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Mixing property of symmetrical polygonal billiards
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The present work consists of a numerical study of the dynamics of irrational polygonal billiards. Our
contribution reinforces the hypothesis that these systems can be strongly mixing, although never demonstrably
chaotic, and discusses the role of rotational symmetries on the billiards boundaries. We introduce a biparametric
polygonal billiard family with only C, rotational symmetries. Initially, we calculate through the relative measure
r(€, 9;t) the phase space filling. This is done for some integer values of n and for a plane of parameters ¢ x 6.
From the resulting phase diagram, we can identify the fully ergodic systems. The numerical evidence that
symmetrical polygonal billiards can be strongly mixing is obtained by evaluating the position autocorrelation
function Cor,(¢), which follows a power-law-type decay ¢t~°. The strongly mixing property is indicated by
o = 1. For odd, small values of n, the exponent ¢ =~ 1 is found. On the other hand, 0 < 1 (weakly mixing
cases) for small, even values of n. Intermediate n values present o ~~ 1 independently of parity. For larger values
of symmetry parameter 7, the biparametric family tends to be a circular billiard (integrable case). For such values
of n, we identified even less ergodic behavior at the pace at which n increases and o decreases.
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I. INTRODUCTION

Ergodic theory is a branch of mathematics that classifies
dynamical systems according to their degree of randomness.
In ascending order: Ergodic (E), mixing (M), Kolmogorov
(K), and Bernoulli (B) systems. Among them, K and B are the
only ones exhibiting chaotic behavior, characterized by a pos-
itive Kolmogorov-Sinai entropy hks (or Lyapunov exponent),
so that E D M D K D B [1,2]. Mixing systems are further
subclassified into weakly mixing (WM) and strongly mixing
(SM) systems.

Billiards are prototype models in the ergodic theory of
Hamiltonian systems. Two-dimensional billiards correspond
to a particle moving in a region with reflecting walls, and
the resulting dynamics can range from regular to completely
chaotic depending on the billiard’s shape. Over the last
decades, a large number of analytical and numerical works
provided results that boosted the field of nonlinear dynam-
ics [3]. Nevertheless, some systems still benefit from further
investigation. In particular, the systems related to polygonal
billiards, which have hxs = 0 and thus are not chaotic. With
a few exceptions, polygonal billiards are not integrable and
exhibit random behavior. Such billiards are known as pseu-
dointegrable [4], and are characterized by a topological genus
[5]. These systems can be separated into two classes: The
rational polygons, where at least one internal angle is rational
with , and the irrational ones, where all internal angles are
irrational with 7. The class of irrational polygons has infinite
genus [6].
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On the dynamics of rational polygons, several mathemat-
ical results have been published over the last four decades,
such as the work by Katok [7], which demonstrated that SM
behavior never occurs in this particular billiard class. Years
later, Kerckhoff er al. [8] dealt with ergodicity, while Gutkin
and Katok [9] shown the WM behavior in polygons with
vertical or horizontal sides. Recently, this topic was revisited
by Sabogal and Troubetzkoyin in Ref. [10]. One of the latest
advances on rational polygons dynamics was presented in the
study of Avila and Delecroix [11], which investigated the
connection between WM and regular polygonal billiards. We
emphasize that for the mathematical community, polygonal
billiards are never SM [12,13], although no proof of this fact
has been given until now.

Regarding the understanding of irrational polygons, some
works [14], particularly the one by Casati and Prosen (CP)
[15], shed light on the dynamics of such polygons by pro-
viding robust numerical evidence that irrational, triangular
billiards are mixing systems. Reference [16] later reinforced
such CP hypothesis. To date, there is no robust study on
the mixing property of nontriangular irrational billiards. Only
recently, Ref. [17] has provided numerical evidence that ir-
rational hexagons can be a mixing system, corroborating the
numerical evidence from CP. More specifically, a biparametric
family of irrational hexagonal billiards with the property of
discrete rotational symmetry was introduced.

