
facilitates evaluation of the conditional probabilities that a
directed link of a given kind is attached to a node occupied
by spin with a given orientation, and thus the derivation of
the rate equations for the concentrations of different kinds
of links. Obviously, since the network is undirected, there
is e(+)

ν,ν ′ = e(+)
ν ′,ν and e(−)

ν,ν ′ = e(−)
ν ′,ν ; the SHPA rate equations pre-

serve this equality for the concentrations of different kinds of
links provided that it is present also in the initial conditions.

Since the concentration of reinforcing directed links (with
respect to the total number of directed links in the network
2N〈k〉) is 1 − r, and that of antagonistic directed links is r,
there is

e(+)
↑,↑ + e(+)

↓,↓ + e(+)
↑,↓ + e(+)

↓,↑ = e(+)
↑,↑ + e(+)

↓,↓ + 2e(+)
↑,↓ = 1 − r,

(29)

e(−)
↑,↑ + e(−)

↓,↓ + e(−)
↑,↓ + e(−)

↓,↑ = e(−)
↑,↑ + e(−)

↓,↓ + 2e(−)
↑,↓ = r.

(30)

Thus, the number of dynamical variables can be re-
duced by expressing, e.g., concentrations of directed links
connecting nodes with spins with opposite orientations by
those of directed links connecting nodes with spins with the
same orientations,

e(+)
↑,↓ = 1

2 (1 − r − e(+)
↑,↑ − e(+)

↓,↓), (31)

e(−)
↑,↓ = 1

2 (r − e(−)
↑,↑ − e(−)

↓,↓). (32)

Besides, the total concentration of directed links attached to
the nodes occupied by spins with orientation ν is equal to the
concentration of nodes occupied by spins with orientation ν,∑

ν ′∈{↓,↑}
(e(+)

ν,ν ′ + e(−)
ν,ν ′ ) = cν, ν ∈ {↓,↑}. (33)

In the SHPA, a distinction is made between active and inac-
tive links treated as junctions of, respectively, two active and
two inactive directed links with opposite directions. Hence,
active (inactive) directed links attached to a node occupied
by an agent with a given opinion point at nodes occupied by
agents with mismatched (matched) opinions. As in the HPA, it
is assumed that the number x of active directed links attached
to a node with degree k occupied by spin with orientation ν

obeys a binomial distribution Bk,x(αν ). The probabilities αν ,
analogous to the probabilities θν given by Eqs. (13) and (14)
in the HPA, can be expressed by the concentrations of directed
links,

α↓ = e(+)
↓,↑ + e(−)

↓,↓
e(+)
↓,↑ + e(−)

↓,↑ + e(+)
↓,↓ + e(−)

↓,↓
= e(+)

↑,↓ + e(−)
↓,↓

1 − c
, (34)

α↑ = e(+)
↑,↓ + e(−)

↑,↑
e(+)
↑,↓ + e(−)

↑,↓ + e(+)
↑,↑ + e(−)

↑,↑
= e(+)

↑,↓ + e(−)
↑,↑

c
, (35)

where again c = c↑, 1 − c = c↓, e(+)
↑,↓ is given by Eq. (31) and

Eq. (33) was used.
In contrast with the HPA, in the SHPA, a further distinction

is made between reinforcing and antagonistic active as well as
inactive directed links. Let us consider a node with degree k
occupied by spin with orientation ν and with x active directed
links attached. It is assumed that the probability that, among
these x active links, there are y antagonistic links leading to
nodes occupied by spins with the same orientation ν (thus,
the remaining x − y active links are reinforcing and lead to
nodes occupied by spins with the opposite orientation −ν) is
given by the binomial distribution Bx,y(βν,ν ) and, similarly,
that the probability that among the k − x inactive links, there
are z reinforcing links leading to nodes occupied by spins
with the same orientation ν (thus, the remaining k − x − z
inactive links are antagonistic and lead to nodes occupied by
spins with opposite orientation −ν) is given by the binomial
distribution Bk−x,z(γν,ν ); this notation is summarized in Fig. 2.
The conditional probabilities βν,ν , and γν,ν can be expressed
by the concentrations of directed links,

β↑,↑ = e(−)
↑,↑

e(+)
↑,↓ + e(−)

↑,↑
, (36)

β↓,↓ = e(−)
↓,↓

e(+)
↓,↑ + e(−)

↓,↓
= e(−)

↓,↓
e(+)
↑,↓ + e(−)

↓,↓
, (37)

γ↑,↑ = e(+)
↑,↑

e(+)
↑,↑ + e(−)

↑,↓
, (38)

γ↓,↓ = e(+)
↓,↓

e(−)
↓,↑ + e(+)

↓,↓
= e(+)

↓,↓
e(−)
↑,↓ + e(+)

↓,↓
, (39)

where e(+)
↑,↓, e(−)

↑,↓ are given by Eqs. (31) and (32), respectively.
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+
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−
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+
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−

