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We investigate the interplay of an external forcing and an adaptive network, whose connection weights coe-
volve with the dynamical states of the phase oscillators. In particular, we consider the Hebbian and anti-Hebbian
adaptation mechanisms for the evolution of the connection weights. The Hebbian adaptation manifests several
interesting partially synchronized states, such as phase and frequency clusters, bump state, bump frequency
phase clusters, and forced entrained clusters, in addition to the completely synchronized and forced entrained
states. Anti-Hebbian adaptation facilitates the manifestation of the itinerant chimera characterized by randomly
evolving coherent and incoherent domains along with some of the aforementioned dynamical states induced
by the Hebbian adaptation. We introduce three distinct measures for the strength of incoherence based on the
local standard deviations of the time-averaged frequency and the instantaneous phase of each oscillator, and the
time-averaged mean frequency for each bin to corroborate the distinct dynamical states and to demarcate the two
parameter phase diagrams. We also arrive at the existence and stability conditions for the forced entrained state
using the linear stability analysis, which is found to be consistent with the simulation results.

DOI: 10.1103/PhysRevE.109.014221

I. INTRODUCTION

Adaptive networks are an important class of complex net-
works that constitute the framework for self-adapting smart
systems. Generally, adaptive networks that have been exten-
sively investigated in the literature are the ones that self-adapt
their structure in congruence with their dynamical states. It is
also to be noted that adaptation may also alter the nodal dy-
namics, as in the case of frequency adaptation of applauding
audiences and fireflies [1]. However, a simultaneous adapta-
tion of both network structure and nodal dynamics is pivotal in
several complex networks that underlie the mechanism behind
their intriguing collective dynamical states (cf. [2]). Note that
nodal dynamics refers to the dynamics of the individual units
constituting the networks, while network dynamics refers to
structural changes of the network. Adaptive networks have
been employed widely in neurological systems [3] includ-
ing biological [4], chemical [5], epidemic [4], social systems
[4,6], etc. In particular, in adaptive networks, where the cou-
pling coevolves with the dynamical state, the adaptation rate is
much slower than the intrinsic timescale of the employed dy-
namical system, so that the overall dynamics may be analyzed
using the singular perturbation theory [7].

Adaptive networks have been at the heart of recent in-
vestigations that have reported several exotic self-organizing
dynamical states that are exclusive to the nature of the adapt-
ability of the networks [7]. In particular, multifrequency
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clusters [8], splay states, antipodal states, double antipodal
clusters [9], and several other mesoscale structures [10,11]
are found to be specific to the adaptive networks. Very
recently, two distinct first-order phase transitions to synchro-
nization were reported due to the tradeoff between the nodal
heterogeneity and the adaptivity of the network of phase
oscillators [12]. Specifically, it has been shown that the na-
ture of the defects in the frequency distribution determines
an abrupt single-step transition or a more gradual multistep
transition to full synchronization [12]. Two distinct types of
itinerant chimera were shown in adaptively coupled phase
oscillators with an external forcing [13]. Recent studies on the
adaptive coupling with simplicial complexes elucidated the
emergence of an abrupt desynchronization transition [14,15]
and abrupt anti-phase-synchronization [16,17].

Adaptation rules that have been employed in most of
the aforementioned investigations involve the spike time-
dependent plasticity, Hebbian, and anti-Hebbian rules. Hebb
[18] postulated that the synaptic strength increases (decreases)
based on the in-phase (out-of-phase) firing of the neurons,
later verified by experiments [3,19], which was referred to
as the Hebbian (anti-Hebbian) learning rule in the literature.
Neurophysiological experiments revealed that the evolution
of the synaptic coupling is governed by the presynaptic and
postsynaptic spike timings [20]. Such a spike time-dependent
synaptic plasticity has been encoded in the evolution equa-
tion for the coupling weights that depend on the relative
timing of the phase oscillators to reveal several interesting
dynamical states [8–13,21–34].

The role of adaptive coupling in multiplex networks [9],
the interplay between the adaptive coupling and the simplicial
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complexes [14,16], and that between adaptivity and nodal
heterogeneity [12] have been studied recently. In particular,
a framework that provides insight into the spectral structure
of a multiplex network has been developed using multiplex
decomposition [9], and a mean-field approach has been shown
to successfully capture the nature of multicluster order param-
eters governed by the Hebbian adaptation [14]. Very recently,
a mean-field approach has been developed to describe the
dynamics of multicluster states and their role in determin-
ing the nature of the phase transitions in finite-size adaptive
networks [12]. Nevertheless, the response of the coevolving
connection weights and the phases of the complex networks to
an external forcing, equivalent to the cognitive task in neural
networks, is rather poorly understood. A recent investigation
revealed a host of exotic collective states in an adaptive net-
work subjected to an external periodic forcing [13], which
has essentially adapted spike time dependent plasticity as the
adaptive mechanism. External perturbations in terms of peri-
odic forcing are very natural in real-world systems. Examples
include resonances [35–38], event-related desynchronization
[39], circadian rhythms [40–42], etc.

In this work, we consider an adaptive network whose con-
nection weights coevolve along with the dynamical states
of the phase oscillator in accordance with the Hebbian and
anti-Hebbian adaptive rules [12,21], which is subjected to an
external sinusoidal forcing [13]. We unravel the collective
dynamical states due to a delicate balance between adaptive
rules and external forcing. In particular, the Hebbian rule
facilitates the manifestation of several interesting partially
and completely synchronized states, such as two-clusters,
multiclusters, frequency-clusters, bump state, bump frequency
clusters, and forced entrained clusters, including a completely
synchronized state and a forced entrained state. The anti-
Hebbian rule facilitates the emergence of itinerant chimera,
incoherent states, multiclusters states, and forced entrained
states. Further, we introduce three distinct measures for the
strength of incoherence to corroborate the distinct dynamical
states and to demarcate the two parameter phase diagrams
along with the Kuramoto order parameters. We also arrive at
the existence and stability conditions for the forced entrained
state, which is found to match very well with the simulation
boundary of the forced entrained state. In a nutshell, the trade-
off between the Hebbian and anti-Hebbian adaptive rules with
the external forcing results in a gallery of exotic nontrivial
collective dynamical states.

