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Spin-orbit-coupled fractional oscillators and trapped Bose-Einstein condensates
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We study the ensemble of pseudo-spin 1/2 ultracold bosons, performing Lévy flights, confined in a parabolic
potential. The (pseudo-) spin-orbit coupling (SOC) is additionally imposed on these particles. We consider
the structure and dynamics of macroscopic pseudospin qubits based on Bose-Einstein condensates, obtained
from the above “fractional” bosons. Under “fractional” we understand the substitution of the ordinary second
derivative (kinetic energy term) in the Gross-Pitaevskii equation by a so-called fractional Laplacian, charac-
terized by the Lévy index μ. We show that the joint action of interparticle interaction, SOC, and Zeeman
splitting in a synthetic magnetic field makes the dynamics of corresponding qubit highly nontrivial with evident
chaotic features at both strong interactions and Lévy indices μ → 1 when the Lévy trajectories of bosons with
long jumps dominated over those derived from ordinary Gaussian distribution, corresponding to μ = 2. Using
analytical and numerical arguments, we discuss the possibilities to control the above qubit using the synergy of
SOC, interaction strength, and “fractionality,” characterized by the Lévy index μ.
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I. INTRODUCTION

The importance of Bose-Einstein condensation lies in its
profound implications in many branches of physics [1,2].
For instance, its microscopic properties are important for
the description of many unusual phenomena in condensed
matter systems. This is especially true for spin-orbit coupled
Bose-Einstein condensates (BECs) [1], which could serve as
the model object for topological insulators [3,4], spintronic
devices [5], and spin-Hall effect [3,4,6,7]. As the formation of
a BEC is an example of a phase transition, where the statistics
of the individual boson trajectories play a more important
role than boson-boson interaction, the former statistics is ex-
tremely important. The usual description of such statistics [2]
is based on Gaussian elementary trajectories and is well stud-
ied.

Here we are concerned with the non-Gaussian statistics of
underlying bosons. To be specific, we consider the possibility
of bosons to perform so-called Lévy flights [8]. A Lévy flight
is a Markovian random process, characterized by occasional
long jumps or flights, which result in so-called heavy-tailed
(i.e., non-Gaussian) probability distributions. Such a process
involves particle movements that deviate significantly from
a standard Brownian motion. In Lévy flights, the probabil-
ity density function (pdf) follows a Lévy stable law [8–10].
A stable probability distribution is one that preserves its
shape under convolution, making it a suitable candidate for
modeling phenomena with non-Gaussian pdfs and irregular
behavior [8–10]. The index parameter μ in the range of 0 <

μ < 2 determines the stability of the Lévy flight, with lower
values indicating more significant fluctuations in the particle’s
trajectory. The case μ = 2 corresponds to Gaussian pdf.

Fractional derivatives have emerged as a widely ac-
cepted approach for describing non-Gaussian phenomena;
see [11,12] and references therein. These derivatives are par-
ticularly notable for their ability to generate the above Lévy
stable pdfs in both spatial and temporal contexts [9,10,13].

They have found widespread use in characterizing the non-
Gaussian properties observed in a corps of physical, chemical,
biological, and financial systems [13–17]. Another important
application of Lévy processes is in fractional quantum me-
chanics [18], dealing with the substitution of the ordinary
Laplacian with the fractional one in the corresponding sta-
tionary Schrödinger equation. In the one-dimensional case,
the definition of the fractional Laplacian reads

|�|μ/2 f (x) = −Aμ

∫
f (u) − f (x)

|u − x|μ+1
du, (1)

Aμ = �(1 + μ)

π
sin

πμ

2
. (2)

Here �(x) is the � function [19]. The operator (1) is spatially
nonlocal with a slowly decaying power-law kernel (dictated
by the Lévy index) typical for memory effects in complex
disordered systems.

We note in this context that the Laskin construction of
the fractional quantum mechanics [18] is based on the path
integral over Lévy (i.e., a kind of Lévy flight) quantum me-
chanical trajectories. This procedure is qualitatively similar
to the Feynman path integral, which is taken over Brown-
ian particle trajectories. Evaluation of the path integral over
Brownian trajectories generates the “ordinary” Schrödinger
equation, while that over Lévy trajectories generates the frac-
tional Schrödinger equation [18]. That being said, here we
have an analogy between the Langevin stochastic differen-
tial equation, which describes each (stochastic) elementary
trajectory, and the corresponding Fokker-Planck one, which
describes the (Gaussian in that case) pdf of the underlying tra-
jectories. In the majority of cases (like solids), the application
of both ordinary and fractional quantum mechanics does not
require the explicit use of the above (classical) elementary
trajectories. Rather, what is needed is the spectrum of cor-
responding (ordinary or fractional) Schrödinger equation. In
quantum gases, contrary to solids, we can in principle trace
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and control (using magnetic and/or laser fields in correspond-
ing traps; see also below) the above elementary trajectories. In
that sense hereafter we use the classical notion of trajectories
concurrently with the calculation of such “quantum” charac-
teristics as eigenenergies and eigenvectors.