−

−
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−

↑↓

+
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+
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−

−
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−
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−
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+
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+

FIG. 2. Illustration of the notation used in the derivation of the
equations of motion for the macroscopic quantities in the SHPA:
black arrows denote active directed links, gray arrows denote in-
active directed links, solid arrows denote reinforcing interactions,
and dashed arrows denote antagonistic interactions associated with
directed links. The central spin with orientation up or down is placed
in a node with degree k which has x active and k − x inactive
directed links attached; among x active directed links there are y
antagonistic directed links (their concentrations are e(−)

↑,↑ and e(−)
↓,↓)

and x − y reinforcing directed links (their concentrations are e(+)
↑,↓ and

e(+)
↓,↑), and among k − x inactive directed links there are z reinforcing

directed links (their concentrations are e(+)
↑,↑ and e(+)

↓,↓) and k − x − z

antagonistic directed links (their concentrations are e(−)
↑,↓ and e(−)

↓,↑).

In the framework of the SHPA, the dynamical equations for
the concentration of nodes occupied by spins with orienta-
tion up, c, and concentrations of directed links belonging to
different classes again have the form of the rate equations.
The general rate equation for c is obviously Eq. (15) with
the conditional probabilities θν [Eqs. (13) and (14)] replaced
with the corresponding αν [Eqs. (34) and (35)], which for the
model under study results in

∂c

∂t
= (1 − c)R(α↓) − cR(α↑). (40)

In order to obtain the rate equation for, e.g., the concen-
tration e(+)

↑,↑, let us consider the average change of this
concentration in a single simulation step. For this purpose,
two cases must be considered. In the first case, a node
occupied by a spin with orientation up is selected, with
degree k and with x active and k − x inactive directed
links attached, of which, respectively, y are antagonistic
and z are reinforcing directed links, which happens with
probability cP(k)Bk,x (α↑)Bx,y(β↑,↑)Bk−x,z(γ↑,↑). This spin
flips with probability f (x|k); due to this flip 2z reinforc-
ing inactive links between nodes occupied by spins with
orientation up are turned into reinforcing active links be-
tween nodes occupied by spins with orientation up and
down (Fig. 2) which decreases the concentration e(+)

↑,↑ by

�1e(+)
↑,↑ = −2z/(N〈k〉). In the second case, a node with

the above-mentioned properties is selected, occupied by a
spin with orientation down, which happens with probabil-
ity (1 − c)P(k)Bk,x (α↓)Bx,y(β↓,↓)Bk−x,z(γ↓,↓). This spin flips
with probability f (x|k); due to this flip 2(x − y) reinforcing
active links between nodes occupied by spins with orientation
up and down are turned into reinforcing inactive links between
nodes occupied by spins with orientation up (Fig. 2) which in-
creases the concentration e(+)

↑,↑ by �2e(+)
↑,↑ = 2(x − y)/(N〈k〉).

Taking into account that the attempts to flip a spin take place
at a rate �t = 1/N , N → ∞, and averaging over the above-
mentioned appropriate probability distributions, the following
rate equation for the concentration e(+)

↑,↑ is obtained:

de(+)
↑,↑

dt
= �1e(+)

↑,↑ + �2e(+)
↑,↑

�t

= − 2c

〈k〉
∑

k

P(k)
k∑

x=0

Bk,x (α↑)
x∑

y=0

Bx,y(β↑,↑)

×
k−x∑
z=0

Bk−x,z(γ↑,↑) f (x|k)z

+ 2(1 − c)

〈k〉
∑

k

P(k)
k∑

x=0

Bk,x (α↓)
x∑

y=0

Bx,y(β↓,↓)

×
k−x∑
z=0

Bk−x,z(γ↓,↓) f (x|k)(x − y). (41)

Performing summations as in Sec. III B, with f (x|k) given
by Eq. (18), and considering in a similar way changes of
the remaining significant concentrations of directed links in
a single simulation step, the following system of equations for
the latter quantities is obtained:

de(+)
↑,↑

dt
= − 2c

〈k〉γ↑,↑[〈k〉R(α↑) − S(α↑)]

+ 2(1 − c)

〈k〉 (1 − β↓,↓)S(α↓), (42)

de(+)
↓,↓

dt
= 2c

〈k〉 (1 − β↑,↑)S(α↑)

− 2(1 − c)

〈k〉 γ↓,↓[〈k〉R(α↓) − S(α↓)], (43)

de(−)
↑,↑

dt
= − 2c

〈k〉β↑,↑S(α↑) + 2(1 − c)

〈k〉 (1 − γ↓,↓)

× [〈k〉R(α↓) − S(α↓)], (44)

de(−)
↓,↓

dt
= 2c

〈k〉 (1 − γ↑,↑)[〈k〉R(α↑) − S(α↑)]

− 2(1 − c)

〈k〉 β↓,↓S(α↓), (45)
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where the functions R and S are given by Eqs. (21) and
(22). Natural initial conditions for the five-dimensional system
of Eqs. (40) and (42)–(45) are c(0) = c0, e(+)

↑,↑(0) = c2
0(1 −

r), e(+)
↓,↓(0) = (1 − c0)2(1 − r), e(−)

↑,↑(0) = c2
0r, and e(−)

↓,↓(0) =
(1 − c0)2r, where 0 < c0 < 1 is arbitrary; with the above-
mentioned initial conditions, Eq. (33) is obviously fulfilled.

