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Dynamical characteristics of honeycomb two-dimensional gyroscopic metamaterials
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Suppression of noise and vibration suppression is important in various fields, such as the living environment,
industrial development, and national defense and security. The bandgap properties of phononic crystal meta-
materials provide an approach for controlling and eliminating harmful vibrations in equipment and noise in the
environment. In this study, we used two types of two-dimensional honeycomb gyroscopic metamaterials: free
and constrained. The dynamic equations of the two systems were established using angular momentum and
Lagrange theorems. The dispersion relations of the two systems were obtained based on the Bloch theorem, and
the influence of the gyroscope angular momentum or gyroscope speed on the dispersion relations was analyzed.
Numerical simulations were conducted to analyze the wave propagation characteristics and polarization under
different excitation conditions in a limited space for both types of metamaterial structures. The constrained-type
and free-type metamaterials were compared, and the regularities of the dispersion relations and wave propagation
characteristics by the gyroscope effect were summarized. This study provided a comprehensive and in-depth
understanding of the bandgap and wave propagation properties of gyroscopic metamaterials and provided ideas
for the design of bandgap modulation in metamaterials.
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I. INTRODUCTION

Vibrations and noise can cause significant harm in various
fields, such as industrial engineering and daily life, causing
equipment damage, decreased production efficiency, reduced
machine precision, and compromised health and quality of
life for residents. Therefore, the suppression of noise and
vibrations is significantly important. Phononic crystal meta-
materials, a type of metamaterials for sound and vibration
propagation and control, have gained widespread attention
[1–4]. Phononic crystal metamaterials are composite materi-
als composed of periodic arrangements of unit structures in
space [5,6]. They have been proposed as a physical concept
for elastic waves in the field of condensed matter physics
based on research on photonic crystals [7]. Owing to their dis-
persive properties, waves within the passband can propagate,
whereas waves within the stopband are suppressed [8–11].

The concept of phononic crystals was derived from pho-
tonic crystals; however, research on phononic crystals is
largely based on the theory of elastic wave propagation in
periodic structures. Li and Chan [12] first proposed the con-
cept of acoustic metamaterials and studied a solid–liquid
phononic crystal composed of soft silicone rubber and wa-
ter. They found that the effective mass density and effective
bulk modulus were both negative within a certain frequency
range. Pai et al. [13] designed a type of multiresonant
phononic metamaterial beam. Because of the damping effect,
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the bandgaps formed by the two subsystems were connected
to form a wider bandgap, which was validated through
numerical simulations. Yang et al. [14] studied the longitu-
dinal waves of one-dimensional spring-mass systems under
transverse periodic vibrations. They used high-frequency vi-
brations as parameter excitation to provide pseudo-stiffness
and realized the tuning of bandgaps in a structure using pa-
rameter excitation.

Research on gyroscopes covers a certain proportion of the
field of dynamics and control [15–17]. The frequency mode
of the structure can be changed by introducing gyroscope
rotors [18–20]. The addition of gyroscopic rotors to phononic
crystal metamaterials can change and control their dispersion
properties [21,22], thus suppressing vibrations and noise in
a certain frequency range, as expected. In addition, using an
appropriate gyro-phononic crystal structure, special materi-
als and structures can be designed, such as wave polarizers,
filters, wave accelerators, decelerators, and waveguides with
specified directions [23–25].

Brun et al. [26] proposed the first gyro-elastic lattice.
Through a combination of simulations and theory, they
demonstrated that gyroscopic properties could be used for
the construction of shielding cloaks around obstacles, en-
abling waves to propagate around them. Zhou and Zhao
[27] extended the observed unidirectional wave properties
in discrete lattice structures to study gyroscopic continua.
They established a surface equation for acoustic gyroscopic
continua using the Hermite mass density tensor in contin-
uum mechanics to explain the generation of unidirectional
waves. Wang et al. [28] and Nash et al. [29] studied a gy-
roscopic structure arranged in a hexagonal pattern and found
that waves with frequencies within the bandgap range ex-
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hibit unidirectional propagation in the structure. Hexagonal
phonon crystals are highly symmetrical structures that can be
bisected into two identical halves by any of their diagonals.
This uniformity ensures consistent acoustic wave propagation,
regardless of the entry direction of sound waves, making it
particularly advantageous for sound wave control applica-
tions. Furthermore, the high symmetry of these hexagonal
phonon crystals triggers strong Bragg scattering in multiple
directions, resulting in a broader bandgap than other phononic
crystals.

