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Exact low-dimensional description for fast neural oscillations with low firing rates
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Recently, low-dimensional models of neuronal activity have been exactly derived for large networks of
deterministic, quadratic integrate-and-fire (QIF) neurons. Such firing rate models (FRM) describe the emergence
of fast collective oscillations (>30 Hz) via the frequency locking of a subset of neurons to the global oscillation
frequency. However, the suitability of such models to describe realistic neuronal states is seriously challenged by
the fact that during episodes of fast collective oscillations, neuronal discharges are often very irregular and have
low firing rates compared to the global oscillation frequency. Here we extend the theory to derive exact FRM
for QIF neurons to include noise and show that networks of stochastic neurons displaying irregular discharges
at low firing rates during episodes of fast oscillations are governed by exactly the same evolution equations as
deterministic networks. Our results reconcile two traditionally confronted views on neuronal synchronization
and upgrade the applicability of exact FRM to describe a broad range of biologically realistic neuronal states.
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I. INTRODUCTION

Fast oscillations (>30 Hz) are a prominent feature of
neural activity [1–4]. Empirical studies show that very often
such rhythms display a remarkable dichotomy: at the col-
lective level, neuronal oscillations are fast and fairly regular,
whereas at the single-cell level individual spikes trains remain
highly irregular and have low firing rates [4–6].

A wealth of theoretical and computational work has inves-
tigated the emergence of fast neuronal rhythms and identified
minimal neurophysiological ingredients that robustly produce
them in large ensembles of spiking model neurons [2–7].
According to these studies, fast oscillations emerge in pop-
ulations of inhibitory neurons with synaptic time constants
and/or fixed delays and sufficient drive to induce spiking.
Notably, in this idealized modeling framework of neuronal
synchrony, networks of spiking neurons with random con-
nectivity and additive noise may display irregular spike
discharges at low firing rates, akin to experimental observa-
tions [8,9]. This so-called sparse synchronization [6] state
is also encountered in all-to-all coupled networks with both
multiplicative and additive noise [8,9] or just with additive
noise [10,11].

An alternative and powerful tool to investigate fast
neuronal oscillations is to use reduced or simplified models—
called neural-mass or firing-rate models (FRM)—which
describe the mean activity in a neuronal population [12–15].
Such FRM consist of one or a few ordinary differential equa-
tions and allow for a thorough understanding of the system’s
dynamics. Specifically, for the case of an inhibitory network
with synaptic delays, FRM exhibit fast oscillations similar to
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those observed in numerical simulations of large networks of
spiking neurons [16–19].

Fast oscillations in FRM are often associated to the pres-
ence of sparse synchronization [6,20]. However, the fact that
FRM are heuristic and not exactly obtained from a given
network of spiking neurons impedes one from unambigu-
ously linking the collective dynamics described by the FRM
with that of individual neurons in the network. Yet, a no-
table exception is a recently developed mean-field theory
that allows for a proper mathematical derivation of the FRM
corresponding to an all-to-all coupled ensemble of hetero-
geneous, quadratic integrate-and-fire (QIF) neurons [21,22].
Accordingly, this theory is singularly suited to investigate the
relation between microscopic, single-cell dynamics (observed
in numerical simulations of networks of spiking neurons) with
that of the network’s collective states—exactly described by
the QIF-FRM.

Unfortunately, the theory to obtain QIF-FRM (also known
as “next-generation neuron mass models” [23]) is only
valid for deterministic networks with Cauchy heterogeneity,
which are not capable of displaying sparsely synchronized
states. Indeed, synchronization emerging in populations of
heterogeneous inhibitory neurons is due to the frequency
entrainment of a subset of neurons, which display regular,
periodic dynamics with the (fast) frequency of the collective
rhythm [10,18,19,23–35]. This synchronization scenario for
deterministic neurons is in sharp contrast with the sparse syn-
chronization scenario and seriously challenges the suitability
of QIF-FRM to describe and investigate biologically plausible
neuronal states. In addition, synchronization in such hetero-
geneous networks is considered to be fragile and at odds with
sparse synchronization [4–6,10].

Motivated by recent advances in the context of the
Kuramoto model [36,37], in this article we extend the
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FIG. 1. Synchronization scenarios in an inhibitory network of globally coupled QIF neurons, Eqs. (1) and (2), with quenched Cauchy
heterogeneity [panels (a1)–(a3) and (c1)–(c3)] and with Cauchy noise [panels (b1)–(b3) and (d1)–(d3)] and η = 100. Panels (a1)–(d1): black
lines—time series of the mean firing rate Eqs. (1) and (2); red lines—time series of the r variable of the QIF-FRM (12) and (2). Panels
(a2)–(d2): time series of the membrane potential of two individual QIF neurons. Panels (a3)–(d3): Raster plots of the spiking times of a subset
of 25% of randomly selected neurons. Neuron indices in panels (a3) and (c3) are sorted according to η j .

theory to derive QIF-FRM to networks of QIF neurons driven
by Cauchy noise. Strikingly, the resulting QIF-FRM reveals
that deterministic QIF networks showing fast oscillations via
frequency entrainment are governed by the same evolution
equations as networks of stochastic QIF neurons displaying
sparse synchronization.

II. SYNCHRONIZATION SCENARIOS IN POPULATIONS
OF INHIBITORY QIF NEURONS

We consider a population of N QIF neurons [38,39], inter-
acting via a mean-field inhibitory coupling of strength J . The
evolution of the membrane potential of a QIF neuron obeys
the equation

τmV̇j = V 2
j + η j + ξ j (t ) − τmJs(t ), (1)

where j = 1, . . . , N , and the following resetting rule: if Vj >

Vp, then Vj ← Vr . The neuron’s membrane time constant τm

is set to 10 ms and quenched heterogeneity is modeled via
parameter η j , which represents a constant input current that
varies from neuron to neuron according to a Cauchy probabil-
ity density function G(η), centered at η and with half width at
half maximum (HWHM) �,

G(η) := 1

π

�

(η − η)2 + �2
.