We note also that the qualitative role of the (pseudo) spin-
orbit coupling (SOC) is a kind of self-interaction between the
bosons, analogous to that in solids (like semiconductors), con-
taining electrons with real physical spin [1,20,21]. In solids,
this self-interaction is absent in single-electron problems like
electrons in quantum dots [21] and for bosonic ensembles with
pseudospin may serve as an additional (to the Gross-Pitaevsky
term; see below) source of the nonlinearity, which influences
the physical properties of the BEC. The self-interactive SOC
character in electronic systems permits us to represent it as a
certain gauge, which can be subsequently removed by gauge
transformation. The corresponding general method had been
proposed in Ref. [21]. However, in the case of fractional
derivatives this method cannot be used as here we do not deal
with second spatial derivatives. That is why we apply different
methods of our problem solution.

A quantum bit (qubit) is the fundamental unit of quantum
information. The key feature of qubits that makes quantum
computing so powerful is their ability to exist in multiple
states at once due to the principle of quantum superposi-
tion [22]. The pseudospin 1/2 of spin-orbit coupled BECs can
well serve as such a qubit; see [20,23] for details. If addition-
ally, the pseudospin 1/2 bosons, belonging to latter spin-orbit
coupled BECs, can perform Lévy flights in their trap (i.e., to
have long excursions with finite probability [8,13] inside the
trap), the Lévy index can serve as a parameter which permits
us to control the above qubit properties. This is because since
in solids the different μ’s correspond to different degrees of
intrinsic (i.e., uncontrollable by the external stimuli like laser
field or magnetic field) system-related disorder, in BECs this
index can be easily varied, for instance, by the above spatially
dependent laser fields. To measure the qubit properties, the
experimental techniques (permitting us to measure reliably
the correlated motion of spin and coordinates), elaborated in
Refs. [24–26], can be used.

In the present paper, we study the influence of underlying
bosons Lévy trajectories on the properties of such “fractional”
(in the above sense of substitution the ordinary kinetic en-
ergy term by the fractional Laplacian (1)) spin-orbit-coupled
BECs. By varying the Lévy index μ, we can manipulate the
corresponding “fractional qubit.” As our problem is closely
related to the spectrum of the fractional quantum oscillator
with spin-orbit coupling, in Sec. II we give an approximate
analytical solution for this problem. The accuracy of this
solution has been checked with direct numerical simulations.
In Sec. III, within the Gross-Pitaevsky (GP) approach, we
analyze the structure and dynamical properties of “fractional”
[i.e., that with kinetic energy operator being substituted by a
fractional Laplacian (1)] qubit, formed by SOC-coupled BECs
with driven macroscopic qubits. Conclusions will be given in
Sec. IV.

II. FRACTIONAL HARMONIC OSCILLATOR WITH SOC

Before studying the actual quasi-one-dimensional pseu-
dospin 1/2 qubit dynamics, we consider the auxiliary

problem, which will be the base for our consideration.
Namely, here we consider the spectrum of the 1D fractional
harmonic oscillator with an additional SOC term. Below this
problem will be augmented by the corresponding nonlin-
ear Gross-Pitaevsky term, which accounts for the interaction
between bosons in BEC. The Hamiltonian of our auxiliary
problem reads in the coordinate space

H = −1

2
|�|μ/2 + x2

2
+ ασz px, (3)

where |�|μ/2 is determined by the expression (1) and σz is
third Pauli matrix. Here we adopt the units h̄ = ω = m = 1,
where m and ω are the boson mass and the frequency of the
trap (so that the oscillator length l = √

h̄/mω), respectively.
Also, here px = −id/dx is the x component of the momen-

tum operator so that the kinetic energy would be proportional
to |px|μ [18] rather than p2

x as in ordinary quantum mechanics.
This is in accord with fractional Laplacian (1) properties,
which at μ = 2 gives ordinary Laplacian. Moreover, below we
shall see that the transition to momentum space permits us to
reduce the integral Schrödinger equation for the operator (3)
to the differential one. The latter equation can be easily solved
variationally as well as approximately (but with very good ac-
curacy) reduced to the ordinary quantum harmonic oscillator
problem. This will be done in the spirit of our previous results
regarding fractional quantum oscillators [27].

The above is related to the well-known fact that integral (1)
exists only in the sense of its Cauchy principal value [11,12].
This already complicates the solutions of spectral problems
like (3) for integral operators [12]. Our analysis demonstrates
that a more advantageous approach involves transitioning to
the momentum space through Fourier transformation, where
the operator (1) simplifies to −|k|μ. To obtain the eigen-
functions in coordinate space, we subsequently carry out the
inverse Fourier transformation.