The structure of the paper is as follows. In Sec. II, we
discuss the model of globally coupled Kuramoto oscillators
with suitable adaptation rules for their connection weights. In
Sec. III, we unravel the distinct intriguing dynamical states fa-
cilitated by the Hebbian adaptation mechanism, we introduce
the three distinct measures for the strength of incoherence,
and we discuss the dynamical transitions in one- and two-
parameter phase diagrams. We elucidate the dynamical states
induced by the anti-Hebbian adaptation rule for the evolution
of the connection weights along with the one- and two-
parameter phase diagrams depicting the dynamical transitions
in Sec. IV. We also elucidate the dynamical transitions as a
function of the parameter that governs the distinct adaptation
rules in Sec. V. Finally, we provide a summary and discussion
in Sec. VI.

II. MODEL

Our model comprises a network of globally coupled identi-
cal phase oscillators acted upon by an external periodic force,
whose evolution equation is represented by

θ̇i = λ − 1

N

N∑
j=1

ki j sin(θi − θ j + α) + f sin θi, (1)

i = 1, 2, 3, . . . , N,

k̇i j = ε sin(θi − θ j + β ), |ki j | � 1, (2)

where λ is the natural frequency of the oscillators, ki j is the
coupling weight from the jth to ith oscillator, θi is the phase of
the ith oscillator of the network, f is the strength of the exter-
nal sinusoidal forcing, α is the phase lag parameter, ε signifies
the timescale separation between the fast oscillator dynamics
and the slower adaptation rule, and the parameter β governs
the distinct adaptation rules, namely the spike time-dependent
plasticity, the Hebbian rule, and the anti-Hebbian rule [21].
In particular, when β = 0, the evolution equation for the
coupling weights in Eq. (1) mimics the spike time-dependent
plasticity. The evolution equation for the coupling weights
mimics the Hebbian and anti-Hebbian rules for β = π/2
and −π/2, respectively. Note that the constraint in Eq. (2)
is enforced by setting ki j = 1 for ki j > 1 and ki j = −1 for
ki j < −1 as the connection weight cannot grow indefinitely.
The boundedness of the connection weight can also be imple-
mented by imposing a soft limitation using a nonlinear term,
which was also confirmed to result in qualitatively the same
results as that of the hard constraint employed in Eq. (2) [21].

It should also be noted that we have employed the phase
oscillators even though the aforementioned adaptation rules
originally stem from the interneuronal dynamics as the phase
variables are known to play the role of relative spike timings
of any weakly coupled nonlinear oscillators near Hopf
bifurcation [43,44]. Deduction of phase models from weakly
coupled nonlinear oscillators and their investigations have
been extensively used to model networks of neurons [45],
ecological systems [46], etc. Note that the phase variables are
time coarse-grained variables similar to the experimentally
measured phases [47], and consequently the phase description
of such coupled nonlinear oscillators is proved to explain the
experimentally observed facts qualitatively [48]. The phase
models also allow for an analytical description of the observed
macroscopic dynamical states. In the absence of external forc-
ing, only two cluster states, a coherent state and a chaotic state
are identified depending on the nature of the evolution of the
coupling weights as determined by β [21]. In the chaotic state,
the relative phases between the oscillators and the coupling
weights are chaotically shuffled. In addition, self-assembled
multiclusters can be shown to be designed by controlling
the weight dynamics. Further, synchronization was found
to be completely inhibited in the absence of any specific
adaptation rule for the coupling weights when the latter are
fixed and strongly anticorrelated for f = 0 [49]. Nevertheless,
simulation results suggested that the finite-size effect causes
the oscillators to be entrained in synchronized frequency clus-
ters close to the synchronization transition. The anti-Hebbian
adaptation rule in single-layer networks [28], and the Hebbian
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FIG. 1. The left column depicts the time evolution of the phases, while the middle and right columns depict the corresponding time-
averaged mean frequencies and the snapshot of the instantaneous phases, respectively. [(a)–(c)] Two-cluster state (TC) for α = 0.78 and
f = 0, [(d)–(f)] Multicluster state (MC) for α = 1.10 and f = 0.08, and [(g)–(i)] frequency cluster state (FC) for α = 0.63 and f = 0.56. The
observed dynamical states are also marked in the two-parameter phase diagram in Fig. 6 at their respective parameter values.

adaptation rule in multiplex networks [50], were shown to
facilitate explosive synchronization, abrupt desynchronization
in pure simplicial complexes [14], and an abrupt transition
to anti-phase-clustering in pairwise and triad (two simplexes)
coupling [16] in the absence of external forcing.

In the following, we will consider both the Hebbian and
anti-Hebbian adaptive mechanisms to unravel the emergent
dynamical states due to the interplay between the coevolving
coupling weights and the phases, and the external sinusoidal
forcing.

III. HEBBIAN ADAPTATION RULE

A. Dynamical states

The initial conditions for the phases of the oscillators
θi are uniformly distributed in the interval [0, 2π ), whereas
the initial conditions for the connection weights ki j are uni-
formly distributed in the interval (−1, 1), ∀ j. We have fixed
the timescale parameter as ε = 0.005, the natural frequency
of the oscillators as λ = 1, and the number of oscillators
N = 100 throughout the manuscript. We use a Runge-Kutta
fourth-order integration scheme to integrate the evolution
equations in Eq. (1) with a step size of 0.01. Three distinct
collective dynamical states that emerge as the response of the
coevolving connection weights and the phases for the exter-
nal periodic forcing are depicted in Fig. 1 for three distinct
values of the phase lag parameter α and the strength of the
external force f . The space-time plot, the time-averaged mean
frequencies, and the snapshot of the instantaneous phases are
depicted, respectively, in the left, middle, and right columns
of Fig. 1. The two-cluster state (TC) is depicted in the first
row of Fig. 1 for α = 0.78 and f = 0. The time evolu-
tion of the phases of the oscillators [see Fig. 1(a)] clearly

illustrates the two-cluster states, whereas the corresponding
time-averaged mean frequencies of the oscillators are en-
trained [see Fig. 1(b)] elucidating that the two-cluster state
is purely a phase cluster. Further, the snapshot of the instan-
taneous phases in Fig. 1(c) also confirms the two-cluster state
of the state variables. Multiphase clusters (MC) are evident
in the middle row of Fig. 1 for α = 1.10 and f = 0.08. The
space-time plot in Fig. 1(d) and the snapshot of the instan-
taneous phases in Fig. 1(f) elucidates the multiphase cluster
state as corroborated by the entrained time-averaged mean
frequencies of the oscillators illustrated in Fig. 1(e). Finally,
the last row in Fig. 1 for α = 0.63 and f = 0.56 displays
the frequency cluster state (FC). In particular, it is a three-
frequency-cluster state as corroborated by Figs. 1(g)–1(i).