Brun’s use of gyroscopes for dynamic control of phononic
crystal metamaterials has opened research directions. Mod-
eling methods and established dynamic equations have been
widely adopted by several scholars. However, the established
equations only reflect the influence of gyroscope rotor inertia
and height and do not consider key factors such as rotation
speed. The obtained dispersion relationship is inaccurate and
cannot be used to obtain the bandgaps, limiting the research
scope of gyroscope control. In addition, relatively few studies
have been conducted on the polarization properties of waves
in gyroscopic metamaterials. Summarizing the wave laws for
gyroscopic metamaterials can further enhance wave control
functionality.

In view of the above-mentioned problems, this study
conducted the following research. Section II presents the
derivation of the motion equations for two types of gyroscopic
metamaterials using the angular momentum and Lagrange
theorems, and the dispersion relationships were obtained
based on the Bloch theorem. Section III analyzes the influence
of the gyroscope’s angular momentum and spring dimensions
on the dispersion relationships, respectively, and verifies the
structural bandgap through numerical simulations, and finally
discusses the magnitude and direction of the group velocities
corresponding to different dispersion surfaces. Section IV an-
alyzes the wave propagation and polarization characteristics
of the two types of metamaterial structures under different
excitation conditions in a finite space through numerical sim-
ulations. Section V summarizes the study and presents the
conclusions drawn from this study.

II. MODELING

Research on gyroscopic dynamics has shown that the rota-
tion of the gyros causes a bifurcation of the inherent frequency
of the structure and changes the mode of the structure, which
leads to ideas for the dynamic regulation of metamateri-
als. The effect of changing the dispersion relationships of
the systems can be achieved by introducing gyroscopes into
metamaterials, thereby providing a method for controlling
acoustic vibrations. Two metamaterial models were proposed
in this study: honeycomb-constrained and honeycomb-free
gyroscopic metamaterials. Based on the Lagrange equations
and momentum moment theorem, the dynamic equations for
the two types of metamaterials were obtained by analyzing the
cell structure.

A. Free-type gyroscopic metamaterials

First, dynamic modeling was performed for a two-
dimensional (2D) honeycomb-type free gyrometamaterial. As
shown in Fig. 1(a), the gyro units are connected by springs to
form a gyrometamaterial with the basic structure of a regu-
lar hexagon. In this model, it was assumed that the springs
provide only torque and not horizontal tension. Therefore,
only the overall torsion angle of the gyro and framework
were considered, and the horizontal displacement was not
considered. The rotation angle of the framework around the
x axis is θ , and the rotation angle around the y axis is ϕ.
The positive direction of the coordinate axis is defined as
positive for rotation. According to crystallographic theory, a
2D regular hexagonal lattice is a complex lattice that includes
two types of lattice points with different geometric environ-
ments. Figure 1(b) shows two types of gyro units with some
differences owing to their different spring-connection modes.

As shown in Fig. 1(c), the difference in the direction of the
force applied by the springs around the lattice points leads to
the fact that the geometrical environments of the lattice points
in the structure are not all the same, and as a result we define
two types of lattice points: u-lattice points and v-lattice points.
Then, the torques acting on the two types of gyroscopic units
along the x and y axes in the (m, n) basic unit, in the mth row
and nth column, are
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where c1 is the transverse torsion stiffness of the spring, c2

is the longitudinal torsion stiffness of the spring, H = Iz� is
the angular momentum of the gyroscope, Iz is the moment of
inertia of the gyroscope relative to the axis of rotation, and �

is the rotational speed of the gyroscope.
Based on the angular momentum theorem, the kinematic

equations for the two types of gyroscope units in the (m, n)
cell are as follows:

I θ̈u
m,n = Mu
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m,n = Mv

x , Iϕ̈v
m,n = Mv

y ,

(5)

where I is the moment of inertia of the gyro with respect to
the x and y axes.

Assuming that the in-plane displacement of each gyro-
scope in the lattice is harmonic and solving the above equation
based on the Bloch theorem, the solution can be assumed to
have the following form:

θu
m,n = Aeik·T(m,n)T

eiωt , ϕu
m,n = Beik·T(m,n)T

eiωt ,

θv
m,n = Ceik·T(m,n)T

eiωt , ϕv
m,n = Deik·T(m,n)T

eiωt , (6)

where A, B, C, and D are amplitudes; k = (k1, k2)T is the pla-
nar wave vector, where k1 is the wave number along the x axis
and k2 is the wave number along the y axis; and T = (t1, t2)
is the basis vector matrix, where t1 and t2 are as shown in
Fig. 1(c).