In classical mechanics, continuous symmetries lead to con-
served quantities of the system. This result is a theorem due
to the mathematician Noether [18-21]. Discrete symmetries
were only studied years later. For example, in Refs. [22,23],
Lutsky introduced a method for deriving conserved quanti-
ties from discrete symmetries. On the other hand, Aguirre
and Krause carried out extensive studies and explicitly
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generalized and obtained the point symmetry group, including
the covariant form [24-26]. Cicogna and Gaeta studied the
presence of Lie point symmetries in dynamical systems either
in Newton-Lagrange or Hamilton forms [27]. In Hamiltonian
systems, properties of symmetry of the phase space come
from an interplay between the symmetries of an integrable
Hamiltonian and perturbations [5]. In quantum mechanics,
symmetries cause states of degenerate energy [17,28-34].

In this paper, we study the classical dynamics of C,-
symmetrical polygonal billiards (C,-SPB) that repeat them-
selves under a rotation of 27 /n. Here, n is the symmetry
parameter. Our results show that these billiards present the
SM property depending on the parity of the symmetry pa-
rameter as long as n is small. Nevertheless, such dependence
with the parity is missed for intermediate values of n. The
impact of symmetry on ergodic properties has been discussed
recently for the case of triangular billiards with symmetry
under reflection about a median [35,36]. Thus, the present
work also motivates the development of mathematical results
of the ergodic theory of dynamical systems.

This paper is organized as follows. In Sec. II, we introduce
the constraints and parameters needed to obtain the geometric
shape of the C,-SPB family. The general behavior of the
phase space is also presented. Section III presents an extensive
numerical calculation of the relative measure function for
different parities of n. For some selected billiards, we show
in Sec. IV different correlation decays, indicating WM or SM
behaviors. Section V presents the impact of larger values of
n on the dynamics exhibited in the C,-SPB. For such large n
values, the billiards family tends to a widely regular, circular
border. Finally, concluding remarks and perspectives are pre-
sented in the last section, in addition to a comment regarding
the quantization of the proposed billiards.

II. C,-SYMMETRICAL POLYGONAL BILLIARDS
AND REDUCED PHASE SPACE

The billiards family introduced in this work are convex
polygons generated by alternating two adjacent sides of dif-
ferent lengths. One of the sides is unitary, while the other is a
line segment of length 0 < ¢ < 1. In addition, 6 represents the
angle between these two adjacent sides (see Fig. 1). The set of
adjacent sides is repeated n times depending on the desired
polygonal symmetry, and the final shapes are symmetrical by
rotation around the geometric center. Therefore, the billiards
are C, symmetric for n > 2, and thus, they have the same
shape when rotated by an angle of 27 /n. For a given billiard,
the total number of segments is 2n, and the internal alter-
nating angles are 6 and 2w (1 — 1/n) — 6. The top panels of
Fig. 1 show examples of two final generic shapes generated by
our building procedure: Fig. 1(a) is a C3-symmetric polygon,
while Fig. 1(b) is C4; symmetric. In this building procedure,
the billiards become convex if the parameter 6 is within the
interval (™M < § < #M™)  where ™M = (1 —2/n) and
6{m>) — . Qutside this interval, the polygon can be noncon-
vex, as shown in the bottom panels of Fig. 1. We stress that
our analysis will not be carried out in this group of polygons
(nonconvex). In addition, all inner angles are irrational with
mr, for which the numerically calculated genus is around 10'7
[37].

FIG. 1. Examples of symmetrical polygonal billiards (SPB) with
geometric parameters (¢, ). The boundaries are formed by alternat-
ing adjacent sides of unitary and 0 < £ < 1 lengths. 6 represents the
angle between these adjacent sides. (a) SPB with symmetry C;. The
boundary repeats itself after consecutive rotations of 27 /3 or 120°
(dashed lines). (b) Another example of an SPB with symmetry C,
where the border repeats itself after consecutive rotations of 27 /4
or 90° (dashed lines). (c) and (d) are nonconvex versions of the
polygons depicted in (a) and (b). Our analysis will not be carried
out in this group of polygons.