The explicit form of the Schrödinger equation for the com-
ponents of spinor wave function

� = 1√
2

(
ψ↑
ψ↓

)
(4)

reads

−1

2
|�|μ/2ψ↑(x) + x2

2
ψ↑(x) + iα

dψ↑
dx

= Eψ↑(x),

−1

2
|�|μ/2ψ↓(x) + x2

2
ψ↓(x) − iα

dψ↓
dx

= Eψ↓(x), (5)

where E is an eigenenergy. As so far the problem is linear,
there is no need to include the number of bosons N in the
normalization of spinor (4). This normalization reads

∫ ∞

−∞
�†(x)�(x) dx = 1. (6)

Now we apply Fourier transformation to both parts of
Eqs. (5) to obtain

− 1
2ψ ′′

↑ (k) + (
1
2 |k|μ + αk

)
ψ↑(k) = Eψ↑(k),

− 1
2ψ ′′

↓ (x) + (
1
2 |k|μ − αk

)
ψ↓(k) = Eψ↓(k). (7)
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Hence, in momentum space the Hamiltonian (3) converts to

Hk = 1

2
|k|μ − 1

2

d2

dk2
+ αkσz. (8)

This shows that in momentum space we are essentially dealing
with the “ordinary” (i.e., that with second derivative stand-
ing for kinetic energy) spin-orbit coupled quantum harmonic
oscillator, but in the potential

Uμ(k) = 1
2 |k|μ ± αk. (9)

Although Eqs. (7) are simpler than the initial set (5), it is
barely possible to analytically solve them, i.e., to calculate the
energy spectrum and wave functions ψ↑ and ψ↓ for arbitrary
μ < 2. Therefore, in order to understand the energy spectrum
and the corresponding eigenstates of the above problem, one
has to rely on either approximate (like variational) or numeri-
cal methods.

To get more insights into the problem (7), we first consider
the “ordinary” case μ = 2. In this case the set (7) assumes the
form

− 1
2ψ ′′

↑ (k) + (
1
2 k2 + αk

)
ψ↑(k) = Eψ↑(k),

− 1
2ψ ′′

↓ (x) + (
1
2 k2 − αk

)
ψ↓(k) = Eψ↓(k). (10)

Using the identical transformation of the potential

U2(k) = 1
2 k2 ± αk = 1

2 [(k ± α)2 − α2], (11)

we reduce the system (10) to the two almost identical equa-
tions for 1D quantum oscillators, which has a solution

ψ↑ = ψn(k + α), ψ↓ = ψn(k − α), (12)

En = n + 1

2
− α2

2
, (13)

where n labels the discrete states and ψn(z) are ordinary oscil-
lator wave functions (see, e.g., [28])

ψn(z) = e−z2/2 Hn(z)

π1/4
√

n! 2n
, (14)

where Hn(z) are Hermite polynomials of the nth order [19].
To better visualize the difference between the “ordi-

nary” (11) and fractional (9) potentials, the latter is plotted in
Fig. 1. Two distinct behaviors of potential Uμ(k) are reported
in Figs. 1(a) and 1(b), respectively. Namely, if for α > 0.5 (we
take α = 0.6 for concreteness), the minima of the potential go
to infinities as μ → 1 [Fig. 1(a)], the situation in Fig. 1(b)
(α = 0.4 < 0.5) is opposite: the minima go to zero. To get
into this situation, we find the point k0, where the potential
Uμ(k) (9) has the minimum

k0 = ±
(

2α

μ

)1/(μ−1)

. (15)

Expression (15) shows that at μ = 1, the value k0 goes either
to zero or to infinity depending on whether 2α is greater or
less than unity. More insights can be gained if we expand k0

near its singular point μ = 1. We have in this case

k0(μ → 1) = 1

e
exp

(
ln 2α

μ − 1

)
(16)

FIG. 1. (a) Potential Uμ(k) (9) for different Lévy indices μ,
coded by colors and shown in the legend. The dotted line corresponds
to the “ordinary” case μ = 2, and solid lines to the case μ < 2.
(a) Case α > 0.5 (α = 0.6), when minimal point k0 → ∞ as μ → 1;
(b) the opposite case α < 0.5 (α = 0.4), when k0 → 0 as μ → 1.
The colors for different μ’s in (b) are the same as those in (a).
(c) Minimum point k0 as a function of the Lévy index μ. Values of
SOC constant α are coded by colors and are shown in the legend. The
curve for a special point α = 0.5 (red), at which k0(μ = 1) = 1/e
(e = 2.718 . . . is the Euler number), separates two regimes, reported
in (a) and (b). (d) Parabolic approximation (17) (dotted lines) of the
potential Uμ(k) (9) (solid lines) for several selected μ and α values
(legend).