Substituting Eq. (6) into Eq. (5), we obtain the following
dispersion equation:
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and the explicit expression of the matrix N is provided in
Appendix A.

Based on the criterion for the existence of nontrivial solu-
tions in the system, the dispersion relation of the system can
be further derived as

det(N) = 0. (8)

When considering various values of the wave vector k, it was
observed that the equation had a trivial solution ω = 0, which
corresponded to the rigid-body motion of the system con-
strained by static conditions. In addition to the trivial solution,
three positive real solutions also existed, indicating that the
two-dimensional honeycomb gyrometamaterial system fea-
tured three dispersion surfaces. The dispersion characteristics
of the system are explored in detail in the following sections.

B. Constrained-type gyroscopic metamaterials

The two-dimensional honeycomb-constrained gyroscopic
metamaterial is shown in Fig. 2(a). The translational motion
of the particle in the Oxy plane caused nutation of the gyro.
The nutation angle of the gyro could be regarded as a small
quantity in the calculation because the particle’s motion range
was small compared to the gyro height. In this study, the mo-
tion amplitude of a particle in the z direction was negligible.

To obtain the dynamic equation of the periodic structure,
the Lagrange equation was used to analyze the unit structure,
as shown in Fig. 2(b). The unit consisted of a gyroscope and
a particle. The plane motion of the mass point is described
by Cartesian coordinates x and y, whereas the motion of the
gyroscope is described by Euler angles γ , φ, and ψ , and the
transformation relationship between the two coordinates is as
follows:

x = h sin γ cos φ, y = h sin γ sin φ, (9)

where h is the height of the gyro. The Lagrange multiplier of
the unit structure is expressed as

L = 1
2 I1�

2
1 + 1

2 I2�
2
2 + 1

2 I3�
2
3 + 1

2 m
(
ẋ2 + ẏ2

) − V, (10)

FIG. 1. (a) Model of gyroscopic metamaterials. The unit struc-
ture of a metamaterial is composed of a single gyroscope and an
external framework. The external framework is connected by springs
and arranged in a regular hexagonal plane. (b) Periodic unit. θu

represents the angle of rotation around the x axis for u-lattice points,
ϕu represents the angle of rotation around the y axis for u-lattice
points, θv represents the angle of rotation around the x axis for
v-lattice points, and ϕv represents the angle of rotation around
the y axis for v-lattice points. (c) Honeycomb lattice periodicity.

t1= (3l/2, −√
3l/3)

T
and t2= (3l/2,

√
3l/3)

T
are the basis vectors

for the periodic lattice, where l is the lattice length.
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FIG. 2. (a) Model of gyroscopic metamaterials. The particle with
mass m and the gyro structure shown below formed the metamaterial
cell, which was connected by a spring of stiffness c, forming a
gyroscopic metamaterial with a two-dimensional planar lattice in
the shape of a honeycomb. It should be noted that the bottom of
the gyroscope was hinged and fixed. (b) Unit structure diagram. γ ,
φ, and ψ are nutation, precession, and rotation angles, respectively.

(c) Honeycomb lattice periodicity. a1= (1, 0)T , a2= (−1/2,
√

3/2)
T

,
and a3= (−1/2, −√

3/2)T were used to define the direction of elas-
tic force.

where I1, I2, and I3 (I1 = I2) are the moments of inertia, and �i

(i = 1, 2, and 3) is the angular velocity of the gyro, expressed
as

�1 = γ̇ , �2 = φ̇ sin γ , �3 = ψ̇ + φ̇ cos γ . (11)

The Lagrange operator in the form of the Euler angles was
obtained by substituting Eqs. (9) and (11) into Eq. (10), de-
pending on the Lagrange equations used for the three Euler
angles.

d

dt
[I3(ψ̇ + φ̇ cos γ )] = 0, (12)

I1(γ̈ − cos γ sin γ φ̇2) + I3� sin γ φ̇

+ mh2 cos γ [cos γ γ̈ − sin γ (γ̇ 2 + φ̇2)] + ∂V

∂γ
= 0, (13)

I1 sin γ (sin γ φ̈ + 2 cos γ φ̇γ̇ ) − I3� sin γ γ̇

+mh2 sin γ (2 cos γ φ̇γ̇ + sin γ φ̈) + ∂V

∂φ
= 0. (14)

Using Eq. (12), we obtained the rotational speed of the gyro
� = ψ̇ + φ̇ cos γ .