In addition, neurons are subject to independent noisy inputs.
Specifically, the random variables ξ j (t ) represent zero-
centered Cauchy white noise with HWHM �. Finally, neurons
interact all-to-all through the mean postsynaptic activity s(t ).
This mean-field variable is related via the equation

τsṡ(t ) = −s(t ) + r(t ) (2)

to the population mean firing rate r(t )

r(t ) = 1

N

N∑
j=1

∑
k

1

τr

∫ t

t−τr

dζ δ
(
ζ − t (k)

j

)
. (3)

The time constant τs in Eq. (2) corresponds to the synaptic de-
cay time of the inhibitory synapses, which we set to τs = 5 ms.
The instant t (k)

j in Eq. (3) indicates the kth spike of neuron j
and τr is a time window of the spike events, which we set to
10−2 ms [40].

In Fig. 1, we compare the results of numerical simulations
[41] in two different synchronous regimes of Eqs. (1) and
(2), using deterministic and noisy networks. For moderated
inhibition, the mean firing rate r(t ) displays fast oscillations
at approximately 100 Hz, which are noticeably similar in
both the deterministic and the noisy network; see Fig. 1(a1)
and Fig. 1(b1), respectively. The large amplitude of the firing
rate oscillations reflects a high degree of synchronization.
Indeed, Figs. 1(a2) and 1(b2) show the membrane potential
of two neurons in the heterogeneous and noisy networks,
respectively. In both cases, neurons fire periodically with the
frequency of the global oscillations. Additionally, the raster
plots in Figs. 1(a3) and 1(b3) confirm that most neurons dis-
play such regular, periodic dynamics.

In contrast, for strong inhibitory coupling (J = 400),
the amplitude of the oscillations is greatly reduced [see
Figs. 1(c1) and 1(d1) and the striking similarity between the
firing rate dynamics of the deterministic and the stochastic
networks] and the microscopic states of the two networks
strongly differ. Indeed, the raster plot of the deterministic
population Fig. 1(c3) shows that only a small subset of the
neurons fire regularly, while a majority is strongly suppressed
due to feedback inhibition [25]. On the other hand, in the
stochastic network, noise may release some of the neurons
from suppression, producing highly irregular spike trains,
with low firing rates and little indication of the collective
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FIG. 2. Interspike interval (ISI) histograms of populations of
stochastic QIF neurons for J = 100 (a) and J = 400 (b). Continuous
lines correspond to the results in Figs. 1(b3) and 1(d3) (� = 3.5);
dashed lines correspond to an asynchronous state (� = 10).

oscillation; see Figs. 1(d2) and 1(d3). This latter state corre-
sponds to the sparse synchronization originally uncovered in
networks of inhibitory neurons [8,9].

To further emphasize the effects of noise in synchronized
states, in Fig. 2 (solid lines) we computed the distribution of
interspike intervals (ISI) corresponding to the synchronization
regimes shown in columns (b) and (d) of Fig. 1. Figure 2(a)
indicates that, for weak inhibition, the distribution has a large
peak that coincides with the collective oscillation period (T ≈
8.7 ms). In addition, there is a small resonance in a second har-
monic, indicating that most neurons fire once per cycle and,
due to noise, some skipping events occur. The corresponding
coefficient of variation—quantifying the broadness of the ISI
distribution—is CV ≈ 0.35, which confirms that, despite the
presence of noise, spike trains remain highly regular [42].
Figure 2(b) shows the ISI histogram for strong inhibition. In
this case the distribution is broad (CV = 0.85), spanning sev-
eral periods of the oscillation cycle, with small peaks located
at the harmonics of the fundamental period. This indicates that
spike trains are highly irregular and close to a Poisson process
(CV = 1). In asynchronous regimes, the additional peaks of
the ISI distribution vanish, leading to a unimodal histogram
[see dashed lines in Figs. 2(a) and 2(b)].

III. EXACT FIRING RATE MODEL

In the thermodynamic limit, Eqs. (1) and (2) with � = 0 are
exactly described by a low-dimensional system of differential
equations that we refer to as QIF-FRM [21]. Inspired by recent
results in the context of the Kuramoto model [36,37], we next
show that an identical set of exact FRM is obtained if, in
addition to heterogeneity, neurons are driven by independent
Cauchy noise [43].

A. Fractional Fokker-Planck equation and Lorentzian ansatz

Adopting the thermodynamic limit, N → ∞, the macro-
scopic state of the QIF network is given by the probability

density function of neurons having membrane potential V at
time t ,

Q(V, t ) =
∫ ∞

−∞
P(V, t ; η)G(η)dη, (4)

where P(V, t ; η) are conditional densities for specific values
of η. In the thermodynamic limit, N → ∞, the time evolution
of the conditional densities P(V, t ; η) is given by a fractional
Fokker-Planck equation (FFPE) [44–46]. This equation in-
volves the Riesz fractional derivative, which is usually defined
in Fourier space (for an equivalent description that avoids the
use of Riesz derivatives, see Appendix A). We introduce the
Fourier transform and its inverse as

F{ f (V, t )} =
∫ ∞

−∞
f (V, t )eikV dV

and

F−1{ f̃ (k, t )} = 1

2π

∫ ∞

−∞
f̃ (k, t )e−ikV dk.