Fixed points of the system of Eqs. (40) and (42)–(45) and
their stability can be determined numerically, either using
standard numerical tools or by observing long-time asymp-
totic values of the magnetization m obtained with various c0.
In particular, the (stable or unstable) PM fixed point with
c = 1/2 (m = 0) exists in the whole range of parameters
0 � r � 1, 0 < p < 1. For fixed 〈k〉, q and small to mod-
erate r bifurcations affecting its stability are the same as in
Eqs. (19) and (20). Thus, predictions of the SHPA concerning
the order of the phase transition from the PM to the FM
phase with decreasing the independence parameter p as well
as the corresponding critical values p(FM)

c1,SHPA, p(FM)
c2,SHPA (for the

first-order transition, which is predicted for small r if 〈k〉 � q
and q � 6), and p(FM)

c,SHPA (for the second-order transition) are
also close to those of the HPA. Hence, again for finite 〈k〉,
small to moderate r and q � 〈k〉 predictions of the SHPA
show better agreement with results of the MC simulations of
the FM transition in the model under study than those obtained
in the MFA, while for q comparable with 〈k〉 they differ sig-
nificantly from results of MC simulations in the whole range
of r (Sec. IV B).

The main qualitative difference with the predictions of
the HPA is that in the case of the SHPA, the additional
transition from the FM to the PM phase for small p → 0 is
absent; i.e., for given q, there is no additional critical line
similar to p′(FM)

c,HPA(r) and the FM phase remains stable for

0 < p < p(FM)
c2,SHPA or 0 < p < p(FM)

c,SHPA in the case of the first-
and second-order FM transition, respectively. Thus, the range
of r for which the SHPA predicts the FM transition is not con-
strained to the interval 0 < r < r, and the region of stability
of the FM phase on the (r, p) phase diagram is not bounded by
the cusp characteristic for the HPA. In contrast, for given q the
critical line p(FM)

c,SHPA(r) usually extends toward larger values of
r, and for q � 〈k〉 its course agrees quantitatively with the
critical line for the FM transition obtained from the MC sim-
ulations (Sec. IV B). Hence, taking into account differences
between concentrations of the reinforcing and antagonistic
active and inactive directed links leads to much improved
quantitative agreement between theoretical predictions of the
SHPA and results of the MC simulations for larger fractions
of the antagonistic links r.

IV. RESULTS AND DISCUSSION

A. Details of Monte Carlo simulations and analysis of results

In order to verify the occurrence of the FM or SG-like
phase transition, MC simulations of the q-voter model under
study were performed, and their results were compared with
predictions of the MFA, HPA, and SHPA from Sec. III. In
this section, results of simulations of the model on RRGs are
only presented; in most cases, results for the model on ERGs
with the same parameters 〈k〉, q, r are quantitatively similar.
Simulations were performed on networks with the number of

nodes 103 � N � 104 using a simulated annealing algorithm
with random sequential updating of the agents’ opinions, as
described in Sec. II. For each realization of the network and
attribution of the reinforcing and antagonistic interactions
(signs) to the links, simulation is started in the disordered
PM phase at high independence parameter p, with random
initial orientations of spins. Then, the independence parameter
is decreased in small steps toward zero, and at each interme-
diate value of p, after a sufficiently long transient, the order
parameters for the FM and the possible SG-like transitions
are evaluated as averages over the time series of the opinion
configurations. Alternatively, to check for the presence of the
hysteresis loop in the first-order FM transition, simulation can
be started with FM initial conditions, with all spins directed
up (or down), and p can be increased. The results are then
averaged over 100–500 (depending on N) realizations of the
network and of the distribution of the signs of links.

The order parameter for the FM transition is the absolute
value of the magnetization

M =
∣∣∣∣∣∣
⎡
⎣

〈
1

N

N∑
j=1

σ j

〉
t

⎤
⎦

av

∣∣∣∣∣∣ ≡ |[〈m̃〉t ]av|, (46)

where m̃ denotes a momentary value of the magnetization at
a given MCSS, 〈·〉t denotes the time average for a model with
a given realization of the network according to P(k) and with
a given associated distribution of the signs of links, and [·]av

denotes the average over different realizations of the network
and over different associated distributions of the signs of links.
The order parameter for the SG-like transition (henceforth
called the SG order parameter) is the absolute value of the
overlap parameter [39–41],

Q =
∣∣∣∣∣∣
⎡
⎣

〈
1

N

N∑
j=1

σα
j σ

β
j

〉
t

⎤
⎦

av

∣∣∣∣∣∣ ≡ |[〈q̃〉t ]av|, (47)

where α and β denote two copies (replicas) of the system sim-
ulated independently with different random initial orientations
of spins, and q̃ is a momentary value of the overlap of their
spin configurations at a given MCSS. In the PM phase, both M
and Q are close to zero. In the case of the FM transition, both
M and Q increase as p decreases. In the case of the SG-like
transition, the SG order parameter Q increases as p decreases
while the magnetization M remains close to zero.