To illustrate a typical dynamics in the real space associated
with a C,-SPB, we depict in the left panel of Fig. 2 the
representation of 200 collisions occurring in a Cs-SPB with
€,0) =(0.61,2.819573...). This is done for an arbitrary
initial condition. The characterization of the dynamics of such
billiard is carried out from collisions in a Poincaré section,
i.e., although the entire boundary is part of the dynamics, we
only compute the interaction of the particle with a single line
segment, being the unitary, horizontal segment the chosen one

C5 - SPB
(=0.61,0

FIG. 2. Left: Typical trajectory in the real space for a Cs-SPB
after 200 collisions of the particle with the billiard’s boundary. Right:
Corresponding reduced phase space (x, v,) for the Cs-SPB shown in
the left panel after 10° collisions with the unitary, horizontal line
segment.
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[15-17,33,38]. At a given discrete time ¢, the particle departs
from the section at position x with a tangent velocity to the
border denoted as v,. A reduced phase space is then defined by
the intervals 0 < x < 1 and —1 < v, < 1. In the right panel
of Fig. 2, we present the reduced phase space for t = 10°
collisions in the C5-SPB with (£, 6) = (0.61,2.819573...),
which exhibits full ergodicity. In the next section, we investi-
gate how the phase space filling evolves with time for different
values of the symmetry parameter n. Billiards with a fast
tendency toward ergodicity will be candidates to be SM.

III. RELATIVE MEASURE

In this section, we investigate how fast the phase space
of a given billiard is filled, focusing on the influence of its
rotational symmetry on this process. More specifically, we are
interested in the dependence of the phase space filling with
the parity of the symmetry parameter n. We initiate our ex-
plorations by first partitioning the reduced phase space (x, v,)
into a large number N¢ of cells. In our numerical calculations,
we utilize Nc = 10°. Then, let m(t) be the number of cells
visited up to collision ¢ for a given trajectory, and (m(z)) the
average for different orbits with random initial conditions.
Thus, the relative measure, i.e., the average fraction of visited
cells, is given by r(t) = (m(t))/Nc. As predicted by the ran-
dom model (RM) [39], if all cells have the same probability
of being visited, then r(t) = rrm(?), where

rem(t) = 1 —exp(—/Nc). (D

In our first analysis, we consider SPBs characterized by
the pair (£, 6) = (0.94,2.499721...) and vary the values of
n. The top panel of Fig. 3 portrays the borders of the result-
ing billiards ordered by the parity of n. We stress that all
these billiards have (¢, 6) = (0.94,2.499721...). The rela-
tive measure r(¢) associated with some rotational symmetries
C, is plotted against ¢ /N¢ in the bottom panel of Fig. 3. It is
evident that the curves related to even values of n do not follow
the result predicted by Eq. (1), which is represented by a solid
black line in this graph. Recall that the first member of the
symmetrical family, i.e., the C,-SPB, is a parallelogram with
alternating sides (unitary and £ lengths), with inner angles 6
and 2w — 6. Such a simple geometric shape leads to a phase
space filled very slowly, as one can observe in Fig. 3. On
the other hand, r(¢) curves for odd symmetries follow the
predictions of the RM very closely. Therefore, for this specific
pair of parameters (¢, 6) = (0.94,2.499721...), we observe
a fast filling of the phase space for the odd symmetries.
Nevertheless, a broader analysis over the entire range of the
parameters (£, 6) as a function of the parity of n still needs to
be performed. This is our next goal in this section.

In order to find billiards that may be SM or WM, we must
first investigate the rate of ergodicity in such systems. The
closer the behavior of the numerically computed r(¢) is to
rem [given by Eq. (1)], the greater is the chance of a given
billiard displays the SM property. To map the ergodicity of
a C,-SPB family, we evaluate r(t = N¢) for a large number
of billiards, up to 20000 depending on the symmetry. Note
that for the RM, rgppm(t = N¢) = 0.632 121 .. .. The results of
such calculations are shown in the phase diagrams portrayed
in Figs. 4 and 5, separated into odd and even symmetries, re-

0.0 1.0 2.0 3.0 4.0 5.0

¢Ne

FIG. 3. Top: C,-SPB boundaries for different values of sym-
metry parameter n. The geometric parameter values are (£,6) =
(0.94,2.499721...) in all cases. Bottom: Relative measure r(t)
computed for some values of n. The curves associated with n = 7,
n =9, and with the RM [given by Eq. (1)] are almost indistinguish-
able. The C,-SPB is a simple parallelogram that does not scatter the
phase space significantly.

spectively. Billiards that present r(t = N¢) closer to rrm(t =
Nc) =0.632121... reach full ergodicity faster than other
billiards associated with lower values of r(t = N¢). Further-