Then, the Riesz operator ∂α

∂|V |α P(V, t ) is defined as

F
{

∂α f (V, t )

∂|V |α
}

= −|k|αF{ f (V, t )}. (5)

For Cauchy noise we are only interested in the case α = 1.
With this definition, the FFPE for the time evolution of the
densities P reads

τm
∂P

∂t
(V, t ; η) = − ∂

∂V
{[V 2 + η − τmJs(t )]P(V, t ; η)}

+ �
∂P

∂|V | (V, t ; η). (6)

For � = 0, we recover the continuity equation for determin-
istic dynamics. This case was solved in [21] assuming that
the conditional probabilities P are Cauchy distributions with
width and center parameters that depend on t and η, namely
x(t, η) and y(t, η),

P(V, t, η) = 1

π

x(t, η)

[V − y(t, η)]2 + x(t, η)2
. (7)

Here, we employ the same Lorentzian ansatz to solve the
FFPE (6) for arbitrary �.

The Fourier transform of P reads P̃(k, t ) = exp{iky −
|k|x}; thus

∂P

∂|V | (V, t ) = −1

2π

∫ ∞

−∞
|k|e−ik(V −y)−|k|xdk

= 1

π

(V − y)2 − x2

[(V − y)2 + x2]2
, (8)

where we have performed the integrals by parts. We replace
this last expression [Eq. (8)] in the FFPE (6) and expand the
partial derivatives using Eq. (7). After simplifying, we obtain
a polynomial equation for V , which can be solved by equating
the coefficients of like powers of V on both sides of the ex-
pression. As a result, we obtain two differential equations for
the time evolution of x(t, η) and y(t, η):

τmẋ(t, η) = � + 2x(t, η)y(t, η),

τmẏ(t, η) = η + y(t, η)2 − x(t, η)2 − Jτms(t ).
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In a homogeneous population of neurons (� = 0) these
two equations would already provide a macroscopic de-
scription of the system. For a heterogeneous population
with Cauchy-distributed heterogeneities (� > 0), a low-
dimensional system can be attained by solving the integral in
Eq. (4). In order to do so we define the complex variables
w(t, η) := x(t, η) + iy(t, η); thus

τmẇ(t, η) = i[η − w(t, η)2 + Jτms(t )] + �. (9)

Considering the analytic continuation of w(t, ·) to the com-
plex plane provides P(V, t ; ·) as a holomorphic function.
Therefore, we can compute the integral in Eq. (4) using
Cauchy’s residue theorem along the closed semicircumfer-
ence |η|eiθ with θ ∈ (−π, 0) and |η| → ∞ [21]. As a result
we obtain

Q(V, t ) = P(V, t ; η − �i). (10)

B. Mean membrane potential and mean firing rate

Equation (10) shows that Q is a Lorentzian distribution.
Its center corresponds to the mean membrane potential of the
QIF population and thus we denote it as v(t ) := y(t, η − �i)
[47]. On the other hand, the mean firing rate of the neural
population is given by

r(t ) =
∫ ∞

−∞
G(η)r̃(t, η)dη, (11)

where r̃(t, η) is the firing rate of the subset of neurons with
current η. This quantity can be computed as the probability
flux of the FFPE (6) at V → ∞. The probability flux of (6) at
a given point V is given by two terms. First, the flux given by
the deterministic flow of the QIF dynamics,

τ−1
m [V 2 + η + τmJs(t )]P(V, t ; η).

Second, the total probability change rate provided by the
stochastic dynamics in the interval (V,∞). Using Eq. (8) this
can be computed as

�

πτm

∫ ∞

V

(U − y)2 − x2

[(U − y)2 + x2]2
dU = �

πτm

V − y

x2 + (V − y)2
.

Altogether, we have that

r̃(t, η) = lim
V →∞

1

τm

{
[V 2 + η + τmJs(t )]P(V, t ; η)

+ �

πτm

V − y

x2 + (V − y)2

}

= x(t, η)

τmπ
.

Replacing this expression in Eq. (11) provides the firing rate
of the entire QIF population as r(t ) = x(t, η − �i)/(πτm).

Finally, replacing y = v, x = πτmr, and η = η − �i in
Eq. (9) and taking real and imaginary parts leads to

τmṙ = � + �

πτm
+ 2rv,

τmv̇ = η + v2 − (πτmr)2 − Jτms, (12)

which, together with Eq. (2), exactly describe the behavior
of the QIF network Eqs. (1) and (2). Remarkably, Eq. (12)

FIG. 3. Phase diagram of Eqs. (12) and (2). Black lines: super-
critical Hopf bifurcations for different values of η, obtained using
AUTO-07p [48]. The color map corresponds to the average number
of spikes per oscillation cycle for η = 100 and numerically obtained
computing  and 〈r〉 using the QIF-FRM, Eqs. (12) and (2). Symbol
+: parameter values corresponding to Fig. 1, panels (a1)–(a3) and
(b1)–(b3); symbol ×: parameter values corresponding to Fig. 1,
panels (c1)–(c3) and (d1)–(d3).

illustrate that, in the thermodynamic limit, the level of het-
erogeneity � and the level of noise � play identical roles at
the collective level in populations of globally coupled QIF
neurons.

IV. QIF-FRM CAPTURES FAST OSCILLATIONS WITH
LOW FIRING RATES

For the deterministic case, � = 0, the dynamics of
Eqs. (12) and (2) have been analyzed in [18]. In the following
we extend this analysis to networks of QIF neurons with both
heterogeneity and noise.

Equations (12) and (2) have a single fixed-point corre-
sponding to an asynchronous state. For small enough disorder
� + � and τs, η > 0, this steady state loses stability via a
supercritical Hopf bifurcation, leading to the emergence of
fast oscillations. The phase diagram Fig. 3 shows the Hopf
boundaries for different values of η > 0 as a function of the
strength of inhibition, J , and the level of disorder, � + �.
Oscillations occur for small enough values of the disorder, i.e.,
to the left of the Hopf boundaries.