The order of the FM or SG-like transition and the critical
values of the independence parameter can be conveniently
determined using the respective Binder cumulants U (M ) vs p
and U (Q) vs p [45],

U (M ) = 1

2

[
3 − 〈m̃4〉t

〈m̃2〉2
t

]
av

, (48)

U (Q) = 1

2

[
3 − 〈q̃4〉t

〈q̃2〉2
t

]
av

. (49)

In the case of the second-order FM or SG-like transition, the
respective cumulants are monotonically decreasing functions
of the independence parameter: for p → 0 there is U (M ) → 1
in the FM phase and U (Q) → 1 in the SG phase, and for p → 1
there is U (M ) → 0, U (Q) → 0, respectively. The critical values
of the independence parameter p(FM)

c,MC or p(SG)
c,MC for the FM and
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SG-like transitions can be determined from the intersection
point of the respective Binder cumulants for models with dif-
ferent numbers of agents, N [45]. In the case of the first-order
FM transition, it is sometimes possible to observe directly the
hysteresis loop by measuring magnetization M as a function
of decreasing independence parameter for a model started
in the PM phase to get p(FM)

c1,MC, as well as as a function of
increasing independence parameter for a model started in the
FM phase to get p(FM)

c2,MC; in order to obtain reliable results,
simulations of the model with the maximum number of nodes
N = 104 are utilized for this purpose. If the hysteresis loop
is narrow, the Binder cumulants become useful again. In the
case of the first-order transition, behavior of the cumulant
U (M ) for p → 0 and p → 1 is similar as in the case of the
second-order transition, but close to the critical value of p, the
cumulant exhibits a negative minimum, which deepens and
becomes sharper with an increasing number of nodes, N . The
critical value of the independence parameter, e.g., p(FM)

c1,MC for
the first-order FM transition, again can be determined from
the intersection point of the cumulants U (M ) for models with
different numbers of agents, N , started in the PM phase.

B. Ferromagnetic phase transition

MC simulations of the q-voter model on signed RRGs and
ERGs confirm that for a broad range of parameters 〈k〉 � q �
2 with varying independence parameter p the FM transition
occurs for a range of nonzero concentrations of the antagonis-
tic interactions r. In particular, for fixed 〈k〉 and q, the critical
value of p decreases to zero at r (FM)

max,MC < 0.5, in agreement
with Eq. (12). This situation qualitatively resembles that for
the FM transition in the model for dilute SG [42] as well in
the related nonequilibrium majority-vote [34] and q-neighbor
Ising models on random graphs [35], where the FM transition
is observed for a range of nonzero fractions of the AFM
interactions.

For any finite 〈k〉, q � 5 (〈k〉 > q) and any r, the FM
transition with decreasing p is second order, as predicted
by the HPA and SHPA and confirmed by MC simulations
(Figs. 3 and 4). If 〈k〉 � q, for small r the critical values of the
independence parameter p(FM)

c,HPA, p(FM)
c,SHPA predicted from the

HPA, Eqs. (25) and (26), and SHPA agree quantitatively with
p(FM)

c,MC obtained from MC simulations (Fig. 3). For moderate

r, the critical values p(FM)
c,HPA predicted by the HPA become

significantly underestimated. Besides, for r slightly below r,
Eq. (28), the HPA incorrectly predicts the transition from
the FM to the PM phase with decreasing p at p′(FM)

c,HPA which
is not observed in simulations (Fig. 3). Both critical curves
p(FM)

c,HPA(r), p′(FM)
c,HPA(r) merge at r = r marking a border of the

range of r where the FM transition can occur, noticeably
below the bordering value r (FM)

max,MC estimated from MC simula-

tions (Fig. 3). In contrast, the critical values p(FM)
c,SHPA predicted

by the SHPA agree quantitatively with p(FM)
c,MC obtained from

MC simulations for a whole range of r where the FM tran-
sition appears (Fig. 3), and for fixed r the dependence of the
magnetization on p below the transition point is also correctly
reproduced (Fig. 4).

For q � 6 the phase diagram on the p vs r plane for the
FM transition is more complex. If 〈k〉 � q, the properties of

FIG. 3. Phase diagram for the q-voter model with independence
on signed RRGs with K = 20, q = 4. The particular critical lines for
the FM transition are labeled on the diagram. Symbols (•) denote
critical lines obtained from MC simulations for the second-order
FM transition. Solid lines denote critical lines predicted by the HPA
(thick gray line) and SHPA (thick black line). Inset: Meeting of the
two critical lines p(FM)

c,HPA(r) and p′(FM)
c,HPA(r) predicted by the HPA (thick

gray line) at r = r.