To unify the variables, the coordinate transformations in
Eqs. (13) and (14) were applied using Eq. (9) to obtain the

dynamics equations of the unit structure(
m + I1

h2

)
ẍ + I3

h2
�ẏ + ∂V

∂x

= 0,

(
m + I1

h2

)
ÿ − I3

h2
�ẋ + ∂V

∂y
= 0. (15)

It was observed that the gyroscope introduced an additional
mass I1/h2 to the system and a gyroscope term ±�I3/h2,
where the presence of ±�I3/h2 caused coupling of the x-
and y-direction motions of the particle, resulting in particle
polarization motion.

Using this equation, we derived the dynamic equation of
a periodic structure containing two types of lattice points, as
shown in Fig. 2(c), which considers the specific form of the
elastic force.

MÜm,n + GRU̇m,n − c[a1 · (Vm,n − Um,n)a1 + a2

· (Vm−1,n − Um,n)a2 + a3 · (Vm,n−1 − Um,n)a3]

= 0, MV̈m,n + GRV̇m,n − c[a1 · (Um,n − Vm,n)a1 + a2

· (Um+1,n − Vm,n)a2 + a3 · (Um,n+1 − Vm,n)a3] = 0,

(16)

where U = [x, y]T and V = [x, y]T denote the displacement
vectors of the two types of gyroscopic units, M = m + I1/h2

represents the equivalent mass of the particle, and G = I3�/h2

is the gyroscope constant, whose magnitude reflects the gyro-
scope rotation speed. The sign of G indicates the direction of
the gyroscope rotation. The square matrix R = [0, 1; −1, 0] is
antisymmetric, and c is the spring stiffness coefficient.

According to Bloch theory for 2D periodic lattices, the
displacement solution for the (m, n)th unit structure can be
assumed as follows:

Um,n = u(0)eik·T(m,n)T

eiωt , Vm,n = v(0)eik·T(m,n)T

eiωt , (17)

where u(0) and v(0) are the amplitudes of the initial unit cell.
Substituting Eq. (17) into Eq. (16) yields the dispersion rela-
tion of the 2D honeycomb gyroid metamaterial.

det(ω2M + ωG − C) = 0. (18)

The specific forms of M, G, and C are found in
Appendix B.

III. DISPERSION ANALYSIS

Dispersion analysis is a crucial technique for understand-
ing the behavior of electromagnetic and acoustic waves in
metamaterials. Researchers can gain insights into the disper-
sion properties of the materials and design materials with
unique electromagnetic or acoustic properties by analyzing
the wave vector, frequency, and phase velocity of waves pass-
ing through the material.

A. Dispersion relationship

Dispersion analysis of metamaterials generally includes
the analysis of dispersion relations and group velocities. The
dispersion relations describe the relationships between the
wave vector and the frequency in the metamaterial. Through
analysis of the dispersion relations, researchers can determine
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FIG. 3. Dispersion surfaces and curves. (a) and (b) describe the dispersion relationships of free and constrained honeycomb metamaterials,
respectively.

the key properties of a metamaterial, such as its refractive in-
dex, which affects the direction and speed of electromagnetic
or acoustic waves passing through the material. Dispersion
relations can also reveal the presence of bandgaps, which
are the ranges of frequencies or wavelengths that cannot be
transmitted by metamaterials.

Figure 3(a) shows the variations in the dispersion surfaces
and curves for the free honeycomb metamaterial. It can be
observed that this type of metamaterial had three dispersion
surfaces. When H = 0, the two surfaces that were within the
low-frequency range overlapped, and the structure had only

one bandgap, which was formed by the upper and middle sur-
faces. As the angular momentum increased, when H = 1, the
overlap area between the middle and lower surfaces opened,
resulting in the formation of a new bandgap. When H contin-
ued to increase to 5, the number of bandgaps in the system
remained the same; however, the positions and bandwidths of
each passband exhibited significant changes compared with
H = 1. In summary, the increase in angular momentum not
only introduced new bandgaps to the free metamaterial, but
also significantly altered the position and range of each trans-
mission band.
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FIG. 4. The influence of spring dimensions on the dispersion surfaces of the constrained honeycomb metamaterials. (a) is the dispersion
surface of the structure when l = 1, l = 2, and l = 3, and (b) is the corresponding frontal view.