To characterize neuronal activity within the region of oscil-
lations, we compare the frequency of the collective rhythm 

with the mean firing frequency of the individual neurons given
by the time-averaged mean firing rate 〈r〉. Notably, the ratio
〈r〉/ (measuring the average spiking activity per oscillation
cycle) is independent of whether the network is heteroge-
neous, stochastic, or both heterogeneous and stochastic—see
the colored region in Fig. 3, which shows 〈r〉/ for η =
100 computed from numerical simulations of the FRM (12)
and (2).

For moderate disorder, Fig. 3 shows that the transition from
asynchronous to synchronous activity occurs in two differ-
ent ways depending on J . For small inhibition most neurons
behave as self-sustained oscillators frequency entrained by
the collective oscillation. This case corresponds to the yellow
regions in Fig. 3 and to columns (a) and (b) of Fig. 1.
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FIG. 4. (a) Oscillation frequency  and time-averaged firing rate
〈r〉 of a homogeneous network (� = 0) of QIF neurons vs noise
intensity �. Results obtained using Eqs. (1) and (2) (symbols) and
Eqs. (12) and (2) (lines), for J = 100 (black) and J = 400 (blue).
Vertical dashed lines indicate the location of the Hopf bifurcations
for J = 100 (� 	 9.11) and for J = 400 (� 	 3.75). (b) Coef-
ficient of variation (CV) of the ISI, obtained using the network
Eqs. (1) and (2).

By contrast, for strong J suppression of firing dominates
and oscillations are only maintained by a few active neurons;
see blue region in Fig. 3. In this case the population firing rate
becomes considerably smaller than the oscillation frequency;
see columns (c) and (d) of Fig. 1. For the case of stochastic
neurons, this corresponds to sparse synchronization.

The differences between the spiking behavior of neural
networks prompted a distinction between sparse and “reg-
ular” synchronization, which is often invoked in theoretical
neuroscience [4–6,10]. However, from the viewpoint of the
mean-field Eqs. (12) and (2), oscillations with high and low
〈r〉/ correspond to the same periodic attractor, i.e., the tran-
sition between regular and irregular firing activity is smooth
and does not involve any bifurcation. We illustrate this for
stochastic networks in Fig. 4. For both moderate J = 100
(black symbols) and strong J = 400 inhibition, noise grad-
ually increases the difference between  and 〈r〉 [see panel
(a)], as well as the firing irregularity monitored by the CV
[see panel (b)]. For moderate inhibition, neurons remain in a
fairly regular regime up to the Hopf bifurcation. Conversely,
for strong inhibition the frequency difference and spike irreg-
ularities increase rapidly with �. If, instead, we fix the total
amount of disorder and transition from a heterogeneous to a
stochastic network, then  and 〈r〉 remain constant, whereas
the CV rapidly changes (see Appendix B 1).

The shape of the Hopf boundaries in Fig. 3 indicate
that the oscillation region shrinks as coupling increases.
This contrasts with setups using Gaussian noise [8,10,11],
which show a persistence of the oscillatory dynamics for
arbitrary strong inhibition and moderate disorder. In Ap-
pendix B 2 we show that this is also the case for populations
of QIF neurons with Gaussian noise or heterogeneity (see also
[33]). Therefore, though Cauchy noise appears to be more

disruptive of the network synchronicity, we find that Gaussian
and Cauchy distributions produce the same type of dynamical
behaviors [49].

V. CONCLUSIONS

Fast neural oscillations with irregular spike discharges at
low firing rates—the sparse synchronization regime [6]—are
pervasive in brain networks and are successfully reproduced
in numerical simulations of large spiking neuron networks
with delayed inhibition and noise [8–11]. Yet, the extent to
what FRM (that are powerful and broadly used tools for the
analysis of neuronal dynamics) describe sparse synchrony
remains elusive. Moreover, sparsely synchronized states are
considered to be more robust and at odds with the nonsparse
synchronized states emerging in deterministic populations of
self-sustained oscillators [5,6,10].

Here we derived an exact FRM—Eqs. (12) and (2)—
that unambiguously links fast global oscillations with the
presence of sparse synchronization at the single-cell level.
In addition, we demonstrate that precisely the same FRM
describes fast oscillations emerging in networks of determin-
istic, self-sustained oscillators. Therefore, our results indicate
that only the neurophysiological mechanisms leading to the
emergence of fast neuronal oscillations (inhibition, synaptic
kinetics and/or delays, and sufficient drive to induce spik-
ing) determine the nature of the large-scale dynamics of the
network and not the level of regularity of the single neuron
spiking activity. In [10] a similar equivalence between noise
(Gaussian) and heterogeneity (uniform) was numerically ob-
served. However, that analysis of networks with heterogeneity
did not include the case of strong coupling and the main focus
was put on stochastic networks.

Altogether, our results reconcile two traditionally con-
fronted views on the nature of fast neural rhythms (sparse
vs nonsparse synchronization) [5,6,10] and upgrade the ap-
plicability of exact FRM for QIF neurons to describe a broad
range of biologically realistic neuronal states. Furthermore,
our results can be readily extended to incorporate noise in a
variety of extensions of the QIF-FRM, such as in interacting
communities of excitatory and inhibitory populations [21]
or in populations with conductance-based [23] or electrical
synapses [26,50,51].
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APPENDIX A: CAUCHY NOISE AS A LIMIT OF A
POISSON PROCESS

Here we discuss a different interpretation of the Cauchy
noise, which leads to a derivation of the mean-field theory
that avoids the use of the Riesz operator. Let us assume now
a more general case of Eq. (1) in which the random variables
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ξ j (t ) in Eq. (1) correspond to a Poisson shot process with rate
ν and independent random increments given by a probability
density F (u). Then, the macroscopic equation for the time
evolution of P is given by the generalized Fokker-Planck
equation (GFPE) [37,45,46,52]