FIG. 4. The Binder cumulants U (M ) vs p from MC simulations of
the q-voter model with independence on signed RRGs with K = 20,
q = 4, r = 0.2 for N = 103 (×), N = 2 × 103 (+), N = 5 × 103

(�), N = 104 (•); gray solid lines are guides to the eyes. Inset:
Magnetization M vs p, symbols as above; thick black line shows
predictions of the SHPA.
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FIG. 5. As in Fig. 3, but for K = 50, q = 8. Symbols denote
critical lines obtained from MC simulations for the first-order (◦)
and second-order (•) FM transition. Thin gray lines are guides to
the eye. Solid lines denote critical lines predicted by the MFA (thin
solid line), HPA (thick gray line), and SHPA (thick black line).
Inset: Magnetization M vs p from MC simulations of the model
with r = 0.1 started with PM conditions and decreasing p (•) as well
as with FM conditions and increasing p (◦); thick black line shows
predictions of the SHPA.

the FM transition with fixed r and varying p are qualitatively
reproduced by the MFA (Fig. 5): for small r, it is discontinu-
ous with the hysteresis loop, and for larger r it is continuous,
and the critical lines for the first- and second-order transitions
meet in the TCP. For small r, the critical values of the in-
dependence parameter p(FM)

c1,HPA, p(FM)
c2,HPA and p(FM)

c1,SHPA, p(FM)
c2,SHPA

for the first-order transition as well as p(FM)
c,HPA, p(FM)

c,SHPA for
the second-order transition, predicted by the HPA and SHPA,
respectively, agree quantitatively with those obtained from
MC simulations, p(FM)

c1,MC, p(FM)
c2,MC as well as p(FM)

c,MC for the first-
and second-order transition, respectively; thus, the width of
the hysteresis loop in the case of the discontinuous transition
is also predicted correctly by both kinds of the PA (Fig. 5).
The location of the TCP (r (FM)

TCP,MC, p(FM)
TCP,MC) obtained from

MC simulations, in which the width of the hysteresis loop
decreases to zero, is also predicted correctly by the HPA and
SHPA (Fig. 5). However, for a range of r above r (FM)

TCP,MC
the FM transition observed in MC simulations is still first
order (Fig. 5): although the hysteresis loop is not observed
directly, the Binder cumulants U (M ) for different N cross at
one point corresponding to the critical value p(FM)

c,MC and exhibit
negative minima as functions of p which become deeper with
an increasing number of nodes (Fig. 6). It is possible that
the presence of this minimum is a finite-size effect that will
disappear again in the thermodynamic limit, the more that
the increase of the magnetization with decreasing p is cor-
rectly predicted by the SHPA and typical for the second-order

FIG. 6. As in Fig. 4 but for K = 50, q = 8, and r = 0.25.

transition (Fig. 6, inset), but simulations of the model with
N large enough are beyond our capabilities. Only for still
higher values of r does the FM transition observed in MC
simulations become continuous, as predicted by both kinds
of the PA (Fig. 6). For moderate r, in particular, in the case
of the second-order FM transition, predictions of the HPA
again deviate from the results of MC simulations in a similar
way as in the above-mentioned case with 〈k〉 = 20, q = 4.
In contrast, the critical values p(FM)

c,SHPA predicted by the SHPA

agree quantitatively with p(FM)
c,MC obtained from MC simulations

(Fig. 6).
If 〈k〉 and q are comparable, the agreement between the

results of MC simulations and all theoretical predictions under
consideration is much worse (Figs. 7 and 8). Such disagree-
ment appears even in the case of the model with r = 0
[15,17,20]. It should be mentioned that in order to study this
case, 〈k〉 must be diminished rather than q increased, since the
rise of q leads to the decrease of the critical value of p for the
occurrence of the FM transition [cf. Eq. (9)], and for such a
small level of internal noise, very long MC simulations are
required to obtain reliable dependence of the magnetization
on the independence parameter. As a result, for small 〈k〉
predictions of the MFA are useless. Concerning the HPA and
SHPA, for small r, their predictions are even qualitatively
incorrect: for fixed r and decreasing p, both theories predict
the occurrence of the second-order FM transition, while MC
simulations reveal the first-order FM transition with the hys-
teresis loop (Figs. 7 and 8). Moreover, according to the SHPA
(as well as the HPA) at p < p(FM)

c,SHPA another discontinuous
phase transition can appear between two FM phases with low
and high magnetization (Fig. 7). This results from a sequence
of bifurcations of the system of Eqs. (40) and (42)–(45) with
decreasing p, first the supercritical pitchfork bifurcation at
p = p(FM)

c,SHPA, leading to the second-order FM transition to
the FM phase with low magnetization, then two saddle-node
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FIG. 7. As in Fig. 3, but for K = 10, q = 6. Symbols denote
critical lines obtained from MC simulations for the first-order (◦) and
second-order (•) FM transition. Thin gray lines are guides to the eye.
Solid lines denote critical lines predicted by the HPA (thick gray line)
and SHPA (thick black line). Dashed lines denote the lower and upper
critical lines for the additional discontinuous FM transition predicted
by the SHPA, occurring for p < p(FM)

c,SHPA, i.e., below the continuous
FM transition, as shown in the inset. Inset: As in Fig. 5, for the model
with r = 0.0.