The interplay between the external force and the coe-
volving connection weights and the phases of the oscillators
also manifests bump state, bump frequency two-phase clus-
ters, and bump frequency three-phase clusters as depicted
in Fig. 1. The space-time plot, the time-averaged mean fre-
quencies, and the snapshot of the instantaneous phases are
depicted, respectively, in the left, middle, and right columns
in Fig. 2. The phase oscillators are partially inactive and
partially active, as is evident from the space-time plot in
Fig. 2(a) and in the snapshot of the instantaneous phases in
Fig. 2(c) for α = 1.54 and f = 0.4. The active and inactive
nature of the phase oscillators are also corroborated by the
time-averaged mean frequencies of the oscillators depicted
in Fig. 2(b). Such a coexisting coherent quiescent state and
incoherent active state has recently been identified as a bump
state (BS) [13,51–53]. In contrast, two clusters are observed in
the space-time plot in Fig. 2(d) for α = 0.78 and f = 1.5. The
snapshot of the instantaneous phases in Fig. 2(f) illustrates
nearly two phase clusters, however the time-averaged mean
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FIG. 2. The left column depicts the time evolution of the phases, while the middle and right columns depict the corresponding
time=averaged mean frequencies and the snapshot of the instantaneous phases, respectively. [(a)–(c)] Bump state (BS) for α = 1.54 and
f = 0.4, [(d)–(f)] bump frequency two phase clusters state (BF2PC) for α = 0.78 and f = 1.5, and [(g)–(i)] bump frequency three phase
clusters state (BF3PC) for α = 1.1 and f = 0.54. The observed dynamical states are also marked in the two-parameter phase diagram in Fig. 6
at their respective parameter values.

frequencies of the oscillators in Fig. 2(e) corroborate that
one among the phase clusters is characterized by nearly zero
mean frequency, whereas the other cluster with a finite mean
frequency is attributed to the bump frequency with two phase
clusters (BF2PC). Analogously, bump frequency with three
phase clusters (BF3PC) state is depicted in Figs. 2(g)–1(i) for
α = 1.1 and f = 0.54.

Three more distinct self-organizing behaviors due to the
tradeoff between the external forcing and the adaptive cou-
pling weights are observed in the (α, f ) parameter space.
The space-time plot, the time-averaged mean frequencies,
and the snapshot of the instantaneous phases are depicted,
respectively, in the left, middle, and right columns in Fig. 3.
The phases of all the oscillators are completely entrained for
α = 0.16 and f = 0.79, resulting in the synchronized (SYN)
state as depicted in Figs. 3(a)–3(c). The forced entrained state
(FE), where all the oscillators are entrained to the frequency
of the external forcing, is shown in the middle row of Fig. 3
[see Figs. 3(d)–3(f)] for α = 1.10 and f = 1.52. The forced
entrained state with phase clusters (FEC) for α = 1.10 and
f = 1.05 is depicted in Figs. 3(g)–3(i), where the oscillators
are entrained to the frequency of the external forcing but
grouped as two phase clusters [see Fig. 3(i)].

B. Strength of incoherence

We define three distinct measures for the strength of in-
coherence [54] based on the local standard deviations of the
time-averaged frequency, the instantaneous phase, and the
mean of time-averaged frequencies of the oscillators to distin-
guish the distinct collective dynamical states and to demarcate
the corresponding regions in the (α, f ) parameter space. To
this aim, N oscillators are divided into M bins of equal size

n = N/M [55]. The local standard deviation (σm) of the fre-
quency of each oscillator in each bin is estimated using

σm =
√√√√1

n

mn∑
j=n(m−1)+1

[ω j − ω̄m]2,

m = 1, 2, . . . , M. (3)

with ω̄m = 1
n

∑mn
j=n(m−1)+1 ω j . Here, ω j corresponds to the

time-averaged frequency of the jth oscillator. Now, the
strength of incoherence S calculated using the local standard
deviation (σm) of the frequency of each oscillator is defined as
[54]

S = 1 −
∑M

m=1 sm

M
, sm = 
(δ − σm), (4)

where 
 is the Heaviside step function and δ is a prede-
fined threshold, which is fixed as δ = 0.005 throughout the
manuscript for the estimation of S. For all the frequency
entrained states, the local standard deviation σm = 0 and con-
sequently sm = 1 for all the bins. Therefore, the strength
of incoherence S = 0 for the frequency entrained states. In
contrast, for the completely incoherent state σm > δ and con-
sequently sm = 0 for all the bins, which results in S = 1 for
the incoherent states. However, for frequency clusters and
bump frequency clusters, there is a discontinuous jump of the
time-averaged frequency only in the bins are comprised of
oscillators from two distinct clusters and hence sm = 0 only
in those bins as σm > δ, while the other bins are characterized
by sm = 1. As a consequence, the strength of incoherence S =
Nf c/M �= 0, where Nf c is the number of frequency clusters.
Note that S depends on the value of M. Nevertheless, S takes
a finite value between 0 and 1 for the bump state, which is
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FIG. 3. The left column depicts the time evolution of the phases, while the middle and right columns depict the corresponding time-
averaged mean frequencies and the snapshot of the instantaneous phases, respectively. [(a)–(c)] Synchronization (SYN) for α = 0.16 and
f = 0.79, [(d)–(f)] forced entrained state (FE) for α = 1.10 and f = 1.52, and [(g)–(i)] forced entrained cluster state (FEC) for α = 1.10 and
f = 1.05. The observed dynamical states are also marked in the two-parameter phase diagram in Fig. 6 at their respective parameter values.

characterized by an appreciable number of inactive oscillators
and consequently an appreciable number of bins with sm = 0.