τm
∂P

∂t
(V, t ; η)

= − ∂

∂V
{[V 2 + η − τmJs(t )]P(V, t ; η)}

+ ν

∫ ∞

−∞
F (u)P(V − u, t ; η)du − νP(V, t ; η). (A1)

The right-hand side of this integro-partial-differential equa-
tion contains three terms. First, the advection term corre-
sponding to the deterministic flow in Eq. (1). Second, a
convolution integral accounting for the increase of probability
due to the Poisson shot process with rate ν and increments
F (·). This can be interpreted as a source term in a continuity
equation. And third, the loss of probability with rate ν due to
the stochastic dynamics, which can be interpreted as a sink
term.

We consider F (·) a Lorentzian distribution centered at zero
and with half width at half maximum �ν−1,

F (u) := 1

π

�ν

(νu)2 + �2
.

In this case, the limit ν → ∞ corresponds to ξ being the
Cauchy white noise used in the main text. Indeed, in this limit,
the GFPE (A1) corresponds to the FFPE (6), as we shall prove
next.

Let us rewrite the GFPE (A1) as

τm
∂P

∂t
(V, t ; η) = − ∂

∂V
{[V 2 + η + τmJs(t )]P(V, t ; η)}

+ ν[P ∗ (F − δ)](V ),

where δ is a Dirac delta function and ∗ is the convolution
operator

[ f ∗ g](x) =
∫ ∞

−∞
f (y)g(x − y)dy.

Then, the Fourier transform of the stochastic term of the GFPE
reads

F{ν[P ∗ (F − δ)](V )} = νP̃(k, t )[F̃ (k) − 1],

where P̃(k, t ) = F{P(V, t )} and F̃ (k) = F{F (V )}. Since F is
a Lorentzian, F̃ (k) = exp(−i|k|�ν−1). Therefore,

lim
ν→∞ νP̃(k, t )[F̃ (k) − 1] = −�|k|P̃(k, t ),

i.e., the integral term in the GFPE (A1) corresponds to the
Riesz fractional derivative (5) with α = 1.

To conclude, we show that our results still hold if the limit
ν → ∞ is taken after computing the integral term in the GFPE
(A1). Using the ansatz (7), the integral on the right-hand
side of the GFPE (A1) corresponds to the convolution of
two Lorentzian distributions. Since the sum of two Cauchy
random variables also follows a Cauchy distribution (see, e.g.,

FIG. 5. Oscillation frequency  and time-averaged firing rate 〈r〉
of a network of QIF neurons with fixed disorder � + � = 3.5 and
varying the amount of heterogeneity p. Results obtained integrating
Eqs. (12) and (2) for J = 400 and the rest of the parameters set as
in the body of the paper. (b) Average coefficient of variation (CV)
of the ISI corresponding to the same simulations. Error bars indicate
sample standard deviation.

Ref. [53]), such convolution integral is readily solved as∫ ∞

−∞
F (u)P(V − u, t ; η)du = 1

π

x + �ν−1

(V − y)2 + (x + �ν−1)2
.

Therefore,

ν

∫ ∞

−∞
F (u)P(V − u, t ; η)du − νP(V, t ; η)

= ν

π

[
x + �ν−1

(V − y)2 + (x + �ν−1)2
− x

(V − y)2 + x2

]

−−→
ν→∞

�

π

(V − y)2 − x2

[(V − y)2 + x2]2
,

which coincides with the Riesz derivative of P given in Eq. (8)
multiplied by the noise coefficient �.

APPENDIX B: SUPPLEMENTARY NUMERICAL RESULTS

1. Combining heterogeneity and noise

Figure 4 of the main text shows how increasing noise in
a network of QIF neurons smoothly transitions the system
from a state in which the neurons fire regularly (CV ≈ 0) to
an irregular microscopic activity (CV ≈ 1). Here we provide
further evidence of the equivalence, at the collective level, of
noise and heterogeneity, in spite of clear differences in the
spiking regularity of single neurons.

We performed simulations of N = 8192 described by
Eq. (1) keeping the level of disorder constant at � + � = 3.5,
but varying the ratios of noise and heterogeneity. In order to
do so we introduce a new parameter p ∈ [0, 1] quantifying the
amount of heterogeneity in the network, i.e., p = �/(� + �).

The results are depicted in Fig. 5, which shows the col-
lective frequency  and the time-average mean firing rate
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FIG. 6. Phase diagram of the QIF network with Gaussian distributions. (a) Lines: supercritical Hopf bifurcations of the mean-field
equations in [33] for different values of n (parameter values as in Fig. 3). The color map corresponds to the average number of spikes per
oscillation cycle for a QIF network with Gaussian heterogeneity. It has been numerically obtained through numerical integration of the QIF
network Eqs. (12) and (2) (N = 8192). (b) Black line as in Fig. 3 of the main paper. The color map corresponds to simulations of QIF neurons
(N = 8192) with Gaussian white noise and without heterogeneity (rest of the parameters as in the body of the paper). In both panels, a
simulation has been considered to be in the oscillatory regime if the standard deviation of the synaptic activity s(t ) is below 10−3.

〈r〉 [panel (a)] and the average coefficient of variation [CV,
panel (b)]. In order to compute the average CV, neurons with
less than two spikes have been discarded from the computa-
tion (since at least two spikes are needed to obtain at least
one ISI).