bifurcations leading to bistability between two FM phases
with low and high magnetization and eventually to the loss
of stability of the former FM phase. The range of parame-
ters r, p for the occurrence of this additional FM transition
is much narrower than that for the first-order FM transition
observed in MC simulations. For moderate r, MC simulations
show that for smaller q, the FM transition can become second
order (Fig. 7), as predicted by the HPA and SHPA, while for
larger q, it remains first order (Fig. 8). In the former case,
predictions of the HPA again deviate from the results of MC
simulations in a similar way as in the above-mentioned cases
with 〈k〉 � q, while the critical values p(FM)

c,SHPA predicted by

the SHPA approach p(FM)
c,MC obtained from simulations. In the

latter case, the order of the FM transition predicted by both
HPA and SHPA is incorrect, and the critical values of the
independence parameter are significantly overestimated.

C. Spin-glass-like transition

In the nonequilibrium majority-vote [34] and q-neighbor
Ising model [35] on signed networks with fixed r and de-
creasing level of internal noise, numerical evidence was
found for the occurrence of the SG-like transition, recog-
nized by the increase of the SG order parameter Q with the
magnetization M remaining zero. The resulting phase diagram
for the above-mentioned models qualitatively resembles that
of the equilibrium dilute SG model [42], with the FM and
SG-like transitions occurring for small and large fractions

FIG. 8. As in Fig. 3, but for K = 10, q = 8. Symbols denote
critical lines obtained from MC simulations for the first-order (◦) FM
transition. Thin gray lines are guides to the eye. Solid lines denote
critical lines predicted by the HPA (thick gray line) and SHPA (thick
black line). Dashed lines denote the lower and upper critical lines for
the additional discontinuous FM transition predicted by the SHPA,
occurring for p < p(FM)

c,SHPA, i.e., below the continuous FM transition.
Inset: As in Fig. 5, for the model with r = 0.1.

of the antagonistic interactions, respectively, separated by a
TCP, and with the critical value of the parameter measuring
the intensity of the internal noise (e.g., the temperature in the
case of the q-neighbor Ising model) for the SG-like transition
independent of r. The SG-like transition cannot be predicted
theoretically using methods of Sec. III; only a little hint of it
can be obtained from the HPA and SHPA.

It turns out that in the q-voter model on signed networks
considered in this paper, it is particularly difficult to ob-
serve the SG-like transition in MC simulations. Exemplary
numerical results indicating its occurrence in the model on
an RRG with K = 10, q = 6, r = 0.6, where the FM tran-
sition does not appear, are shown in Fig. 9. The SG order
parameter Q increases monotonically for p → 0, although its
values do not saturate and slightly decrease with increasing
N , which can raise doubts about the occurrence of the SG-like
transition in the thermodynamic limit. Since the transition is
observed for very small p, the obtained curves U Q vs p exhibit
strong fluctuations despite averaging the results as described
in Sec. IV A; only after smoothing them do the Binder cu-
mulants for different N seem to decrease monotonically with
p and cross at one point corresponding to the critical value
p(SG)

c,MC = 0.0037 ± 0.0002. These results suggest the appear-
ance of the second-order SG-like transition in the model under
study with large r, with the critical line meeting in a TCP with
that for the second-order FM transition seen in Fig. 7, as in
dilute SG models [42].

It is interesting to note that the obtained value p(SG)
c,MC is close

to the value p(FM)
c,HPA(r) = p′(FM)

c,HPA(r) = 0.00382618 . . . of the
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FIG. 9. The Binder cumulants U (Q) vs p from MC simulations of
the q-voter model with independence on signed RRGs with K = 10,
q = 6, r = 0.6 for N = 103 (×), N = 2 × 103 (+), N = 5 × 103

(�), N = 104 (•); thin gray solid lines are guides to the eyes, thick
solid lines are running averages with the window width equal to 7
points (from light gray for N = 103 to black for N = 104). Inset:
The SG order parameter Q vs p; symbols as above.