(e = 2.71828 . . . is the Euler number), which immediately
demonstrates that k0(μ → 1) → ∞ at α > 0.5, k0(μ →
1) → 0 at α < 0.5 and k0(μ → 1) = 1/e ≈ 0.3679 at α =
0.5. This behavior is reported in Fig. 1(c). Note that at μ =
2 k0 = ±α, which is in accord with “ordinary” behavior, given
by the expressions (11)–(13). We note also that our numerical
analysis (see below) shows that the solutions to our problem
exist for Lévy indices 1 < μ < 2 only. Expression (15) actu-
ally confirms this point as μ = 1 is a singularity.

The shape of potentials in Figs. 1(a) and 1(b) suggests the
method of the approximate solution of our problem. Namely,
the regions of Uμ(k) near minima can be well approximated
by the parabolas. In this case, we can easily obtain the
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approximate solution of the Schrödinger equations (7) in the
spirit of expressions (11)–(13). The parabolic approximation
of the potential Uμ(k) (9) can be obtained by its expansion in
the Taylor series near the point k0 (15). This gives for the right
well (k0 > 0)

Uμ(k) ≈ U0 + U2(k − k0)2,

U0 = 1 − μ

2

(
2α

μ

)μ/(μ−1)

,

U2 = μ(μ − 1)

4

(
2α

μ

)(μ−2)/(μ−1)

. (17)

The above parabolic approximation for several selected curves
Uμ(k) (also the right well; the approximation for the left well
is the same) is shown in Fig. 1(d). It is seen that while the
parabola is indistinguishable from the original curve near its
minimum, the visible discrepancies begin approximately at
“half width” of the potential curve near its minimum. This
means that such a parabolic approximation is good to describe
the ground and may be a couple of low-lying excited states.
Our analysis shows that the errors more than 15% between the
exact numerical and approximate spectrum start at the third
excited state only. At μ > 1.7 higher (then a third) excited
states could also be described quantitatively. But apart for
the above discrepancies for higher excited states, the above
parabolic approximation gives good qualitative approximation
of the entire spectrum. Below we shall see that this method be-
ing much less laborious than a variational approach [27] (see
below) gives an even better approximation for the spectrum.

Substitution of the parabolic approximation (17) into the
Schrödinger equations (7) generates the following approxi-
mate solution:

ψ↑ = ψn[(2U2)1/4(k + k0)],

ψ↓ = ψn[(2U2)1/4(k − k0)], (18)

En = U0 +
√

2U2
(
n + 1

2

)
, (19)

where ψn(z) are given by (14). Note that at μ = 2 U0 =
−α2/2 and U2 = 1/2 so that in this case we arrive at the
“ordinary” expression for the spectrum (13). The same is valid
for the states ψ↑ and ψ↓.

Another method of approximate solution of the
Schrödinger equations (7) is the variational approach [27]. It
turns out that the asymptotics of wave functions in our case
is similar to that of an ordinary (i.e., without SOC) fractional
harmonic oscillator [27] ψ (k → ±∞) ∼ exp(a|k|1+μ/2), a =
const [27]. This permits us to construct the trial functions
ψ↑ = ψn(k + k0), ψ↓ = ψn(k − k0), where n = 0, 1, 2, . . .

enumerates the states of discrete spectrum, k0 is defined by
the expression (15), and

ψ0(z) = A0e−a0|z|1+μ/2
, ψ1(z) = A1ze−a1|z|1+μ/2

,

ψ2(z) = A2(1 + b2z2)e−a1|z|1+μ/2
, . . . . (20)

Here ai and bi are variational parameters, while Ai are nor-
malization coefficients. As we choose our spinor � in the
form (4), the normalization condition for the functions (20)

FIG. 2. Ground (a) and first excited (b) state energies vs Lévy
index μ, calculated with three different methods. In both panels are
reported the curves for SOC constant α = 0.8; the curves for other
α’s are qualitatively similar. For the Lévy index μ = 2 (“ordinary
case”), the energies have values 0.18 (ground state) and 1.18 (first
excited state) following expression (13).

reads ∫ ∞

−∞
ψ2

n (z) dz = 1. (21)

This condition relates Ai to ai and bi, which are found both
from the minimization of the energy