For p = 0 we recover the case depicted in column (d) of
Fig. 1 of the main text, in which neurons fire irregularly,
and thus CV ≈ 1. As the amount of heterogeneity increases
in the network, the regularity of the firing also increases,
corresponding to a smooth decrease of the CV, which attains
CV ≈ 0 for the full deterministic case (p = 1). However, both
the macroscopic oscillatory frequency  and the time-average
mean firing rate 〈r〉 remain unchanged by p, as can be inferred
from the FRM [Eqs. (12) and (2)].

2. Numerical results with Gaussian heterogeneity and noise

The remarkable analytical properties of Cauchy-Lorentz
distributions allow one to derive exact mean-field equa-
tions for QIF neurons with such distributions of noise and
heterogeneity. However, in simulations of spiking neurons it
is usually more common to use Gaussian distributions due
to their apt statistical properties. Unfortunately, to date, no
exact low-dimensional reduction exists for QIF neurons with
Gaussian heterogeneities or noise, although notable progress
has been made in this direction. Next we discuss the case of
Gaussian heterogeneity and Gaussian noise separately.

In [33] the authors proposed exact mean-field equations
for networks of QIF neurons with q-Gaussian heterogeneities.
Such distributions are indexed by a parameter n = 1, . . . ,∞
[n = (q − 1)−1], for which n = 1 corresponds to Lorentzian
heterogeneity and Gaussian heterogeneity is achieved in the
limit n → ∞. The dimensionality of the resulting firing rate
equations is 2n, plus an additional equation for the synaptic

dynamics Eq. (2). Therefore, a network with purely Gaussian
heterogeneities remains described by an infinite-dimensional
system.

In Fig. 6(a) we show a bifurcation diagram for QIF neu-
rons with q-Gaussian heterogeneities for different values of
n. We use the half width at half maximum (HWHM) d as
control parameter of the heterogeneity. Notice that d = �

for a Cauchy distribution (n = 1) and d = σ
√

2 ln(2) for a
Gaussian distribution with standard deviation σ (n → ∞).
The black line in Fig. 6 corresponds to the black continuous
line in Fig. 3. As n increases, the region of oscillations widens.
The color map shows the level of activity in the region of
oscillations obtained using simulations of Eqs. (1) and (2),
but considering η j to be distributed as a Gaussian with mean
η and standard deviation σ . In spite of the enlargement of
the instability region, the Hopf bifurcation remains displaying
two different cases: for low coupling J most neurons remain
active even at the bifurcation line ( ≈ 〈r〉). Instead, for high
coupling there is a large degree of suppression as d increases.

For Gaussian noise, attempts to derive mean-field equa-
tions have been put forward [54–57]. However, these theories
build on weak noise approximations (σ � 1) and are thus
unsuitable to analyze networks with large fluctuations.
Figure 6(b) displays a numerical bifurcation diagram of the
QIF network [Eqs. (1) and (2)] with ξi(t ) being Gaussian
white noise with standard deviation σ = d/

√
2 ln(2). The

scenario remains remarkably similar to the case of Gaussian
heterogeneity, with still two qualitatively different transitions
towards stationarity as d is increased. It is worth noting that
we did not find cluster states. This contrasts with the results of
[11], which analyze a similar setup with other integrate-and-
fire models and find cluster instabilities for very low levels of
Gaussian noise. A possible explanation might be the lack of a
fixed delay and/or a rise synaptic time in our modeling setup.

014229-7



PAU CLUSELLA AND ERNEST MONTBRIÓ PHYSICAL REVIEW E 109, 014229 (2024)

[1] M. Bartos, I. Vida, and P. Jonas, Synaptic mechanisms of
synchronized gamma oscillations in inhibitory interneuron net-
works, Nat. Rev. Neurosci. 8, 45 (2007).

[2] M. A. Whittington, R. D. Traub, and J. G. R. Jefferys,
Synchronized oscillations in interneuron networks driven by
metabotropic glutamate receptor activation, Nature (London)
373, 612 (1995).

[3] M. A Whittington, R. D Traub, N. Kopell, B. Ermentrout,
and E.H Buhl, Inhibition-based rhythms: Experimental and
mathematical observations on network dynamics, Int. J.
Psychophysiol. 38, 315 (2000).

[4] X.-J. Wang, Neurophysiological and computational principles
of cortical rhythms in cognition, Physiol. Rev. 90, 1195 (2010).

[5] G. Buzsáki and X.-J. Wang, Mechanisms of gamma oscilla-
tions, Annu. Rev. Neurosci. 35, 203 (2012).

[6] N. Brunel and V. Hakim, Sparsely synchronized neuronal
oscillations, Chaos 18, 015113 (2008).

[7] C. Börgers, An Introduction to Modeling Neuronal Dynamics
(Springer, Berlin, 2017), Vol. 66.

[8] N. Brunel and V. Hakim, Fast global oscillations in networks of
integrate-and-fire neurons with low firing rates, Neural Comput.
11, 1621 (1999).

[9] N. Brunel, Dynamics of sparsely connected networks of exci-
tatory and inhibitory spiking neurons, J. Comput. Neurosci. 8,
183 (2000).

[10] P. H. E. Tiesinga and J. V. José, Robust gamma oscillations
in networks of inhibitory hippocampal interneurons, Netw.,
Comput. Neural Syst. 11, 1 (2000).

[11] N. Brunel and D. Hansel, How noise affects the synchronization
properties of recurrent networks of inhibitory neurons, Neural
Comput. 18, 1066 (2006).

[12] H. R. Wilson and J. D. Cowan, Excitatory and inhibitory inter-
actions in localized populations of model neurons, Biophys. J.
12, 1 (1972).

[13] F. H. Lopes da Silva, A. Hoeks, H. Smits, and L. H. Zetterberg,
Model of brain rhythmic activity, Kybernetik 15, 27 (1974).