Figure 3(b) shows the variation in the dispersion surfaces
and curves of the constrained honeycomb metamaterial with
respect to the speed of the gyroscope. In contrast to the free
metamaterial, the constrained metamaterial did not have any
bandgap when the gyroscope was static (G = 0), and bandgap
characteristics only appearred when the gyroscope speed was
introduced (G = 2). As G continued to increase (G = 5),
the dispersion surfaces overlapped. In summary, for the con-
strained honeycomb metamaterial, an increase in G within a
certain range increased the number of bandgaps in the system.
However, exceeding this range resulted in a decrease in the
number of bandgaps, whereas the bandwidth of each passband
decreased with increasing G. This implies that an increase in
G flattens the transmission bands.

Figure 4(a) shows the dispersion surfaces of the con-
strained honeycomb metamaterials for different spring dimen-
sions, while Fig. 4(b) depicts the corresponding front views.
It can be observed that as the dimensions increase, the width
and range of the bandgap formed by the upper and middle
surfaces does not change significantly. As shown in Fig. 2,
changing the spring dimensions is equivalent to modifying
the lattice size of the honeycomb lattice. Therefore, the lattice
size has little effect on the width and range of the system
bandgap.

B. Numerical verification of band structure

The band structure obtained above is the theoretical analyt-
ical result derived using the plane-wave expansion method. To
verify its accuracy, numerical simulations can be performed
by solving the original dynamic equations using the ODE45
function in MATLAB software. Taking the example of the
constrained-type gyroscopic metamaterials with G = 2 and

l = 1, the response of the structure to excitations of different
frequencies was computed.

Figure 5 shows the relative positions of the excitation point
and the observation point, as well as the dimensions of the
numerical example structure. By solving Eq. (16), the overall
response of the structure to the excitation can be obtained.
The maximum displacement of the observation point within
the observation time range can be identified. The ratio of this
displacement to the excitation amplitude, defined as η, can
characterize the propagation effect of the wave.

The amplitude-frequency response curves were plotted
with the excitation frequency ω and the amplitude ratio η as
the x and y coordinates, respectively, as shown in Fig. 6(b).
It can be observed that significant wave propagation effects
occur when ω is within the range of 0.6–1 and 2–3 rad/s.
In contrast, for frequencies within other ranges, the wave
propagation is almost negligible.

The comparative results between Figs. 6(a) and 6(b)
demonstrate that the numerical calculations are in agree-
ment with the band structure curves obtained through

FIG. 5. Schematic diagram of numerical verification model.
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FIG. 6. (a) describes the dispersion relationships of constrained honeycomb metamaterials, when G = 2. (b) is the amplitude-frequency
response curve.

theoretical analysis, thereby confirming the accuracy of the
theoretical band gaps. This also indicates the ability of gy-
roscopic metamaterials to suppress vibrations and isolate
noise.

C. Group-velocity analysis

Group velocity is another parameter analyzed in dispersion
analysis. Analysis of group velocity can provide information
on how waves are transmitted through a metamaterial and how
they carry information. The group velocity is defined as a
function of the wave number, and the normal direction of the
dispersion surface contour corresponds to the direction of the
group velocity of waves with this frequency.

The results shown in Fig. 7 indicate that when H = 5 and
G = 2, the dispersion surfaces of the free and constrained
metamaterials exhibited distinct characteristics in terms of
the shape of their isofrequency contours. For the free meta-
material, as shown in Fig. 7(a), the isofrequency contours
in the low-frequency region were nearly elliptical in shape,
indicating the propagation of the wave in an elliptical form
based on the definition of the group velocity. However, in the
high-frequency region, the isofrequency contour on the lower
surface gradually became quadrilateral in shape, whereas
those on the middle and upper surfaces had a hexagonal
shape, allowing the wave to propagate along the concentrated
directions. Notably, there were four concentrated directions
on the lower surface and six on the middle and upper sur-
faces. Figure 7(b) shows the isofrequency contours of the
constrained metamaterial. The isofrequency contours were
nearly circular in the low-frequency range, indicating that the
waves propagated with equal intensity in all directions. In
the high-frequency range, the contours assumed a hexagonal
shape, and the waves exhibited six concentrated propagation
directions that were similar among the three surfaces.

