
PHYSICAL REVIEW E 109, 014220 (2024)

Delay-induced amplitude death in multiplex oscillator network
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The present paper analytically investigates the stability of amplitude death in a multiplex Stuart-Landau
oscillator network with a delayed interlayer connection. The network consists of two frequency-mismatched
layers, and all oscillators in each layer have identical frequencies. We show that, if the matrices describing the
network topologies of each layer commute, then the characteristic equation governing the stability can be reduced
to a simple form. This form reveals that the stability of amplitude death in the multiplex network is equally or
more conservative than that in a pair of frequency-mismatched oscillators coupled by a delayed connection. In
addition, we provide a procedure for designing the delayed interlayer connection such that amplitude death is
stable for any commuting matrices and for any intralayer coupling strength. These analytical results are verified
through numerical examples. Moreover, we numerically discuss the results for the case in which the commutative
property does not hold.
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I. INTRODUCTION

In past decades, considerable attention has been paid to
collective phenomena in oscillators coupled by mutual inter-
actions [1]. For example, cessation of oscillations has attracted
a great deal of interest in the field of nonlinear science [2–13].
This phenomenon can be categorized as oscillation death or
amplitude death according to its emergence property [9,10].

There has been growing interest in amplitude death [11,12]
owing to its property that equilibrium points within oscilla-
tors are stabilized by mutual noninvasive interactions. This
is because coupling signals, which realize the interactions,
disappear after stabilization is complete. If the oscillators have
a frequency mismatch, then diffusive coupling, the simplest
noninvasive interaction, can induce amplitude death. How-
ever, if the oscillators do not have a frequency mismatch,
then amplitude death is not induced [7,8]. In contrast, if the
interactions involve time delays, then amplitude death can
emerge even without a frequency mismatch [14–16]. Since for
coupled oscillators in real situations, the propagation speed of
coupling signals cannot be ignored, it is natural to consider
delayed interactions. For this reason, numerous investigations
on amplitude death induced by delayed coupling have been
conducted from various viewpoints, such as modification of
delayed coupling [17–23], application to thermoacoustic sys-
tems [24–30], and extension to oscillator networks [31–39].

Investigation of the stability of delay-induced amplitude
death, which can promote its effective use in a wide range
of applications, is in general not easy because the charac-
teristic functions governing the stability are described by

*https://www.omu.ac.jp/eng/ees-ecs

quasipolynomial equations that have infinitely many roots.
Fortunately, for oscillators without a frequency mismatch, the
function can be analytically investigated. Several studies have
conducted a stability analysis of delay-induced amplitude
death [31–39]. In contrast, with a frequency mismatch, analyt-
ical investigations of stability become difficult. Quite recently,
our previous study analytically investigated the stability with
a frequency mismatch and clarified the mismatch effects on
delay-induced amplitude death [40]. However, our study fo-
cused mainly on a pair of oscillators and extended the results
only to oscillator networks with complete bipartite topologies
[40]. Therefore, it is still a great challenge to extend the results
with a frequency mismatch to oscillator networks with more
general topologies.

Multiplex networks, a special type of multilayer net-
work, have received broad attention from the viewpoint of
network science [41,42]. In particular, in the field of non-
linear dynamics, there remains an increasing interest in the
dynamical behavior of multiplex networks consisting of os-
cillators. Knowledge of various collective phenomena in mul-
tiplex oscillator networks, such as intralayer synchronizations
[43–47], interlayer synchronizations [48–51], antiphase syn-
chronizations [52,53], explosive synchronizations [54–57],
and chimera states [58–65], has been accumulated. Further-
more, it has been reported that multiplexing can be used as a
method for inducing or controlling stochastic resonance [66],
self-induced stochastic resonance [67–69], and coherence res-
onance [68–71] in oscillator networks. Some of these reports
use delay times in multiplexing networks and show that delay
times play an important role for these resonances [67–69]. In
addition to such reports, a great deal of effort has been devoted
to the dynamics of oscillator networks coupled by delayed
interlayer connections [72–80].
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FIG. 1. Multiplex oscillator network with frequency mismatch.

As mentioned above, the dynamics of delay interlayer
coupled networks is an attractive subject for study. However,
to our knowledge, there have been few efforts to investigate
amplitude death in such networks. The present study deals
with amplitude death in a multiplex Stuart-Landau oscillator
network with a delayed interlayer connection. This network
consists of two frequency-mismatched layers, in which all os-
cillators in each layer have identical frequencies (see Fig. 1).
The contribution of the present study is to analytically demon-
strate the following: (1) If the matrices describing the network
topologies of each layer commute, then the characteristic
equation governing the stability of amplitude death can be re-
duced to a simple form. (2) The stability of amplitude death in
a multiplex network is equally or more conservative than that
in a pair of oscillators coupled by a delayed connection. (3)
The analytical results of our previous study [40] can be used
to design a delayed interlayer connection such that amplitude
death is stable. These analytical findings are verified through
some examples. In addition, numerical simulations suggest
that these findings might be valid even if the commutative
property does not hold.

The remainder of the present study is organized as follows.
Section II presents the multiplex Stuart-Landau oscillator net-
work with a delayed interlayer connection. In Sec. III, the
main results of the present paper are analytically derived. In
Sec. IV, the procedure for designing the delay time and the
coupling strength of the interlayer connection is proposed. In
Sec. V, for the case in which the commutative property does
not hold, the procedure is numerically investigated, and the
relationship with related previous studies is discussed.