[14] S. M. Ahn and W. J. Freeman, Steady-state and limit cycle
activity of mass of neurons forming simple feedback loops (i):
Lumped circuit model, Kybernetik 16, 87 (1974).

[15] W. J. Freeman, Mass Action in the Nervous System (Elsevier,
Amsterdam, 1975).

[16] A. Roxin, N. Brunel, and D. Hansel, Role of delays in shaping
spatiotemporal dynamics of neuronal activity in large networks,
Phys. Rev. Lett. 94, 238103 (2005).

[17] A. Roxin and E. Montbrió, How effective delays shape os-
cillatory dynamics in neuronal networks, Physica D 240, 323
(2011).

[18] F. Devalle, A. Roxin, and E. Montbrió, Firing rate equations
require a spike synchrony mechanism to correctly describe fast
oscillations in inhibitory networks, PLoS Comput. Biol. 13,
e1005881 (2017).

[19] F. Devalle, E. Montbrió, and D. Pazó, Dynamics of a large
system of spiking neurons with synaptic delay, Phys. Rev. E
98, 042214 (2018).

[20] N. Brunel and X.-J. Wang, What determines the fre-
quency of fast network oscillations with irregular neural dis-
charges? i. synaptic dynamics and excitation-inhibition balance,
J. Neurophysiol. 90, 415 (2003).

[21] E. Montbrió, D. Pazó, and A. Roxin, Macroscopic description
for networks of spiking neurons, Phys. Rev. X 5, 021028 (2015).

[22] T. B. Luke, E. Barreto, and P. So, Complete classification of
the macroscopic behavior of a heterogeneous network of theta
neurons, Neural Comput. 25, 3207 (2013).

[23] S. Coombes and Á. Byrne, Next generation neural mass mod-
els, in Nonlinear Dynamics in Computational Neuroscience
(Springer, Berlin, 2019), pp. 1.

[24] X.-J. Wang and G. Buzsáki, Gamma oscillation by synap-
tic inhibition in a hippocampal interneuronal network model,
J. Neurosci. 16, 6402 (1996).

[25] J. A. White, C. C. Chow, J. Rit, C. Soto-Treviño, and N. Kopell,
Synchronization and oscillatory dynamics in heterogeneous,
mutually inhibited neurons, J. Comput. Neurosci. 5, 5 (1998).

[26] C. R. Laing, Exact neural fields incorporating gap junctions,
SIAM J. Appl. Dyn. Syst. 14, 1899 (2015).

[27] D. Pazó and E. Montbrió, From quasiperiodic partial synchro-
nization to collective chaos in populations of inhibitory neurons
with delay, Phys. Rev. Lett. 116, 238101 (2016).

[28] I. Ratas and K. Pyragas, Macroscopic oscillations of a quadratic
integrate-and-fire neuron network with global distributed-delay
coupling, Phys. Rev. E 98, 052224 (2018).

[29] H. Bi, M. Segneri, M. di Volo, and A. Torcini, Coexistence of
fast and slow gamma oscillations in one population of inhibitory
spiking neurons, Phys. Rev. Res. 2, 013042 (2020).

[30] M. Segneri, H. Bi, S. Olmi, and A. Torcini, Theta-nested
gamma oscillations in next generation neural mass models,
Front. Comput. Neurosci. 14, 47 (2020).

[31] A. Ceni, S. Olmi, A. Torcini, and D. Angulo-Garcia, Cross
frequency coupling in next generation inhibitory neural mass
models, Chaos 30, 053121 (2020).

[32] S. Keeley, Á. Byrne, A. Fenton, and J. Rinzel, Firing rate mod-
els for gamma oscillations, J. Neurophysiol. 121, 2181 (2019).

[33] V. Pyragas and K. Pyragas, Mean-field equations for neural
populations with q-gaussian heterogeneities, Phys. Rev. E 105,
044402 (2022).

[34] P. Clusella, E. Köksal-Ersöz, J. Garcia-Ojalvo, and G. Ruffini,
Comparison between an exact and a heuristic neural mass
model with second-order synapses, Biol. Cybern. 117, 5
(2022).

[35] V. Pyragas and K. Pyragas, Effect of Cauchy noise on a net-
work of quadratic integrate-and-fire neurons with non-Cauchy
heterogeneities, Phys. Lett. A 480, 128972 (2023).

[36] T. Tanaka, Low-dimensional dynamics of phase oscillators
driven by cauchy noise, Phys. Rev. E 102, 042220 (2020).

[37] R. Tönjes and A. Pikovsky, Low-dimensional description for
ensembles of identical phase oscillators subject to cauchy noise,
Phys. Rev. E 102, 052315 (2020).

[38] B. Ermentrout and N. Kopell, Parabolic bursting in an excitable
system coupled with a slow oscillation, SIAM J. Appl. Math.
46, 233 (1986).

[39] E. M. Izhikevich, Dynamical Systems in Neuroscience (The MIT
Press, Cambridge, MA, 2007).

[40] The mean firing rate in Eq. (3) exactly corresponds to the firing
rate variable described by Eq. (12) if one first adopts the limit
N → ∞, and then τr → 0; see [21].