Note that the strength of incoherence S = 1 for the inco-
herent state, 0 < S < 1 for the bump state, and 0 < S << 1
for frequency clusters and bump frequency clusters, whereas
S = 0 for the frequency entrained states such as the two-
cluster state, multicluster state, synchronized state, forced
entrained state, and forced entrained cluster state reported in
Figs. 1–3. Hence, S is incapable of distinguishing these states.
However, the local standard deviation of the instantaneous
phases defined as

σ̂m =
√√√√1

n

mn∑
j=n(m−1)+1

[θ j − θ̄m]2,

m = 1, 2, . . . , M (5)

can be used to distinguish the phase clusters. Here, θ̄m =
1
n

∑mn
j=n(m−1)+1 θ j , where θ j is the instantaneous phase of the

jth oscillator. Now, the strength of incoherence Sσ calculated
using the local standard deviation (σ̂m) of the instantaneous
phase of each oscillator is defined as

Sσ = 1 −
∑M

m=1 s̄m

M
, s̄m = 
(δ − σ̂m). (6)

The strength of incoherence Sσ = Npc/M �= 0, where Npc is
the number of phase clusters and hence the two-phase clusters
and the forced entrained cluster state are characterized by
Sσ �= 0 but Sσ � 1. Note that we have used δ = 0.05 for the
estimation of Sσ throughout the manuscript unless otherwise
specified. However, for the multiphase cluster state such as
the multiclusters, the bump frequency two-phase clusters, and
the bump frequency three-phase clusters, 0 < Sσ < 1. Note

that for both the synchronized and the forced entrained states,
S = Sσ = 0.

A much finer distinction of SYN, FE, FC, BF2PC, and
BF3PC states can be made using the mean of the time-
averaged frequencies in each bin as the majority of the
oscillators comprising these states are characterized by the
zero mean of the time-averaged frequencies. Hence, we define
the strength of incoherence Sω as

Sω = 1 −
∑M

m=1 ŝm

M
, ŝm = 
(δ − ω̄m), (7)

where ω̄m is the mean of the time-averaged frequencies in the
mth bin. Here, we have used δ = 0.005 for the estimation of
Sω throughout the manuscript. For the forced entrained state
ŝm = 1 as ω̄m = 0 < δ for all m bins and hence Sω = 0. Thus,
the FE state is characterized by S = Sσ = Sω = 0. ŝm = 0 as
ω̄m > δ for the synchronized state, and hence it is charac-
terized by Sω = 1 and S = Sσ = 0. Analogously, TC, MC,
and FC are characterized by Sω = 1, whose ω j �= 0 > δ. The
bump state and the bump frequency clusters are characterized
by 0 < Sω < 1 as there will be a finite number of bins with
ω̄ = 0 and a finite number of bins with ω̄ > δ.

We have also employed the Kuramoto order parameter
[56,57]

Rl =
∣∣∣∣∣∣

1

N

N∑
j=1

eilθ j

∣∣∣∣∣∣, l = 1, 2 (8)

to corroborate the dynamical states. R1 = 1 characterizes
the completely synchronized state, whereas R2 = 1 charac-
terizes the two-cluster state. For the incoherent state both
R1 = R2 ≈ 0. The values of the order parameters and the
strength of incoherence characterizing distinct dynamical
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TABLE I. Characterization of the observed dynamical states using the time-averaged Kuramoto order parameters (〈R1〉 and 〈R2〉) and the
three distinct measures of the strength of incoherence (S, Sω, and Sσ ).

Dynamical states 〈R1〉 and 〈R2〉 S Sω Sσ

Two-cluster state (TC) 〈R1〉 ≈ 0〈R2〉 = 1 S = 0 Sω = 1 0 < Sσ < 1
Multiphase cluster (MC) 0 < 〈R1〉 < 1 0 < 〈R2〉 < 1 S = 0 Sω = 1 0 < Sσ < 1
Frequency cluster (FC) 0 < 〈R1〉 < 10 < 〈R2〉 < 1 0 < S < 1 Sω = 1 0 < Sσ < 1
Bump state (BS) 0 < 〈R1〉 < 10 < 〈R2〉 < 1 0 < S < 1 0 < Sω < 1 0 < Sσ < 1
Bump frequency with two phase clusters (BF2PC) 0 < 〈R1〉 � 10 < 〈R2〉 � 1 0 < S < 1 0 < Sω < 1 0 < Sσ < 1
Bump frequency with three phase clusters (BF3PC) 0 < 〈R1〉 � 10 < 〈R2〉 � 1 0 < S < 1 0 < Sω < 1 0 < Sσ < 1
Synchronized state (SYN) 〈R1〉 = 〈R2〉 = 1 S = 0 Sω = 1 Sσ = 0
Forced entrained state (FE) 〈R1〉 = 〈R2〉 = 1 S = 0 Sω = 0 Sσ = 0
Forced entrained state with phase clusters (FEC) 0 < 〈R1〉 < 10 < 〈R2〉 < 1 S = 0 Sω = 0 0 < Sσ < 1
Incoherent state (ICS) 〈R1〉 ≈ 0〈R2〉 ≈ 0 S = 1 Sω = 1 Sσ = 1
Itinerant chimera (IC) 0 < 〈R1〉 < 10 < 〈R2〉 < 1 S = 1 Sω = 1 Sσ = 1

states are tabulated in Table I. Using these quantification mea-
sures to corroborate the observed dynamical states, we will
discuss the dynamical transition in one- and two-parameter
phase diagrams in the next section.

C. Dynamical transitions in the phase diagrams

The time-averaged Kuramoto order parameters (〈R1〉 and
〈R2〉) along with the three distinct strengths of incoherence S,
Sω, and Sσ are used to characterize the dynamical transitions
as a function of the strength of the external forcing for three

different values of the phase lag parameter α = 0.16, 1.1, and
1.54 in Figs. 4 and 5, to cover the dynamical transitions among
the observed intriguing states. In addition, the time-averaged
mean frequency and the instantaneous phase of all the oscil-
lators are also depicted in these figures. The values of the
aforementioned set of parameters that corroborate the distinct
dynamical states are tabulated in Table I. For α = 0.16 [see
Fig. 4(a)], the TC state exists in the range of f ∈ (0, 0.66).
There is a transition from TC to FC as f is increased fur-
ther. FC persists in the range of f ∈ (0.66, 0.76), which then
emerges as a SYN state in the range of f ∈ (0.76, 0.83).