As waves propagate through a metamaterial, they interact
with the unit structure. This interaction leads to different prop-
agation directions and characteristics of waves with different
frequencies in the metamaterial and also results in different

numbers of concentrating directions for different dispersion
curves. This implies that metamaterials can optimally manip-
ulate and process different signals, making them promising
for a wide range of applications.

IV. NUMERICAL SIMULATION

Based on the analysis of the group-velocity direction de-
scribed in the previous section, we explored the propagation
direction and polarization characteristics of waves in the
metamaterials using numerical simulations. Through this nu-
merical simulation, we could better understand the response
and processing capabilities of the metamaterials for different
types of waves, which will promote the practical application
of the metamaterials in various signal processing and manip-
ulation applications.

A. Propagation properties of waves

Figure 8(a) shows the wave intensity response of a
free-type gyroscopic metamaterial under positive circular dis-
placement excitation, with the amplitude ratio of particle
displacement to excitation represented by a gradient color.
The results show that the propagation mode of the lower
surface wave tended to become elliptical and exhibited a trend
towards convergent propagation within certain frequency
ranges. Two different excitation frequencies were applied to
the middle surface, and it was found that under low-frequency
excitation, the wave approximated an elliptical shape, whereas
under high-frequency excitation, it exhibited a convergent
propagation. The propagation characteristics of the upper sur-
face were slightly different. Under low-frequency excitation,
the waves appeared as convergent propagations, whereas un-
der high-frequency excitation, the waveform approximated an
elliptical propagation.

For the constrained gyroscopic metamaterial, distinct low-
and high-frequency excitations were applied to the three dis-
persion surfaces. As shown in Fig. 8(b), by applying high and
low excitation frequencies to each curved surface, the wave
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FIG. 7. Contours of dispersion surfaces. (a) and (b) describe the contours of free and constrained honeycomb metamaterials, respectively,
with assumptions that the angular momentum and gyroscope speed are H = 5 and G = 2, respectively.

propagation can be differentiated into circular and convergent
propagations. Notably, in the adjacent dispersion surfaces,
the wave propagation mode of the lower surface under high-
frequency excitation was the same as that of the higher surface
under low-frequency excitation. This indicates that although
the bandgap caused by the rotation speed of the gyroscope
isolated each passband, the propagation mode of the wave was
continuous throughout the entire passband.

By simulating the response of the gyroid metamaterials
to different excitations, it was verified that the direction of
the elastic wave propagation was consistent with the direction
revealed by the dispersion surface.

B. Polarization properties

As waveguide materials, phononic crystals prioritize the
study of band structures over intrinsic frequencies. The dif-
ferentiation of the dispersion surfaces in gyroid metamaterials
and the differentiation of the intrinsic frequencies in gyroid
structures are unified phenomena that yield different wave
polarization modes, similar to the chiral modes in gyroid
structures.

The polarization modes of waves on different dispersion
surfaces can be solved using dynamic equations. However,
the large number of equations in proportion to the number of
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FIG. 8. Schematic of wave propagation. (a) and (b) correspond to free and constrained metamaterials, respectively, with an assumption
that the angular momentum and gyroscope speed are H = 5 and G = 2, respectively. The top left corner of each figure is labeled with the
respective circular excitation frequency ω f .

cells in phononic crystals and their mutual coupling through
elastic terms make the analytical solutions difficult to obtain.
Therefore, the numerical solutions for the response of the
structure to excitation can also be used to observe the different
types of wave polarizations on different dispersion surfaces.

When applying forward and backward circular excitation
to free-form metamaterials, the polarized waves are shown in
Fig. 9(a). Both types of excitations induced forward waves
in the structure of the lower-dispersion surface. However,
different phenomena were observed for the middle- and
upper-dispersion surfaces, where both types of excitation only
induced backward waves. Therefore, free-form metamaterials
exhibit a polarization effect in which waves can propagate re-

gardless of the type of excitation but with a specific polarized
direction.

For the constrained metamaterials, as shown in Fig. 9(b),
the lower surface exhibited backward polarization, whereas
the middle and upper surfaces exhibited forward polarization
and polarization effects.