.(a) C; - S}?B . . 059241 (b) C.7 - SPB . ‘ . 063069
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FIG. 4. Phase diagrams of r(t = N¢) in the parameter space
(¢,0), for odd symmetries of C,-SPB with (a) n =35, (b) n=17,
(¢c) n=29, and (d) n = 11. Note that for the RM, rpm(t = N¢) =~
0.63, as evaluated by utilizing Eq. (1). For a Cs-SPB with (¢, 6) =
(0.65,2.22267...), the corresponding phase space is filled al-
most as the RM, resulting in r(t = Nc¢) >~ 0.59. The phase spaces
associated with a C;-SPB with (¢, 0) = (0.64,2.471759...), a Co-
SPB with (£, 0) = (0.93,2.64625...), and a C;;-SPB with (¢, 0) =
(0.97,2.71176...) are filled very similarly to the RM, with all the
cases resulting in r(r = N¢) >~ 0.63.
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FIG. 5. Phase diagrams of r(t =Nc) in the parameter
space (¢,60), for even symmetries of C,-SPB with (a) n=4,
(b) n=6, (¢c) n=28, and (d) n =10. Note that for the RM,
rem(t = Nc) = 0.63, as evaluated by utilizing Eq. (1). A
C4-SPB presents a scarcely filled phase space, resulting in
r(t =Nc)~0.17 when (£,0)=(0.88,2.03418...). Cs-SPB,
C3-SPB, and Cy,-SPB also present scarcely filled phase spaces,
resulting in r(z = N¢) ~ 0.37 when (¢,60) = (0.97,2.35358...),
(£,6)=1(0.99,2.56825...), and (£ 60)=(0.8,2.67821...),
respectively. For small, even values of n, this behavior is due to
the aligned parallel sides of the billiard, which does not scatter the
trajectories significantly. Thus, the phase space filling is slow.

more, by comparing Figs. 4 and 5, we observe that the phase
spaces for even symmetries are filled slowly. For small, even
values of n, this behavior is due to the aligned parallel sides
of the billiard, which does not scatter the trajectories signif-
icantly. Thus, the phase space filling is slow. On the other
hand, for odd symmetries, the number of ergodic billiards is
vast, highlighted in the red regions of Fig. 4. Note that the
range of the parameter 6 decreases as n increases, and for each
phase diagram, the 6 values are symmetrical with respect to
the center of the range 6™ = 7 (1 — 1/n).

IV. DECAY OF CORRELATIONS

The characterization of the mixing dynamics of billiards is
performed by utilizing the time-averaged position autocorre-
lation function, defined as

T—1
Cor(1) = lim % Zx(r)x(r +1) — (x)2 )
=0

CP presented numerical evidence, through these functions,
that the irrational triangular billiards are mixing [15]. This hy-
pothesis was later strengthened by an extensive investigation
over a wider variety of triangles and hexagons [16,17]. The
classification of the mixing behavior is dictated by the power-
law decay of the autocorrelation function, |Cor,(¢)| ~¢7°.
When o ~ 1, there is numerical evidence that the system is
SM.

In our next analysis, we evaluate the power-law decay of
the autocorrelation function associated with some of the cases
found in Figs. 4 and 5. More specifically, this dynamical
behavior investigation is done for the billiards that presented
the highest values of r(t = N¢) shown in the phase diagrams

(b) Even symmetries

(a) Odd symmetries
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FIG. 6. Calculated position autocorrelation function Cory (¢) in
a decadic log-log scale for the C,-SPB members with maximum
r(t = Nc) in the phase diagrams of Figs. 4 and 5. (a) Odd values of
symmetry parameter n, from bottom to top, Cs, Cy, Cy, and Cy;. The
decays obey power laws |Cor,/ ()| ~ ¢~ (represented by black lines)
with exponents o > 0.9, indicating SM dynamics. The specific o
values associated with each C, are written in the plot legend. (b) Even
values of n, from bottom to top, Cy, Cs, Cs, and Cjo. The decays
obey power laws with exponents o < 1, indicating the WM property.
All exponents were obtained from linear fits with errors of the order
of 0.001.

of Figs. 4 and 5. Such billiards can present a fast phase
space filling and, consequently, are candidates to be SM. We
perform the calculations in a rescaled position x’ = 2x — 1 so
that the term (x’) can be neglected in Eq. (2), since {x) >~ 0.5.
All tested cases present (x) ~ 1073,