Wn =
∫ ∞

−∞
�†(x)H�(x) dx (22)

and orthogonality conditions like
∫ ∞
−∞ ψ1ψ0 dk = 0,∫ ∞

−∞ ψ2ψ1 dk = 0, etc.; see Ref. [27] for details. Here the
spinor is defined by the expression (4) and the Hamiltonian
H by the expression (3). The above method permits us to
construct the trial function for the whole discrete spectrum
of our oscillator. Namely, each wave function (20) consists
of the exponential factor multiplied by the polynomial with
so far unknown coefficients. The order of the polynomial
corresponds to the order of the energy state n and is
dictated by the number of nodes which the wave function
ψn should have (the so-called oscillation theorem; see,
e.g., [28]). With respect to the above normalization and
orthogonality conditions, this construction permits us to find
the approximate spectrum of the problem by minimization of
the functional (22). The comparison of the ground and first
excited state energies as functions of the Lévy index μ are
reported in Fig. 2. It is seen, that for both states, the variational
curve goes higher than the exact, i.e., the numerical one. This
reflects the well-known fact from the variational principle of
quantum mechanics [28], which states that the true minimum
of the energy is achieved for the exact solution only, while
the variational method approaches this (true) minimum from
above. It is also seen that at μ → 1 both ground and first
excited state energy go to minus infinity, giving rise to the
“infinite minimum” of the oscillator energy. Our analysis
shows that such behavior occurs for higher excited states
also. Moreover, as the energy at μ < 2 lies below that for
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μ = 2, we can speculate that the Bose condensate with Lévy
elementary trajectories is more energetically favorable (say,
more stable) than that with normal, Gaussian ones. This fact
should be taken into account while working, for instance with
Bose condensate qubits; see also below. One more observation
is in place here. Namely, as for ground state energy [Fig. 2(a)]
both variational and “parabolic” [i.e., spectrum (19) obtained
using parabolic approximation (17)] curves go approximately
the same distance from the exact one, for the first excited
state, the variational curve lies farther from the exact
compared to the “parabolic” one. To be specific, while
the maximal error for ground state energy is around 1.5%
(between numerical and “parabolic” curves) and 2.1%
(between numerical and variational curves), the same quantity
for the first excited state is 5% and 7%, respectively. This
means that in the problem of a spin-orbit coupled fractional
quantum oscillator (say, linear fractional BEC qubit), the
parabolic approximation, being much less laborious, than
the variational one, gives a very good approximate solution
to the problem.

III. DRIVEN FRACTIONAL QUANTUM BIT
AND CHAOTIC RABI TRANSITIONS

A. Ground-state properties

The effective Hamiltonian, which we shall use to explore
the development of the driven qubit, based on a quasi-
one-dimensional pseudospin-1/2 spin-orbit coupled Bose
condensate reads

H1 = −1

2
|�|μ/2 + [x − d (t )]2

2
+ ασz px

+ 1

2
δσx + g1|�|2. (23)

This Hamiltonian is obtained by adding the nonlinear (respon-
sible for the interaction between bosons in BEC in the spirit
of the GP approach [2]) and Zeeman terms to the initial linear
Hamiltonian (3). Here d (t ) is the externally driven displace-
ment of the harmonic trap center, δ is the synthetic Zeeman
splitting [26], and σx,z are the Pauli matrices. Note that the
above external driving of the harmonic trap center can be ac-
complished through the gradual movement of the intersecting
region of laser beams responsible for trapping the Bose con-
densate. Also, the dimensionless effective interaction constant
g1 = 2�⊥Ls, where �⊥ = ω⊥/ω is dimensionless (in units of
the parabolic trap frequency ω; see above) transversal con-
finement frequency and Ls = ls/l is dimensionless (in units
of the oscillator length l; see also above) scattering length
of interacting bosons [26]. Note that as ω⊥ � ω, parame-
ters �⊥ > 10 and g1 ∼ 10−3 under a reasonable supposition
ls ≈ 100aB, where aB is the Bohr radius. This means that
the parameter g1N , responsible for the actual boson-boson
interaction, will be around 50–100. In the spirit of the GP
approach, the number of bosons N would now enter the nor-
malization condition for spinor �:

∫ ∞
−∞ �†(x)�(x) dx = N .

This implies that it is reasonable to choose �(x) in the form
�(x) = √

N/2(ψ↑, ψ↓)T instead of (4). This, in turn, allows
us to keep the normalization of ψ↑ and ψ↓ to unity.

FIG. 3. BEC ground-state energy, calculated numerically at typ-
ical values α = 0.2, δ = 0.3. (a) Dependence on the interaction
strength g1N for three fixed Lévy indices μ, shown in the legend.
(b) Dependence on μ at fixed g1N , also coded by colors and shown
in the legend.