FIG. 4. Dynamical transitions as a function of the external forcing strength f for α = 0.16 (left column) and α = 1.1 (right column).
(a) and (d) The time-averaged order parameters (〈R1〉 and 〈R2〉) and the three distinct measures of the strength of incoherence (S, Sω, and Sσ )
corroborate the dynamical transition, (b) and (e) time-averaged mean frequency of all the oscillators, and (c) and (f) instantaneous phase of the
oscillators. The ranges of f represented as TC, FC, SYN, FE, MC, BF2PC, BF3PC, FEC, and BS correspond to two-cluster state, frequency
cluster state, synchronized state, forced entrained state, multicluster state, bump frequency two-phase cluster state, bump frequency three-phase
cluster state, forced entrained cluster, and bump state, respectively.
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FIG. 5. Dynamical transitions as a function of the external forc-
ing strength f for α = 1.54. (a) The time-averaged order parameters
(〈R1〉 and 〈R2〉) and the three distinct measures of the strength of
incoherence (S, Sω, and Sσ ) corroborate the dynamical transition,
(b) time-averaged mean frequency of all the oscillators, and (c) in-
stantaneous phase of the oscillators.

Further increase in the strength of the external forcing leads to
the FE state in the range of f ∈ (0.83, 1.5). These dynamical
transitions in the respective ranges of f are also clearly visible
from the time-averaged mean frequency [see Fig. 4(b)] and the
instantaneous phase [see Fig. 4(c)] of the oscillators.

The dynamical transitions observed for α = 1.1 are de-
picted in Figs. 4(d)–4(f). MC exists in the range of f ∈
(0, 0.11), which then transits to FC via TC as a function of
f . TC is stable in the range of f ∈ (0.11, 0.18) and FC is
stabilized in the range of f ∈ (0.18, 0.43). Further increase in
the strength of the forcing results in BF3PC in the range of f ∈
(0.43, 0.9), which then manifests as BF2PC in a rather narrow
range of f ∈ (0.9, 0.96). BF2PC leads to the manifestation
of the FEC state in the range of f ∈ (0.96, 1.29). There is a
transition from FEC to FE state for f � 1.29 in the explored
range of f . The observed dynamical transitions in the respec-
tive ranges of f are also clearly visible from the time-averaged
mean frequency [see Fig. 4(e)] and the instantaneous phase
[see Fig. 4(f)] of the oscillators. The FEC state reemerges via
BS as a function of f for α = 1.54 [see Figs. 5(a)–5(c)]. FEC
exists in the ranges of f ∈ (0, 0.22) and f ∈ (0.43, 0.92),
while BS is stable in the range of f ∈ (0.22, 0.43). Finally,
the FE state emerges from the FEC state as the strength of the
forcing is increased further in the range of f ∈ (0.92, 1.5).

FIG. 6. The two-parameter phase diagram in the (α, f ) paramet-
ric space. Abbreviations representing the distinct dynamical states
are the same as in Fig. 4. The initial conditions for θi and ki j are
uniformly distributed in the interval [0, 2π ) and (−1, 1) ∀ j, respec-
tively. The blue dashed line corresponds to the analytical critical
curve corresponding to the forced entrained state, above which the
latter is stable. The parameter values of the dynamical states depicted
in Figs. 1–3 are marked in the two-parameter space with their respec-
tive figure numbers.

Now, the dynamical transitions observed in Fig. 4 are
extended to the (α, f ) parametric space by more smoothly
varying the phase lag parameter α ∈ (0, π/2) as depicted in
Fig. 6. The initial conditions for θi and ki j are uniformly dis-
tributed in the interval (0, 2π ) and (−1, 1) ∀ j, respectively.
There is a transition from TC to FEC via MC, and FC as a
function of α in the range of f ∈ (0, 0.15). Transition from
TC to BS via FC and FEC is also observed as a function of
α in the range of f ∈ (0.15, 0.49). For a further increase in
f , one can observe the transition from TC to FEC via FC,
BF3PC, and BF2PC. In a narrow range of f , FC leads to
the stabilization of FE and the latter subsequently leads to
BF2PC→BF3PC→BF2PC→FEC as a function of α. Similar
dynamical transitions are also seeded from the SYN state
in the range of f ∈ (0.82, 1). For f � 1, FE prevails in a
rather large region of the phase diagram. In the range of
f ∈ (1, 1.63), FE reemerges via BF2PC, BF3PC, and FEC as
α is increased from the null value. For f � 1.63, only FE is
stable in the entire explored range of the phase lag parameter.
The stability condition for the FE state can be deduced as
follows.

In the FE state, all the oscillators are entrained and hence
their phases θi = θ∗ can be obtained as

θ∗ = sin−1

(∑
j ki j sin(α) − Nλ

N f

)
. (9)

The above expression for θ∗ admits two solutions only if
the coupling weights satisfy the following two conditions:
(i) 1

N

∑N
j=1 ki j = η should be independent of the oscillator

index i and (ii) |η sin(α)/N − λ| � f . With sin−1 : [−1, 1] →
[−π/2, π/2], the two solutions are given by θ∗

1 = θ∗ and
θ∗

2 = π − θ∗. Using the linear stability analysis, one can
deduce the stability of the fixed points θ∗

1,2. The diagonal
elements (DFii) of the stability determining Jacobian J can
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be obtained as

DFii =
(

kii

N
− η

)
cos α + f cos(θ∗

i ).

The off-diagonal entries (DFi j) of J are

DFi j = ki j

N
cos α.