Free-form and constrained metamaterials have similar
structural symmetry; however, their different unit structures
resulted in different polarization properties. The polarization
properties of metamaterials can provide a better understanding
of their microstructural properties, which can further facilitate
in fine-tuning and exploring the performance and applications
of the materials.
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FIG. 9. Response trajectories of excitation. (a) and (b) correspond to free and constrained metamaterials, respectively; the top row
corresponds to positive circular excitation, whereas the bottom row corresponds to negative circular excitation, with an assumption that the
angular momentum and gyroscope speed are H = 5 and G = 2, respectively. Counterclockwise rotation is defined as the positive direction,
while clockwise rotation is considered the negative direction.

V. CONCLUSION

This study used two types of 2D honeycomb gyroid meta-
materials: free and constrained. First, a dynamic modeling
of the two structures was performed. Using the Bloch theo-
rem, the dispersion relations of the systems were obtained,
and the band structure characteristics were theoretically an-
alyzed. Finally, numerical simulations were performed to
thoroughly investigate the wave propagation and polarization
properties of the systems. The main findings are summarized
as follows:

(1) Increasing the rotation speed of the gyroscope flat-
tened the original dispersion surfaces and separated them from
each other, resulting in bandgaps. Gyroscopes suppress vibra-
tions by controlling the energy band of metamaterials based
on this theory.

(2) The wave group-velocity directions of the two types of
structural dispersion surfaces alternated between isotropic and
concentrated in certain directions under different frequency
excitations. Numerical simulations verified the accuracy
of the theoretically obtained bandgaps and group-velocity
directions.

(3) Through numerical computations, it was discovered
that honeycomb gyroscopic metamaterials exhibit polar-
ization characteristics. Specifically, regardless of the ex-
citation method used, if the energy is inputted within
the passband frequency range, the corresponding polar-
ized wave output can be obtained. Therefore, honeycomb
gyroscopic metamaterials can be used as polarization
devices.
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APPENDIX A

The N matrix in Eq. (7) can be expressed as

N =

⎡
⎢⎢⎣

N11 N12 N13 N14

N21 N22 N23 N24

N31 N32 N33 N34

N41 N42 N43 N44

⎤
⎥⎥⎦,

where

N11 = Iω2 − 3

2
c1 − 3

2
c2

N12 = c1

(
1 + 1

4
e−αe−β + 1

4
e−αeβ

)

+ c2

(
3

4
e−αe−β + 3

4
e−αeβ

)

N13 = Hiω −
√

3

2
c1 −

√
3

2
c2

N14 = c1

(√
3

4
e−αe−β +

√
3

4
e−αeβ

)

+ c2

(√
3

4
e−αe−β +

√
3

4
e−αeβ

)

N21 = −Hiω −
√

3

2
c1 −

√
3

2
c2,

N22 = c1

(√
3

4
e−αe−β +

√
3

4
e−αeβ

)

+ c2

(√
3

4
e−αe−β +

√
3

4
e−αeβ

)

N23 = Iω2 − 3

2
c1 − 3

2
c2

N24 = c1

(
3

4
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4
e−αeβ

)
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(
1 + 1

4
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4
e−αeβ

)

N31 = c1

(
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4
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)
+ c2

(
3

4
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4
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)
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2
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N33 = c1

(√
3

4
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√
3

4
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)

+c2

(√
3

4
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√
3

4
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)

N34 = Hiω −
√

3

2
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√
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(√
3
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√
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+ c2

(√
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√
3

4
eαe−β

)

N42 = −Hiω −
√
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√
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N43 = c1

(
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4
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)
+ c2

(
3

4
eαeβ + 3

4
eαe−β

)

N44 = Iω2 − 3

2
c1 − 3

2
c2,

and

α = i3k1l/2, β = i
√

3k2l/3.

APPENDIX B

The M, G, and C matrices in Eq. (18) can be expressed,
respectively as

M = mI,

G = iG

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠,

C = c

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3
2 0 −1 − e−iα+e−iβ

4

√
3(e−iα−e−iβ )

4

0 3
2

√
3(e−iα−e−iβ )

4 − 3(e−iα+e−iβ )
4

−1 − eiα+eiβ

4

√
3(eiα−eiβ )

4
3
2 0

√
3(eiα−eiβ )

4 − 3(eiα+eiβ )
4 0 3

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where

α = (3k1 −
√

3k2)l/2, β = (3k1 +
√

3k2)l/2.
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