It is obvious that in the nonlinear case (23) the momentum
space approach will not be any good so that here we should
opt either to numerical methods or to variational ones. The
above parabolic approximation can here be of good service
too. Namely, the Fourier image of the “parabolic” ground state
spinor wave function components (18)

ψ↑,↓,gs(k) =
( a

πN2

)1/4
exp

[
−a

2
(k ± k0)2

]
(24)

read in coordinate space

ψ↑,↓,gs(x) =
(

N2

aπ

)1/4

exp

[
− x2

2a
± ik0x

]
. (25)

Here we declare the coefficient (2U2)1/4 (18) as variational
parameter a. It turns out that for μ � 1.4 the function (25)
gives a fairly good approximation to the numerical solution of
the problem. As μ → 1, the “cusps” at x = 0 and long tails at
x → ±∞, typical for systems with fractional derivatives, give
the discrepancies between the exact numerical ground state
wave function (to be more specific, the probability density
�†�) and the variational one (25). But anyway, the trial
function (25) delivers a good qualitative approximation for the
BEC ground state for all admissible Lévy indices. Note that
the trial function (25) contains phase factors eik0x, which stem
from those related to SOC for the ordinary case μ = 2 [23]
as k0(μ = 2) = α; see Eq. (15). This once more shows that in
the fractional case we have one more possibility to control the
properties of our BEC qubit by varying the Lévy index μ.

The numerical ground state energy is displayed in Fig. 3,
where we plot the BEC ground state energy as a function
of the interaction strength g1N [Fig. 3(a)] and Lévy index
μ [Fig. 3(b)]. It is seen from Fig. 3(a) that the ground
state energy grows with an interaction parameter similar to
the “ordinary” case of μ = 2 [23]. Interestingly, contrary to
the above linear case (i.e., that with g1 = 0), the ground state
energy grows as the Lévy index μ goes to unity. This is
clearly visible in Fig. 3(b). This shows that in the nonlinear
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case, the Lévy (say, chaotic; see Ref. [29] for pictorial repre-
sentation) trajectories with long excursions are energetically
unfavorable, giving rise to the ground state energy increase as
compared to that in the Gaussian case μ = 2. As our nonlinear
BEC is indeed a soliton [30], we speculate here that the
synergy between nonlinearity and fractional dimension gives
the higher resulting (ground state) energy at a higher partici-
pation rate of the trajectories with (extremely at μ → 1) long
excursions. In other words, as a soliton realizes the balance
between nonlinearity and spatial dispersion (in our case not
only fractional kinetic energy but also SOC), this equilibrium
(say balanced) state has the higher energy at μ → 1. This
may suggest that contrary to the above linear case, the higher
“chaotization” of underlying bosons trajectories (determined
by the Lévy index μ) creates negative feedback in the BEC
soliton formation due to nonlinear effects, giving rise to its
ground state energy increase. To get more insights in this
effect (lowering of the ground state energy as μ → 1 in the
linear case and its rising in nonlinear one), perturbative (with
g1N being a small parameter) calculations are necessary. We
postpone the studies of this interesting effect to future publi-
cations.

B. Dynamics and chaotic Rabi transitions

The time evolution of our spinor wave function � is
acquired by the solution of the time-dependent nonlinear
Schrödinger equation

i
∂�

∂t
= H1�, (26)

where the Hamiltonian H1 is given by Eq. (23). Now, to
control the above spin qubit, the traps center is subjected
to harmonic driving at the frequency equal to the Zeeman
splitting:

d (t ) = d0 sin(tδ), (27)

where d0 is an arbitrary driving amplitude. In this case the
Rabi frequency ωR of the corresponding spin rotation is de-
fined as ωR = αd0δ. If so, the ideal Rabi oscillations of the
average spin component assume the form

〈σx(t )〉 ≡ 1

N

∫ ∞

−∞
�†(x, t )σx�(x, t ) dx = cos ωRt . (28)

This equation is derived under the supposition of noninter-
acting condensate with δ � 1 and α � 1. We will see below
that the dynamics of our driven qubit will be (sometimes very)
different from the ideal law (28).

The numerical time evolution of the spin component
〈σx(t )〉 [see Eq. (28) for definition] is reported in Fig. 4. It
is seen that the joint action of fractional dimension (dictated
by the Lévy index μ) and repulsive interparticle interaction
(parameter g1N) not only gives substantial deviation from
the ideal Rabi oscillations (28) but also leads to the chaotic
features in the time dependence of 〈σx(t )〉. The latter features
are especially visible for the strong couplings g1N = 10 and
30. At the same time, in the fractional situation with μ = 1.8
[Fig. 4(b)] even in the linear case g1N = 0 (black solid curve),
the deviation from the ideal Rabi curve is higher than that
in the ordinary case, shown in Fig. 4(a). This shows that

FIG. 4. Eime evolution of the spin component 〈σx〉 for μ = 2
(a) and μ = 1.8 (b) at different interaction strengths g1N , shown in
the legend. Here d0 = 2.0, α = 0.2, and δ = 0.2, which correspond
to Rabi frequency ωR = 0.08. Ideal Rabi oscillations (28) are also
shown.