The stability determining the characteristic equation corre-
sponding to the Jacobian J can be obtained as

[μ + η cos α − f cos(θ∗)]N = 0,

which results in the following N-degenerate eigenvalues:

μk = −η cos α ± f

√
1 −

(
η sin α − λ

f

)2

for k = 0, . . . , N − 1. Note that “+” and “−” correspond to
the solutions θ∗

1 and θ∗
2 , respectively. A fold bifurcation leads

to the emergence of the FE state at√
(η cos α)2 + (η sin α − λ)2 = ± f . (10)

Note that for the Hebbian adaptation rule, the time evolution
of ki j becomes

k̇i j = ε (11)

∀ i, j and the asymptotic (t → ∞) solution of ki j is ki j = 1,
so that η = 1. Therefore, the stability condition corresponding
to the forced entrained state reduces to√

1 + λ2 − 2λ sin α � f , (12)

and the existence condition becomes | sin(α) − λ| � f . The
dashed blue line in Fig. 6 corresponds to the existence con-
dition for the FE state, above which the latter is stable. Note
that the existence condition turns out to be the stability con-
dition for the Hebbian adaption rule. The analytical critical
curve matches with the simulation results for small values of
the phase lag parameter (see Fig. 6) for the employed initial
conditions. However, the former matches with the latter in a
large range of α for a different set of initial conditions for the
connection weights (see Fig. 7), where ki j are uniformly dis-
tributed in the interval (−1, 1) ∀ i. The dynamical transitions
in Fig. 7 are almost similar to that observed in Fig. 6 except
that the dynamical states observed for large (α, f ) parameter
space in the latter are squeezed to large values of α and small
values of f . We have also confirmed that the two-parameter
phase diagram in the (α, f ) parametric space for the frequen-
cies λ = 0.5 and 0.75 are similar to that observed in Figs. 6
and 7 except for the change in the spread of the observed
dynamical states elucidating the robustness of the observed
states.

We have also distributed cluster initial conditions for
both the phases and the connection weights to elucidate the
emergent dynamical states. In particular, the cluster initial
conditions for θi are chosen as 0 for the first 50 oscillators and
π for the remaining 50 oscillators, whereas the initial condi-
tions for ki j are fixed as −1 for the intergroup and 1 for the
intragroup. The employed cluster initial conditions resulted
only in TC, FEC, and FE states as illustrated in Fig. 8. We have
superimposed all three phase diagrams in the (α, f ) parameter

FIG. 7. Same as in Fig. 6 except for a different set of initial
conditions for the connection weights, where ki j are uniformly dis-
tributed in the interval (−1, 1) ∀ i. Note that the initial conditions
corresponding to the connection weights of all the j oscillators
connected to any given ith oscillator are uniformly distributed in the
interval (−1, 1).

space to elucidate the existence of multistability among the
observed dynamical states as depicted in Fig. 9. Note that
we have used a specific initial condition in all three two-
parameter phase diagrams (Figs. 6–8) in the (α, f ) parameter
space, and hence their respective phase diagrams have resulted
in only monostable dynamical states. Nevertheless, adiabatic
initial conditions in both forward and backward traces will
certainly elucidate the multistable states as observed in Fig. 9.
It is also worthwhile to emphasize that the underlying reason
for the emergence of the multistable states is due to the higher-
order phase transitions as reported by Omel’chenko et al. [58].
However, note that such a transition in Ref. [58] is due to the
heterogeneity, whereas in this case it is due to the adaptive
nature of the network.

FIG. 8. The two-parameter phase diagram in the (α, f ) paramet-
ric space for a cluster of initial conditions. The initial conditions for
θi are chosen as 0 for the first 50 oscillators and π for the remaining
50 oscillators, while the initial conditions for ki j are fixed as −1 for
the intergroup and 1 for the intragroup. The other details as the same
as in Fig. 6.
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FIG. 9. (a) The two-parameter phase diagram in the (α, f ) para-
metric space for the three different initial conditions employed in
Figs. 6–8 depicting multistability among the observed dynamical
states. The other details are the same as in Fig. 6. It is evident that
Fig. 9(b) is the blown up part of the right lower corner, indicated by
a square frame, of Fig. 9 for better visibility of the multistable states.

IV. ANTI-HEBBIAN ADAPTATION RULE

A. Dynamical states

In this section, we choose β = −π/2, which corresponds
to the anti-Hebbian adaptation rule for the evolution of the
connection weights that coevolve with the phases of the oscil-
lators. The initial conditions for the phases of the oscillators θi

are uniformly distributed in the interval [0, 2π ), whereas that
of the connection weights ki j are uniformly distributed in the
interval (−1, 1), ∀ j. The value of the timescale parameter ε,
the natural frequency of the oscillators ω, and the number of
phase oscillators are the same as in Sec. III A. Four distinct
collective dynamical states that emerge as the response of the
coevolving connection weights and the phases for the exter-
nal periodic forcing are depicted in Fig. 10 for four distinct
values of the phase lag parameter α and the strength of the
external force f . The space-time plot, the time-averaged mean
frequencies, and the snapshot of the instantaneous phases are
depicted, respectively, in the left, middle, and right columns
of Fig. 10.

The random evolution of the phases of the oscilla-
tors and the random instantaneous phases in Figs. 10(a)
and 10(c), respectively, elucidate the incoherent state (ICS)
for α = 0.78 and f = 0.1. The time-averaged mean fre-

quencies of all oscillators are also distributed in a range
of ω as is evident from Fig. 10(b). The anti-Hebbian
adaptation rule has resulted in the fascinating itiner-
ant chimera (IC) [13,59] for α = 0.78 and f = 1.05,
which is characterized by the time-dependent coherent and
incoherent domains as depicted in Fig. 10(d). The snapshot
of the instantaneous phases [see Fig. 10(e)] of the oscillators
also elucidates the coexisting coherent and incoherent do-
mains corroborating the itinerant chimera, whereas the
oscillator frequencies are distributed in a range of ω as shown
in Fig. 10(f). Note that the main difference between the ICS
and IC states is that all the evolution of the oscillators is
completely uncorrelated in the ICS state, whereas in the IC
state one can observe synchronized epochs of random size co-
existing with asynchronous oscillators as the system evolves.
For instance, one can observe finite synchronized epochs of
random size in Fig. 10(f). The multicluster state is evident
from the third row of Fig. 10 for α = 0.78 and f = 1.7. The
space-time plot [see Fig. 10(g)] and the snapshot of the instan-
taneous phases [see Fig. 10(i)] confirm the multiphase cluster
state, while the oscillator frequencies are almost entrained as
shown in Fig. 10(h). The forced entrained state is depicted in
Figs. 10(j)–10(l) for α = 0.78 and f = 1.9.