The left panel of Fig. 6 depicts the autocorrelation func-
tions in a decadic log-log scale corresponding to the odd
symmetries Cs—Cy;. A tendency for fast decay of the autocor-
relation functions is observed, with o > 0.9 for all the cases.
Here, we emphasize that the billiards with symmetries C; and
Cy present o >~ 1. Such an exponent is, therefore, numeri-
cal evidence of SM dynamics. All exponents were obtained
from fits with errors of the order of 0.001. In addition, the
curves have been shifted downwards for better visualization.
The Cor, () calculations for the even symmetries C4—C} are
shown in the right panel of Fig. 6. We found that o < 1 for
all the even cases, providing evidence of WM dynamics. As
in the odd cases, all exponents were obtained from fits with
errors around 0.001, and the curves were shifted downwards.

V. HIGHER SYMMETRIES

As we have seen during the analysis of Fig. 6, the parity
of n plays a fundamental role in the dynamics of C,-SPB. In
particular, the investigations concerning odd, small values of
n present the possibility of reaching SM dynamics. On the
other hand, this possibility is absent for even, small values of
n, being observed just WM behavior. Nevertheless, this trend
is not maintained for larger values of n. When 7 increases, the
parity becomes less and less significant, as will be clear in this
section.
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FIG. 7. Maximum value of r(N¢) for even values of the sym-
metry parameter n. Here, we set £ = 0.8. Small values of n are
associated with 7(Nc)max < rem(Nc) = 0.632 121 ..., which is the
expected value for the RM. As n becomes large, r(Nc)max increases
towards 0.632..., indicating the possibility of reaching SM dynamics
for billiards with these parameters.

In order to investigate the impact of larger, even values
of n on the dynamics of C,-SPB, we consider a simplified
version of the phase diagram in Fig. 5. Note that r(t = N¢)
is approximately constant along the parameter £ in this phase
diagram. Therefore, we set £ = 0.8 and vary 6 to search for
the maximum value of 7(¢# = N¢). Such a process is utilized to
plot the graph in Fig. 7. By inspecting this figure, we observe
that as n increases, r(Nc)max approaches the value rrym(t =
Nc) =0.632121.. ., represented by the solid blue line. This
enhanced phase space filling indicates the possibility of SM
dynamics for billiards with these parameters. This possibility
is confirmed in Fig. 8, which plots the function Cor, (¢) for
some of the billiards considered in Fig. 7. A tendency of fast
decay of the autocorrelations is observed, with o > 0.9 for
all the cases. We emphasize that the billiards with symmetries
C30, Cy0, and Cs (see the parameters in figure caption) present
o >~ 1. All exponents were obtained from fits with errors of

Bt
: Cym1.05 Cuml.06 Csyu1.06

8.0

log;o|Cor,(?)]

-12.0 |

0.0 1.0 2.0 3.0 4.0

FIG. 8. Calculated position autocorrelation function Cor, (¢) in
decadic log-log scale for the C,-SPB members with maximum r(t =
Nc) corresponding to the results of Fig. 7. From bottom to top,
we show Csp (0 =2.98634...), Cy (6 =3.0261...),and Cso (0 =
3.04655...), all of them with £ = 0.8. The decays obey power laws
|Cory (t)| ~ ¢t~ (represented by the solid black lines) with exponents
o ~ 1, indicating SM dynamics. The specific o values associated
with each C, are written in the plot legend. All exponents were
obtained from linear fits with errors of the order of 0.001.

the order of 0.001. The curves have been shifted downwards
for better visualization.

Such a change in the dynamical behavior of the C,-SPB
with even n occurs due to the increasing complexity of the
polygons’ boundaries as n becomes large. Recall that for small
n, such as the values utilized in Secs. III and IV, the billiards
are polygons with relatively few sides. The number of sides
dictates how the velocities are scattered during the particle
dynamics.