irregular time dependence 〈σx(t )〉 can be primarily attributed
to the (strong) repulsive interaction in the system. The irreg-
ular spin dynamics is also visible in Ref. [23], which means
that the “fractionality” related to the admixture of individual
bosons’ Lévy trajectories to the Gaussian ones enhances the
chaotic features, which appear due to the nonlinearity in the
system. Note that we have shown earlier [31,32] that in low-
dimensional semiconductor systems with SOC, the chaotic
behavior appears, in particular, due to SOC-generated non-
linearities in the equations of motion. Moreover, as has been
demonstrated [31], the chaos appears at strong SOC, generat-
ing (also strong) nonlinear effects. This shows the qualitative
similarity between spin dynamics in low-dimensional semi-
conductor structures with SOC and pseudospin dynamics of
quasi-1D SOC-coupled BECs. It would be tempting to study
the latter analogy in more detail, which not only would elu-
cidate the synergy between SOC and fractional dimension
in BEC but also may give more possibilities to drive and
control the above BEC qubit. The main problem here is the
transition from fractional quantum mechanics to its classical
counterpart, namely, how the fractional kinetic energy opera-
tor |�|μ/2 transforms to the correspondent classical quantity.
The prescription is given in Ref. [18], where the former oper-
ator transforms to |ẋ|μ/(μ−1), where ẋ = dx/dt . This already
makes the problem nonlinear, which suggests that the system
may be prone to chaotic behavior. On the other hand, the
solutions to such problem can be barely found analytically so
that we should opt for numerical methods. This is especially
true for the trajectory vector Q(t ) = [x(t ), ẋ(t )], which will
subsequently be used to find the maximal Lyapunov expo-
nent [32,33] to discern if the system is chaotic. We postpone
the studies of these intriguing questions to future publications.

The above classical chaotic trajectories may find their
quantum analog in the energy levels repulsion and other
manifestations of the quantum chaos [34]. It would be also
extremely useful to study the manifestations of quantum chaos
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FIG. 5. Same as in Fig. 4 but for 〈xσz(t )〉. Interaction strengths
are coded by colors and shown in the legend in (a). Here d0 = 2.0,
α = 0.2, and δ = 0.2.

both in our system and in solids with SOC in the context of
fractional quantum mechanics [18].

Another important characteristic of our system is the spin
density dipole moment 〈xσz(t )〉, which plays an important role
in the driving of the above macroscopic qubit. It is defined
analogously to 〈σx(t )〉 (28), and its time evolution is reported
in Fig. 5. The same (as those in Fig. 4) chaotic features in
time evolution are clearly seen at strong couplings. This shows
the qualitative similarity between the dynamics of 〈σx(t )〉 and
〈xσz(t )〉 in our system. To better understand the role of “frac-
tionalization,” in Fig. 6 we show the dynamics of both 〈σx〉 and
〈xσz〉 components at some (not very large) fixed g1N = 10 and
different Lévy indices. It can be seen that already irregular,
chaotic dynamics, which occurs (due to interaction effects) in
the ordinary case μ = 2, only enhances as μ → 1. Namely,
Fig. 6(a) shows that as μ goes to 1, the deviations from the
ideal Rabi oscillations become progressively larger so that
already at μ = 1.5 the system dynamics does not resemble

FIG. 6. Dynamics of 〈σx (t )〉 (a) and 〈xσz(t )〉 (b) at fixed g1N =
10 and different Lévy indices μ, shown in the legend to (a). The
parameters d0, α, and δ are similar to those in Figs. 4 and 5.

the oscillations (28). Also, at μ = 1.2, the trajectories in both
Fig. 6(a) and Fig. 6(b) resemble substantially some highly
irregular, stochastic dynamics; i.e., we have very strong chao-
tization. This shows that low Lévy indices play a similar role
as strong interaction. In other words, even at moderate non-
linearities (i.e., interparticle interaction in the GP picture of
BEC) but strong admixture of non-Gaussian, Lévy trajectories
of each individual boson, we still arrive at the same irregular
(say chaotic) dynamics. We pay attention here that the irreg-
ular time patterns in the curves in Figs. (4–6) have nothing to
do with the classical chaotic trajectories. This is because they
are obtained by the (numerical) solution of a time-dependent
nonlinear Schrödinger equation (26), i.e., they are of a purely
quantum nature. We call them “chaotic” here because they
significantly resemble such trajectories. Once more, we post-
pone the detailed studies of the interplay between interaction
strength g1N and “fractionality,” characterized by the index μ

for future publications.