The Kuramoto order parameter R1 for the incoherent state
and the itinerant chimera is depicted in Figs. 11(a) and 11(b),
respectively. R1 has acquired a rather low value near zero
for the incoherent state for α = 0.78 and f = 0.1, whereas
the fluctuating R1 about 0.5 for α = 0.78 and f = 1.05 is at-
tributed to the fact that there exists a finite degree of coherence
and incoherence among the oscillators at any given time t , a
characteristic of the itinerant chimera.

B. Dynamical transitions in the phase diagrams

The time-averaged Kuramoto order parameters (〈R1〉 and
〈R2〉) along with the three distinct measures of the strength of
incoherence (S, Sω, and Sσ ) are used to characterize the dy-
namical transitions as a function of the strength of the external
forcing for the phase lag parameter α = 0.78 in Figs. 12(a)–
12(c). As discussed above, the Kuramoto order parameters
acquire values between 0 < R1,2 < 1 for the IC state. Further,
it is also evident from the time-averaged mean frequencies
and the snapshot of the instantaneous phases of the itinerant
chimera in Figs. 10(e) and 10(f), respectively, that the standard
deviations σm > δ and σ̂m > δ. Consequently, sm = s̄m = 0
resulting in S = Sσ = 1 characterizing the itinerant chimera.
Analogously, ŝm = 0 leading to Sω = 1. The values of the
aforementioned set of quantification measures that corrob-
orate the distinct dynamical states are tabulated in Table I.
These dynamical transitions in the respective ranges of f are
also clearly visible from the time-averaged mean frequency
[see Fig. 12(b)] and the instantaneous phase [see Fig. 12(c)]
of the oscillators. As characterized by the order parameters
and the three distinct strength of incoherence measures, there
is a transition from the incoherent state to the forced entrained
state via the itinerant chimera and the multicluster state as a
function of the phase lag parameter (see Fig. 12).

The dynamical transitions presented in Fig. 12 are ex-
tended to the (α, f ) parametric space by more smoothly
varying the phase lag parameter α ∈ (0, π/2) as depicted in
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FIG. 10. The left column depicts the time evolution of the phases, while the middle and right columns depict the corresponding time-
averaged mean frequencies and the snapshot of the instantaneous phases, respectively. [(a)–(c)] Incoherent state (ICS) for α = 0.78 and
f = 0.1, [(d)–(f)] itinerant chimera (IC) for α = 0.78 and f = 1.05, [(g)–(i)] multicluster state (MC) for α = 0.78 and f = 1.7, and [(j)–(l)]
forced entrained state for α = 0.78 and f = 1.9. The observed dynamics states are also marked in the two-parameter phase diagram in Fig. 13
at their respective parameter values.

Fig. 13. The initial conditions for θi and ki j are uniformly
distributed in the interval (0, 2π ) and (−1, 1) ∀ j, respectively.
There is a transition from ICS→IC→MC→FE as a function
of the strength of the external forcing f in almost the entire
explored range of the phase lag parameter α. Note that the
spread of the itinerant chimera (IC), and multicluster state
(MC) increases, whereas that of the forced entrained state
decreases as a function of f as α → π/2. However, above a
critical α (near α = π/2), the spread of the IC state drastically
decreases with an increase in the spread of the MC state. The
stability condition for the FE state can be deduced exactly
following the procedure adapted for the Hebbian adaptation

FIG. 11. Order parameter. (a) Incoherent state (ICS) for α =
0.78 and f = 0.1 and (b) itinerant chimera (IC) α = 0.78 and
f = 1.05.

rule in Sec. III C. Now, the time evolution of ki j for the anti-
Hebbian adaptation turns out to be

k̇i j = −ε (13)

and the asymptotic (t → ∞) solution of ki j is ki j = −1, so
η = −1. Hence, the stability condition corresponding to the
forced entrained state reduces to√

1 + λ2 + 2λ sin α � f , (14)

while the existence condition becomes | sin(α) + λ| � f . The
above analytical stability condition (14) for the FE state is
depicted as the blue dashed line in Fig. 13, which almost
coincides with the simulation boundary of the FE state at large
values of the phase lag parameter α.

The two parameter phase diagram in the (α, f ) paramet-
ric space is depicted in Fig. 14 for a different set of initial
conditions for the connection weights ki j that are uniformly
distributed in the interval (−1, 1) ∀ i. The dynamical transi-
tions are exactly similar to those observed in Fig. 13. The
dashed blue line is the analytical stability condition (14) for
the FE state. We have also confirmed that the two-parameter
phase diagram in the (α, f ) parametric space for the frequen-
cies λ = 0.5 and 0.75 are similar to that observed in Figs. 13
and 14 except for the change in the spread of the observed
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FIG. 12. Dynamical transitions as a function of the external forc-
ing strength f for α = 0.78. (a) The time-averaged order parameters
(〈R1〉 and 〈R2〉) and the three distinct measures of the strength of
incoherence (S, Sω, and Sσ ) corroborate the dynamical transition;
(b) time-averaged mean frequency of all the oscillators; and (c) in-
stantaneous phase of the oscillators. There is a dynamical transition
from the incoherent state (ICS) to a forced entrained state (FE) via
itinerant chimera (IC) and multicluster state (MC) as a function f .

FIG. 13. The two-parameter phase diagram in the (α, f ) para-
metric space. Abbreviations representing the distinct dynamical
states are the same as in Fig. 12. The initial conditions for θi and ki j

are uniformly distributed in the interval [0, 2π ) and (−1, 1) ∀ j, re-
spectively. The blue dashed line corresponds to the analytical critical
curve corresponding to the forced entrained state, above which the
latter is stable. The parameter values of the dynamical states depicted
in Fig. 10 are marked in the two-parameter space with their respective
figure numbers.

FIG. 14. Same as in Fig. 13 but for a different set of initial condi-
tions for the connection weights, where ki j are uniformly distributed
in the interval (−1, 1) ∀ i.

dynamical states elucidating the robustness of the observed
states. For the cluster initial conditions θi are chosen as 0 for
the first 50 oscillators and π for the remaining 50 oscillators,
whereas the initial conditions for ki j are fixed as −1 for the
intergroup and 1 for the intragroup, in which case only MC
and FE states are found to be stable (see Fig. 15). Transition
from the MC state to the FE state is observed as a function
of f in almost the entire explored range of α. We have also
superimposed all three phase diagrams in the (α, f ) parameter
space to elucidate the existence of multistability among the
observed dynamical states as depicted in Fig. 16.