independence parameter at the cusp of the region of stability
of the FM phase predicted by the HPA (Fig. 7). A similar
coincidence was observed also in the case of the q-neighbor
Ising model on signed networks [35], although its origin is
unclear, the more that the presence of the additional critical
line p′(FM)

c,HPA(r) as well as the cusp at r = r are only due to
approximations made in the derivation of the HPA (Sec. III B).
It is also noteworthy to mention that for large r, where the
MC simulations suggest the appearance of the SG-like transi-
tion, the HPA predicts that the PM point remains stable for
p → 0, but the corresponding concentration of active links
b = θ decreases significantly, which suggests that some cor-
relation between orientations of interacting spins appears. The
SHPA also makes a similar prediction. It predicts that for
large r and p → 0, the links corresponding to reinforcing
interactions connect mostly nodes occupied by spins with the
same orientations, while these corresponding to antagonistic
interactions connect mostly nodes occupied by spins with
opposite orientations, which suggests the appearance of short-
range ordering of spins. For example, in the above-mentioned
case of the model on RRG with K = 10, q = 6, r = 0.6, for
p → 0 the ratio δ = e(+)

↑,↑/[c2(1 − r)] (where the denominator
corresponds to the concentration of positive links connecting
spins with orientation up if the positive and negative links are
distributed randomly between pairs of nodes, as in the PM
phase; note that also in the SG phase c = 1/2) significantly
increases, while δ′ = e(−)

↑,↑/(c2r) similarly decreases (Fig. 10).
Substantial changes of δ, δ′ are predicted only for very small
p which suggests that the critical value of the independence

FIG. 10. Relative concentrations δ = e(+)
↑,↑/[c2(1 − r)],

δ′ = e(−)
↑,↑/(c2r) of active and inactive links vs p predicted by

the SHPA for the q-voter model with independence on signed RRGs
with K = 10, q = 6, r = 0.6, where MC simulations reveal the
SG-like transition for decreasing independence parameter.

parameter for the SG-like transition is small, which hampers
its observation in MC simulations.

V. SUMMARY AND CONCLUSIONS

In this paper, the q-voter model with independence on
signed random graphs was studied by MC simulations and
theoretically in the MF approximation, as well as using two
versions of the PA, the HPA and SHPA. The independence,
measured by the parameter p, corresponds to internal noise in
the model, and the signed networks exhibit quenched disor-
der due to the appearance of negative links corresponding to
antagonistic interactions with probability r. The latter interac-
tions prefer opposite opinions (orientations) of the interacting
agents (spins), which is reflected in the modified rule for
the update of agents’ opinions; thus, the model under study
qualitatively resembles the equilibrium dilute SG model with
a fraction r of the AFM interactions [42] and previously stud-
ied nonequilibrium majority-vote and q-neighbor Ising model
[34,35] on signed networks. Indeed, the FM transition with
fixed r and varying p observed in the q-voter model with
independence on signed networks with a finite mean degree of
nodes 〈k〉 qualitatively resembles that in the above-mentioned
nonequilibrium models: for the size of the q-neighborhood
q � 5 it is second order for any r; for q � 6 it is first order
with the hysteresis loop for small r and can become second
order for larger r; and it disappears above a certain level of
quenched disorder r < 1. Besides, numerical evidence was
found for the occurrence of the SG-like transition in the model
under study with a large fraction r of antagonistic interac-
tions, again in analogy with the above-mentioned models in
Refs. [34,35,42].

Theoretical predictions of the MFA and HPA concerning
the FM transition in the model under study exhibit similar
discrepancies with results of MC simulations as in the case
of the majority-vote and q-neighbor Ising models [34,35].
The MFA yields quantitatively correct predictions concerning
the order of the FM transition and the critical value(s) of the
independence parameter p for the model on complete graphs
with 〈k〉 → ∞, as expected. Predictions of the HPA, which to
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a large extent can be obtained analytically, are quantitatively
correct for the model on networks with a finite mean degree of
nodes 〈k〉 substantially larger than q, and for small fractions
of antagonistic interactions r. As r is increased, the predicted
critical values p(FM)

c,HPA of the independence parameter deviate
from those obtained from MC simulations, and for a certain
range of r, the theory also predicts additional transition from
the FM back to the PM phase with p → 0 which is not ob-
served in simulations. Eventually, for the model on networks
with 〈k〉 comparable with q, predictions of the HPA become
even qualitatively incorrect.

The main theoretical result of this paper is the formulation
of the SHPA and its application to the q-voter model under
study in Sec. III C. This kind of PA, valid for models on signed
networks, distinguishes between different kinds (classes) of
links with a given sign connecting spins with given orien-
tations so that the macroscopic quantities are concentrations
of spins with orientation up and the above-mentioned links.
Derivation of the equations of motion for the macroscopic
quantities in the SHPA resembles that in the PA for the q-voter
models with quenched disorder on networks [17]; however,
in the latter case, the quenched disorder is connected with
the presence of two kinds of agents in the model, differing
by the rules for the opinion update, rather than two kinds
of reinforcing and antagonistic interactions, which eventually
leads to a different formulation of the theory. For the model
under study on networks with a finite mean degree of nodes
〈k〉 substantially larger than q, the critical values p(FM)

c,SHPA of
the independence parameter predicted by the SHPA show
good quantitative agreement with these obtained from MC
simulations for a whole range of r where the FM transition
occurs, and the unobserved transition to the PA phase with
p → 0 is not predicted. The SHPA also offers heuristic insight
into the origin of the SG-like phase observed in the model
under study for large r, since it suggests that in this case,
the concentration of active links decreases for p → 0 and the
correlation between the signs of links and the orientations of
spins in the connected nodes increases in comparison with
the PM phase. Unfortunately, for the model on networks
with 〈k〉 comparable with q, predictions of the SHPA con-
cerning the FM transition again become even qualitatively
incorrect.