It is easily seen that C,-SPB tends asymptotically to circu-
lar billiards (nonergodic) when n — oo. The resulting shape
is a polygon composed of numerous sides, forming almost
shallow angles between adjacent edges. As a last analysis of
our work, we aim to investigate how robust the numerical
approximation of the C,-SPB dynamics is. More specifically,
we are interested in checking whether the regular behavior
of a circular billiard can be accessed directly from a C,-SPB
with a finite but very large value of n. To provide an answer
to this question, we first need to abandon the reduced phase
space idea introduced in Fig. 2. This is due to the fact that
there is no flat side in circular billiards, just a point where the
tangent to the curve is horizontal. Therefore, in the following,
we perform our analysis in the canonical Birchoff coordinates
(g, p), where g is the perimeter fraction, and p is the tangent
velocity to the border during a collision. So, 0 < g < L, where
L is the billiard perimeter and —1 < p < 1. In this frame, the
circular billiard has an analytical map of discrete time 7 [13],
for unitary perimeter:

{q, = qo + t(m — 2arcsin pgy)/L mod 1
— 3)
Pt = DPo-
The most scattered trajectory possible for this map has caus-
tics around the circle’s center.

Figure 9 shows the trajectories in the real space for two
C,-SPB: The left panel depicts the billiard for n = 50 and
(£,0) =(0.8,3.04655...), while the right panel portrays
the billiard for n =100000 and (¢, ) = (0.5, 3.141 561 .. .).
Both trajectories depart from the same initial conditions, i.e.,
(g/L, p) = (3 x 1075,0.1). By comparing the observed tra-
jectories for n = 50 and n =100 000 with the expected one
for n — oo (circular billiard), we find that the deviation is
noticeable for n = 50. In comparison, for n =100000 the
fixed value of p deviates by merely ~10~* after 10° collisions.
We provide a dynamical visualization of 200 collisions in the
Supplemental Material [40].

Supplementing the results discussed in Fig. 9, we now
present in Fig. 10 the corresponding phase spaces in Birchoff
coordinates after 10° collisions associated with the Cso-SPB
and Cjgoo0o-SPB. For n = 50, the graph shows a variety of
accessed values, resulting in r(N¢) 2~ 0.625. On the other
hand, for n = 100000, only a single value of p is accessed,
resulting in 7(N¢) = 0.001.

We finish our work by presenting the autocorrelation func-
tion for n = 100 000 in Fig. 11. Cor(t) decays with exponent
o ~ 0.58, indicating that the WM behavior replaces the SM
property. Note that an oscillation is expected for the regular
dynamics of a circular billiard, resulting in o 2~ 0. Therefore,
we conclude that the C,-SPB family only reproduces the reg-
ular behavior of a circular billiard for n — oo.
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FIG. 9. Real trajectories for Csy with (§ = 3.04655...,¢ = 0.8)
(on the left), and for Cipggp0 With (6 = 3.141561..., £ = 0.5) (on
the right). The trajectories depart from the same initial condition
(g/L, p) = (3 x 107, 0.1), indicated by the arrow. Top: Real trajec-
tory after five collisions; it is possible to identify a little deviation
between the two billiards trajectories. Middle: Real trajectory after
50 collisions; the deviation between the two billiards starts to become
relevant. Bottom: Real trajectory after 200 collisions; the deviation
is evident now. The real trajectory is scattered for Cso-SPB. On the
other hand, for Cjgoo00-SPB, the trajectory seems regular as in a
circular billiard (see Fig. 11). We provide a dynamical visualization
of 200 collisions in the Supplemental Material [40].

VI. CONCLUSIONS AND PERSPECTIVES

This paper presents numerical results on the classical dy-
namics of symmetric irrational polygonal billiards. In our
work, such billiards are convex polygons generated by alter-
nating sides with unitary and 0 < ¢ < 1 lengths. These sides
form an angle 6, and the resulting boundary is symmetric un-
der rotations by 27 /n, where n is the symmetry parameter. We
investigate the possibility of finding strongly mixing dynam-
ics in these billiards in the sense of the ergodic hierarchy of
Hamiltonian systems. We start by exploring whether, for some
set of geometrical parameters (¢, 6) and n, the corresponding
dynamics tend to obey the random model (RM) [Eq. (1)]

0.0 ; 0.4 0.6 0.8 1.0
q/L

FIG. 10. Phase spaces for Cso-SPB (black dots) and for Cogog0-
SPB (red dots) after 10° collisions. In both cases, we set the initial
condition as (g/L, p) = (3 x 107, 0.1), which is represented by the
blue dot. The phase space for Cs,-SPB is scattered in agreement
with its real trajectory presented in the left panel of Fig. 9). On the
other hand, the phase space of the Cjg00-SPB seems regular as in a
circular billiard, with a fixed p. The deviation in p after 10° collisions
is of the order of 10~*.