[41] In numerical simulations of Eqs. (1) and (2), we used the
Euler-Maruyama scheme with δt = 10−3. Thus, at each time
step, the random increments follow Cauchy distribution with
HWHM dt �. In addition, we set Vp = −Vr = 100, η = 100,
and N = 8192. For heterogenous networks, η j are generated as
η j = � tan( π (2 j−N−1)

2(N+1) ), with j = 1, . . . , N . The mean firing rate

014229-8

https://doi.org/10.1038/nrn2044
https://doi.org/10.1038/373612a0
https://doi.org/10.1016/S0167-8760(00)00173-2
https://doi.org/10.1152/physrev.00035.2008
https://doi.org/10.1146/annurev-neuro-062111-150444
https://doi.org/10.1063/1.2779858
https://doi.org/10.1162/089976699300016179
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1088/0954-898X/11/1/301
https://doi.org/10.1162/neco.2006.18.5.1066
https://doi.org/10.1016/S0006-3495(72)86068-5
https://doi.org/10.1007/BF00270757
https://doi.org/10.1007/BF00271631
https://doi.org/10.1103/PhysRevLett.94.238103
https://doi.org/10.1016/j.physd.2010.09.009
https://doi.org/10.1371/journal.pcbi.1005881
https://doi.org/10.1103/PhysRevE.98.042214
https://doi.org/10.1152/jn.01095.2002
https://doi.org/10.1103/PhysRevX.5.021028
https://doi.org/10.1162/NECO_a_00525
https://doi.org/10.1523/JNEUROSCI.16-20-06402.1996
https://doi.org/10.1023/A:1008841325921
https://doi.org/10.1137/15M1011287
https://doi.org/10.1103/PhysRevLett.116.238101
https://doi.org/10.1103/PhysRevE.98.052224
https://doi.org/10.1103/PhysRevResearch.2.013042
https://doi.org/10.3389/fncom.2020.00047
https://doi.org/10.1063/1.5125216
https://doi.org/10.1152/jn.00741.2018
https://doi.org/10.1103/PhysRevE.105.044402
https://doi.org/10.1007/s00422-022-00952-7
https://doi.org/10.1016/j.physleta.2023.128972
https://doi.org/10.1103/PhysRevE.102.042220
https://doi.org/10.1103/PhysRevE.102.052315
https://doi.org/10.1137/0146017


EXACT LOW-DIMENSIONAL DESCRIPTION FOR FAST … PHYSICAL REVIEW E 109, 014229 (2024)

r is computed using Eq. (3) with τr = 10−2. The time series of
Figs. 1(a1)–1(d1) use an additional binning window of 0.1 ms
for display.

[42] The coefficient of variation (CV) of the ISI provides a common
measure of firing regularity. It is close to zero for a delta distri-
bution, close to 1 for Poisson spike times, and larger for even
more irregular patterns.

[43] See Ref. [58] for an alternative derivation. Additionally, see also
recent attempts to obtain approximated mean field descriptions
of populations of QIF neurons with independent Gaussian noise
[54–57].

[44] R. Metzler and J. Klafter, The random walk’s guide to anoma-
lous diffusion: A fractional dynamics approach, Phys. Rep. 339,
1 (2000).

[45] J. Klafter and I. M. Sokolov, First Steps in Random Walks: From
Tools to Applications (Oxford University Press, Oxford, 2011).

[46] V. Méndez, D. Campos, and F. Bartumeus, Stochastic Founda-
tions in Movement Ecology (Springer, Berlin, 2014).

[47] Notice that Lorentzian distributions do not have a well defined
mean; thus v actually corresponds to the Cauchy principal value
of the integral

∫ ∞
−∞ Q(V, t )V dV .

[48] E. J. Doedel, A. R. Champneys, F. Dercole, T. F. Fairgrieve,
Y. A. Kuznetsov, B. Oldeman, R. C. Paffenroth, B. Sandstede,
X. J. Wang, and C. H. Zhang, Auto-07p: Continuation and
bifurcation software for ordinary differential equations.

[49] There exist no exact low-dimensional reductions for pop-
ulations of QIF neurons with Gaussian disorder and the
approximated techniques proposed so far rely on weak noise
assumptions [54–57].

[50] B. Pietras, F. Devalle, A. Roxin, A. Daffertshofer, and E.
Montbrió, Exact firing rate model reveals the differential effects
of chemical versus electrical synapses in spiking networks,
Phys. Rev. E 100, 042412 (2019).

[51] E. Montbrió and D. Pazó, Exact mean-field theory explains the
dual role of electrical synapses in collective synchronization,
Phys. Rev. Lett. 125, 248101 (2020).

[52] S. I. Denisov, W. Horsthemke, and P. Hänggi, Steady-state Lévy
flights in a confined domain, Phys. Rev. E 77, 061112 (2008).

[53] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous
Univariate Distributions, Volume 1, 2nd ed., Wiley Series in
Probability and Statistics (John Wiley & Sons, Nashville, TN,
1994).

[54] D. S. Goldobin, M. di Volo, and A. Torcini, Reduction method-
ology for fluctuation driven population dynamics, Phys. Rev.
Lett. 127, 038301 (2021).

[55] I. Ratas and K. Pyragas, Noise-induced macroscopic os-
cillations in a network of synaptically coupled quadratic
integrate-and-fire neurons, Phys. Rev. E 100, 052211 (2019).

[56] D. S. Goldobin, Mean-field models of populations of quadratic
integrate-and-fire neurons with noise on the basis of the circular
cumulant approach, Chaos 31, 083112 (2021).

[57] M. di Volo, M. Segneri, D. S. Goldobin, A. Politi, and
A. Torcini, Coherent oscillations in balanced neural net-
works driven by endogenous fluctuations, Chaos 32, 023120
(2022).

[58] B. Pietras, R. Cestnik, and A. Pikovsky, Exact finite-
dimensional description for networks of globally coupled
spiking neurons, Phys. Rev. E 107, 024315 (2023).

014229-9

https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1103/PhysRevE.100.042412
https://doi.org/10.1103/PhysRevLett.125.248101
https://doi.org/10.1103/PhysRevE.77.061112
https://doi.org/10.1103/PhysRevLett.127.038301
https://doi.org/10.1103/PhysRevE.100.052211
https://doi.org/10.1063/5.0061575
https://doi.org/10.1063/5.0075751
https://doi.org/10.1103/PhysRevE.107.024315