Similar improvement of theoretical predictions concern-
ing the FM transition in comparison with the HPA can be
expected due to applying the SHPA to the related majority-
vote and q-neighbor Ising models on signed networks. It is
also worth noting that one of the assumptions of all theoret-
ical approaches in Sec. III is that all nodes are statistically
equivalent; thus, the macroscopic quantity of interest is the
total concentration c of spins with orientation up. However,
even in the case of a signed network in the form of an RRG,

the nodes differ by the number l of attached antagonistic
directed links, which obeys a binomial distribution BK,l (r).
Considering this heterogeneity may lead to more advanced
theoretical approaches for the q-voter and related models on
signed networks. The above-mentioned issues are left for fu-
ture investigation.

APPENDIX

Derivation of the conditional probabilities θν , ν ∈ {↓,↑}
[Eqs. (13) and (14)] in Refs. [34,35] in the HPA can be refor-
mulated in terms of concentrations of the directed signed links
e(±)
ν,ν ′ , as in the case of SHPA in Sec. III C. A key assumption is

that the signs of links and orientations ν, ν ′ of spins occupying
the nodes linked by them are independent random variables.
Then one can write e(−)

ν,ν ′ = reν,ν ′ , e(+)
ν,ν ′ = (1 − r)eν,ν ′ , where

eν,ν ′ denotes the concentration of directed links attached to
nodes occupied by spins with orientation ν and pointing at
nodes occupied by spins with orientation ν ′, regardless of
their sign; obviously, eν,ν ′ = eν ′,ν . Then the three independent
concentrations e↑,↑, e↓,↓, e↑,↓ can be expressed in terms of the
concentration of active directed links (equal to the concentra-
tion of active links b), the concentration of nodes occupied by
spins with orientation up, c, and the fraction of antagonistic
directed links, r, since

b = e(−)
↑,↑ + e(−)

↓,↓ + e(+)
↑,↓ + e(+)

↓,↑
= r(e↑,↑ + e↓,↓) + 2(1 − r)e↑,↓, (A1)

c = e↑,↑ + e↑,↓, (A2)

1 = e↑,↑ + e↓,↓ + 2e↑,↓. (A3)

This yields

e↑,↑ = c − b − r

2(1 − 2r)
, (A4)

e↓,↓ = 1 − c − b − r

2(1 − 2r)
, (A5)

e↑,↓ = b − r

2(1 − 2r)
. (A6)

The conditional probabilities θν , ν ∈ {↓,↑}, that a link is
active given that it is attached to a randomly chosen node
occupied by spin with orientation ν are given by the same
expressions as the respective conditional probabilities in the
SHPA [Eqs. (34) and (35)], e.g.,

θ↑ = e(+)
↑,↓ + e(−)

↑,↑
c

= (1 − r)e↑,↓ + re↑,↑
c

. (A7)

Substituting Eqs. (A4)–(A6) in the above equation yields
Eq. (14), and Eq. (13) is obtained similarly.
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[21] B. Nowak, B. Stoń, and K. Sznajd-Weron, Discontinuous phase
transitions in the multi-state noisy q-voter model: Quenched vs
annealed disorder, Sci. Rep. 11, 6098 (2021).

[22] M. J. de Oliveira, Isotropic majority-vote model on a square
lattice, J. Stat. Phys. 66, 273 (1992).

[23] H. Chen, C. Shen, G. He, H. Zhang, and Z. Hou, Critical noise
of majority-vote model on complex networks, Phys. Rev. E 91,
022816 (2015).

[24] H. Chen, C. Shen, H. Zhang, G. Li, Z. Hou, and J. Kurths, First-
order phase transition in a majority-vote model with inertia,
Phys. Rev. E 95, 042304 (2017).

[25] B. Nowak and K. Sznajd-Weron, Symmetrical threshold model
with independence on random graphs, Phys. Rev. E 101,
052316 (2020).

[26] H. Chen, S. Wang, C. Shen, H. Zhang, and G. Bianconi, Non-
Markovian majority-vote model, Phys. Rev. E 102, 062311
(2020).

[27] M. Kim and S.-H. Yook, Majority-vote model with degree-
weighted influence on complex networks, Phys. Rev. E 103,
022302 (2021).
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