V. PHASE DIAGRAMS AS A FUNCTION OF β

In this section, we will elucidate the dynamical tran-
sitions in (β, f ) parametric space for completeness. The
two-parameter phase diagram in the (β, f ) parametric space
for the phase-lag parameter α = 0, and π/4 is depicted
in Figs. 17(a) and 17(b), respectively. The shaded regions
marked as TC, FC, SYN, FE, BF2PC, BF3PC, CHI, ICS, IC,
FEC, and BS correspond to the two-cluster state, frequency
cluster state, synchronized state, forced entrained state, multi-

FIG. 15. The two-parameter phase diagram in the (α, f ) para-
metric space for a cluster of initial conditions. The initial conditions
for θi are fixed as 0 for the first 50 oscillators and π for the remaining
50 oscillators, while the initial conditions for ki j are fixed as −1 for
the intergroup and 1 for the intragroup. Other details are the same as
in Fig. 13.
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FIG. 16. The two-parameter phase diagram in the (α, f ) para-
metric space for the three different initial conditions employed in
Figs. 13–15 depicting multistability among the observed dynamical
states. Other details are the same as in Fig. 13.

cluster state, bump frequency two-phase clusters state, bump
frequency three-phase cluster state, chimera state, incoherent
state, itinerant chimera state, forced entrained cluster, and
bump state, respectively. All these states depicted in Fig. 17
are discussed either in Sec. III dealing with the Hebbian
adaption rule, or in Sec. IV discussing the effect of the
anti-Hebbian adaption rule except for the chimera (CHI) state.
Note that the chimera state has been observed only near β = 0
in Fig. 17(b) for small values of f and in a slightly extended
region of the parameter space near β = 0 for a large f . This
is the case of the spike-time-dependent plasticity rule studied
exclusively in [13] for β = 0.

For α = 0, there is a transition from ICS to FE state
via IC and MC states as a function of f for β < 0 [see
Fig. 17(a)] as observed in Fig. 14 for the case of the anti-
Hebbian adaptation rule. For β > 0, there is a transition
from TC to FE via FC and FEC as a function of f in the
range of β ∈ (0, 1). Further, one can also observe a transi-
tion from TC to FE via FC, and SYN in the range of β ∈
(1.16, 2.45). However for β > 2.45, there is a direct transition
from TC to FE via SYN. One can also observe the transition
TC→IC→BS→BF2PC→FE around β = 0. For α = π/4,
the transition MC→BF3PC→BS→BF2PC is observed in the
range of β ∈ (−π,−2.83) [see Fig. 17(b)]. Further, there is

a transition from ICS to FE state via IC and MC states in
the range of β ∈ (−2.39,−0.91) as observed for β < 0 in
Fig. 17(a). The transition TC→FC→BF3PC→BF2PC→FE
is observed as a function of f in the range of β ∈ (0.09, 1.41).
There is also a transition from MC to FE state via BF3PC,
BS, and BF2PC states in the range of β ∈ (2.58, π ). Similar
dynamical transitions are observed in Fig. 6 near α = π/4.
Note that this section essentially encapsulates the results ob-
served in the case of the Hebbian and anti-Hebbian adaption
rules in Secs. III and IV, respectively.

VI. CONCLUSION

We have considered an adaptive network of globally
coupled Kuramoto oscillators, whose connection weights co-
evolve along with the dynamical states of the phase oscillator
in congruence with the Hebbian and anti-Hebbian adaptive
rules, under the influence of external sinusoidal forcing to un-
ravel the collective dynamical states due to a delicate balance
between the former and the latter. In particular, the Hebbian
adaptation mechanism for the connection weights was found
to facilitate the manifestation of several interesting partially
and completely synchronized states such as two-clusters, mul-
ticlusters, frequency-clusters, bump state, bump frequency
clusters, forced entrained clusters, and forced entrained states.
The anti-Hebbian adaptation mechanism for the coevolution
of the connection weights and the dynamical states of the
phase oscillators was found to facilitate the self-organization
of itinerant chimera, characterized by time-dependent coex-
isting domains of coherent and incoherent dynamical states.
The latter also resulted in the manifestation of an incoherent
state, a multicluster state, and a forced entrained state. Further,
we have introduced three distinct measures for the strength
of incoherence based on the local standard deviations of the
time-averaged frequency and the instantaneous phase of each
oscillator, and time-averaged mean frequency for each bin to
corroborate the distinct dynamical states and to demarcate the
two parameter phase diagrams along with the Kuramoto order
parameters. We have also deduced the existence and stabil-
ity conditions for the forced entrained state, which is found
to match very well with the simulation boundaries of the
forced entrained state for both the Hebbian and anti-Hebbian
mechanisms. We have also confirmed that the observed dy-
namical states and their transitions are robust in a range of

FIG. 17. The two-parameter phase diagram in the (β, f ) parametric space for the phase-lag parameter (a) α = 0 and (b) α = π/4. The
initial conditions for θi and ki j are uniformly distributed in the interval [0, 2π ) and (−1, 1) ∀ j, respectively. See the text for more explanations.
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the natural frequency λ and for distinct initial conditions
for ki j .

It should be noted that since we have employed phase oscil-
lators to investigate the emerging collective behaviors due to a
delicate balance between the external forcing and the adapta-
tion rules, the results are expected to be valid for any nonlinear
oscillators, representing the variety of neuronal models, in
the weak-coupling limit. However, the level of complexity
and the specific adaptations considered may limit the direct
generalization and applicability of our results to address the
intricate patterns by the brain network despite the valuable
insights into the behavior of adaptive networks of globally
coupled oscillators. Our current work can be extended to un-
derstand how the external forcing (task) affects the adaptively
coupled phase oscillator with feedback coupling weight in the
adaptation rule. One can also extend the analysis for global
and nonlocal interaction in adaptation rules. Furthermore, the

impact of external forcing on the adaptively coupled multi-
layer networks is still an open problem.
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