IV. CONCLUSIONS AND OUTLOOK

When atoms of ultracold atomic gases perform Lévy
flights, the probability for them to perform unbounded (and
thus unpredictable) excursions may be close to unity. In this
case it is barely possible not only to condense such atoms but
also to control the properties of their BEC. To achieve the con-
trollability of such BEC properties, it is necessary to “tame”
the Lévy flight, i.e., to impose some constraints that prevent
the extreme jumps or long-range excursions typically associ-
ated with a standard Lévy flight. In our case, such constraints
are both the parabolic trap and interparticle interaction, mod-
eled (within the GP approach) by the nonlinear term. In the
present paper, using analytical and numerical arguments, we
have shown that the macroscopic (quasi-) spin qubit, based
on quasi-one-dimensional spin-orbit coupled BECs with frac-
tional dispersion in a synthetic Zeeman magnetic field, has
one more “degree of freedom,” which permits us to control its
properties. This additional “degree of freedom” is Lévy index
μ, which gives the measure of admixture of trajectories with
long-range excursions to those of regular Brownian motion
drawn from a Gaussian distribution. We have shown that in the
linear case, without interaction, the fractional BEC qubit has
smaller energy than that in the ordinary case, corresponding
to μ = 2. This means that the admixture of Lévy trajectories
facilitates the formation of BEC and hence of the qubit. At
the same time, if we “turn on” the repulsive interaction, its
synergy with fractional dispersion gives the enhancement of
BEC formed qubit energy already in the ground state. To be
specific, it follows from Fig. 3 that the ground state energy
grows at both interaction strength increase and at μ → 1,
signifying more admixture of (very) long excursions to the
individual particle trajectories. In other words, stronger in-
teraction between particles, performing long jumps, plays a
role of “destructive interference” for the collective behavior of
these particles’ ensemble. One of the aims of the present work
is to search for ways to convert the above “destructive inter-
ference” to the “amplifying” one, which would permit easier
control of the BEC-formed qubit. The dynamics of harmon-
ically driven qubit confirms the above conclusions. Namely,
the irregular, chaotic features appear in the qubit dynamics.
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In this case the high admixture of Lévy trajectories at μ → 1
plays the same role as high nonlinearity (strong interaction in
the GP picture): the qubit motion becomes progressively more
irregular and deviates substantially [in the case of 〈σx(t )〉]
from the simple Rabi oscillations.

The present consideration also raised many questions, giv-
ing directions for future research. The first question is how
to control experimentally the single-atom trajectories with
the help of the Lévy index in BEC. It is well known [2] that the
character of the above trajectories depends on the trap shape
(parabolic, ring), the density of the atoms, and the presence
of external stimuli like temperature, magnetic, and/or electric
fields. Latter external fields comprise, in turn, the magnetic
(magnetic fields) or optical (laser beams, creating so-called
optical dipole potential) traps. In the above setups, different
configurations of a magnetic and/or laser field generate differ-
ent particle trajectories (and hence different wave functions,
being the result of averaging over a multitude of the trajecto-
ries), which can well be of a Lévy type. In the latter case, to
deduce the Lévy index from the experimental data, the best
experimental technique might be time-of-flight (TOF) expan-
sion (see [35] and references therein), which deals directly
with the character of the BEC wave functions. To deduce the
Lévy index from the TOF wave functions (density profiles),
further work is needed to fit the above experimental density
profiles by Lévy distributions.

It would be also interesting to trace perturbatively (at the
small interaction strength g1N), how the decrease of the BEC
ground state energy in the linear case transits into its increase
in the nonlinear one. As nonlinearity generates the irregular,
chaotic dynamics of the qubit’s spin, this may shed light on the
possibility to control the qubit time evolution by balancing the
nonlinearity (interparticle interaction strength in GP picture)
and fractional dimensions, characterized by the Lévy index

μ. Also, the methods used in Refs. [31,32] could be well
applied to the detailed studies of possible chaotic dynamics of
the above qubit. This might get more insights into the details
of how the taming of Lévy flights by the parabolic potential
permit one to overcome the detrimental effects caused by the
repulsive interparticle interaction and actually SOC by itself.
The latter fact, i.e., generation of chaotic dynamics by SOC,
has been studied in Refs. [31,32]. The results of such studies
might permit us to mitigate or completely avoid the undesir-
able chaotic behavior in the driven spin-qubit dynamics.

Another important question which should be studied is
the quantum manifestations (like energy levels’ repulsion and
their non-Poissonian statistics [36]) of possible chaos in the
dynamics of averaged spin components. This is because to
date the quantum chaos [34,36] had been studied in the con-
text of ordinary quantum mechanics, i.e., that with an ordinary
Laplacian in the corresponding Schrödinger equation. We
speculate that depending on the Lévy index μ the statistics of
energy levels may vary in both the linear and nonlinear cases.
This, in turn, may elucidate the above questions about quan-
tum bit controllability from the “quantum side.” Overall, as
the physics of ultracold atomic SOC systems is very complex,
further progress in the understanding of its intricate details
is possible only when the theoretical results are supported by
corresponding experimental findings.
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