[39]. We observe that for 2 < n < 12, the parity of n plays
a fundamental role in the behavior of the phase space. More
specifically, for odd 7, the most scattered dynamics found are
very close to the RM (Fig. 4). On the other hand, for even n,
the most scattered phase spaces are far from the RM (Fig. 5).
The evidence of ergodicity is extended to the mixing property
by calculating the autocorrelation functions Cor, () [Eq. (2)].
For selected parameters and odd symmetries, we observe a
tendency for fast decaying of Cory (¢), suggesting that these
billiards can exhibit strongly mixing dynamics (Fig. 6). In

0.0 b
3 ) o e ’
TRIITLNT L T

R

log;o|Cor(?)|

-8.0 | Circular Billiard =0.0
t Cl00,000®0.58
" " " " 1 "

0.0 1.0

2.0 3.0 4.0
log,, t

FIG. 11. Calculated position autocorrelation function Cory(¢) in
decadic log-log scale for the Cop000-SPB and for the circular billiard
(top plot). Note that the circular billiard is an integrable case and is
represented by Eq. (3). The decay for n = 100 000 obeys a power law
|Cory ()| ~t~° (black line) with exponent o >~ 0.58. On the other
hand, there is no decay (¢ =~ 0) in the correlation function related
to the circular billiard, which only oscillates. All exponents were
obtained from linear fits with an error of around 0.01.
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FIG. 12. Probability density |1/ (7)|> obtained numerically from
the Helmholtz equation using a scaling method [46]. Small red tones
indicate high probability values, while regions with dark tones indi-
cate low values. Left: Around 2000th level for C4-SPB and (¢, 6) =
(0.94,2.499721...). Right: Same for Cs-SPB.

contrast, only the weakly mixing dynamics is reached when
n is even (Fig. 6).

We also find that the parity of n loses relevance for the
billiard dynamics when n becomes large. When n increases,
the filling of the phase spaces toward the RM also occurs for
even n (Fig. 7). Thus, the strongly mixing dynamics can also
be reached as long as n is sufficiently large. This effect occurs
due to the increasing complexity of the billiard boundary as n
increases. Recall that for small n, the billiards are polygons
with relatively few sides, and the number of sides dictates
how scattered the velocities are during the particle dynamics.
The billiards considered in our work tends asymptotically to
circular billiards (nonergodic) when n — oo. Figures 9 and
10 show how sensitive the dynamics are to the polygonal
boundaries. We find that the strongly mixing property is lost
for n > 1. Furthermore, the autocorrelation functions decay
with exponent o < 1, suggesting weakly mixing dynamics

(Fig. 11). We conclude that the C,-symmetrical polygonal
billiards (SPB) family only assumes the regular behavior of
a circular billiard (o = 0) when n — oo.

As a perspective for future work, quantizing the C,-SPB
is a worthy investigation. The quantum properties of pseu-
dointegrable systems have been studied over the past decades
[4,41]. However, irrational billiards have yet to be investigated
[16,17,30,42]. Considering that the discrete rotational sym-
metries in quantized billiards produce independent spectra of
singlets and doublets (degenerate states) [28,31], it should
be explored how the spectral statistics are affected in the
C,-SPB, and how they are related to their classical counter-
parts (from WM to SM). The case of n = 3 was explored in
irrational hexagons [17], and their spectra were analyzed with
intermediate formulas between Poisson and random matrices
theory statistics [43,44]. Such formulas should be tested for
n > 3. Furthermore, the superposition of independent spectra
could be studied as proposed by Ref. [45]. The eigenfunctions
associated with the singlet states are symmetrical with respect
to the center of the billiards, as Fig. 12 shows the probability
density |y (7)|? of billiards with C4 and Cs symmetries. They
were obtained by solving the Helmholtz equation, V2 vi(F) =
—k?,;(7), with Dirichlet boundary conditions using a scal-
ing method [46], where ki2 is an energy eigenvalue. Aspects
related to the intensity distribution of the eigenfunctions as-
sociated with singlets and doublets must be studied in depth
[47,48].
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