II. MULTIPLEX OSCILLATOR NETWORK

Let us consider a multiplex oscillator network with two
frequency-mismatched layers (see Fig. 1),

Ż (1)
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Here, F (Z, μ,�) := [1 − μ + i� − |Z|2]Z describes the
nonlinear dynamics of the Stuart-Landau oscillator, where

i := √−1 is the imaginary unit. Z ( j)
i (t ) ∈ C represents the

state of oscillator i ∈ {1, . . . , N} at time t � 0 in layer j ∈
{1, 2}, where N is the number of oscillators in each layer. The
oscillators in layer j ∈ {1, 2} have a frequency of � j > 0,

�1 := � + �

2
, �2 := � − �

2
, (2)

where � > 0 is the nominal frequency, and � ∈ [0, 2�) is the
frequency mismatch. In Eqs. (1a) and (1b), the second term
on the right-hand side denotes the delayed interlayer coupling
with delay time τ � 0 and coupling strength K � 0. The third
term describes the no-delay intralayer coupling, where k � 0
is the intralayer coupling strength. Here c( j)

il represents the
network topology in layer j: if oscillator i is connected to
oscillator l in layer j, then c( j)

il = c( j)
li = 1, otherwise c( j)

il =
c( j)

li = 0. For i = l , we have c( j)
ii = 0. The degree of oscillator

i in layer j is denoted by d ( j)
i := ∑N

l=1 c( j)
il > 0.

The multiplex oscillator network (1) has the following
equilibrium point:

Z∗
1

(1) = · · · = Z∗
N

(1) = Z∗
1

(2) = · · · = Z∗
N

(2) = 0. (3)

The linearized dynamics of network (1) at point (3) is de-
scribed by a time-delay linear system,

ż(t ) = A0z(t ) + Bz(t − τ ) − kA1z(t ), (4)

where its state variables,

z(t ) := [
z(1)

1 (t ) · · · z(1)
N (t ) z(2)

1 (t ) · · · z(2)
N (t )

]�
,

z( j)
i (t ) := Z ( j)

i (t ) − Z∗
i

( j)
, (5)

denote small perturbations around point (3). The system ma-
trices are given by

A0 :=
[

(1 − K + i�1)IN 0

0 (1 − K + i�2)IN

]
,

A1 :=
[

L(1) 0

0 L(2)

]
, B :=

[
0 KIN

KIN 0

]
,

(6)

where L( j) := IN − C( j) represents the network topology
in layer j. The elements of matrices C( j) are denoted as
{C( j)}il = c( j)

il /d ( j)
i for i �= l and {C( j)}il = 0 for i = l . The

characteristic equation for system (4) is described as

det[sI2N − A0 − Be−sτ + kA1] = 0, (7)

where s ∈ C is the Laplace variable. Note that if L(1) and L(2)

commute, then we have �L := L(1)L(2) − L(2)L(1) = 0.

III. STABILITY ANALYSIS

This section analytically investigates the local stability of
equilibrium point (3) on the basis of the characteristic equa-
tion (7). Since it is not easy to deal with Eq. (7) directly, under
an assumption of topology, we simplify Eq. (7) as follows.
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Lemma 1. Assume that L(1) and L(2) commute. Then,
the characteristic equation (7) can be reduced to a simple
form,

G(s) :=
N∏

�=1

h
(
s, kρ

(1)
� , kρ

(2)
�

) = 0, (8)

h(s, μ1, μ2) := (s − 1 + μ1 + K − i�1)

(s − 1 + μ2 + K − i�2) − K2e−2sτ , (9)

where the eigenvalues of L(1,2) are denoted as ρ
(1,2)
� (� =

1, . . . , N ) and characterized by Q−1L(1)Q = diag
(ρ (1)

1 , . . . , ρ
(1)
N ) and Q−1L(2)Q = diag(ρ (2)

1 , . . . , ρ
(2)
N ) with

a common nonsingular matrix Q ∈ RN×N .

Proof. See Appendix A. �

Lemma 1 indicates that the stability condition for equilib-
rium point (3) can be reduced to that of an equilibrium point
for delay-coupled oscillators, as shown in the corollary below.

Corollary 1. Assume that L(1) and L(2) commute. The
equilibrium point (3) for multiplex oscillator network (1)
is locally stable if and only if the equilibrium point X ∗

1 =
X ∗

2 = 0 in delay-coupled oscillators with states X1,2(t ) ∈
C,

Ẋ1(t ) = F
(
X1(t ), kρ

(1)
� ,�1

) + K{X2(t − τ ) − X1(t )}
Ẋ2(t ) = F

(
X2(t ), kρ

(2)
� ,�2

) + K{X1(t − τ ) − X2(t )},
(10)

is locally stable for all � ∈ {1, . . . , N}.

Proof. See Appendix B. �

Note that the eigenvalues of L(1,2) satisfy

ρ
(1,2)
� ∈ [0, 2], ∀� ∈ {1, . . . , N}, (11)

for any network topology [81,82]. Zero eigenvalues are al-
ways included in Eq. (11),

ρ
(1,2)
� = 0, ∃� ∈ {1, . . . , N}, (12)

because L(1,2) have the eigenvector 1 corresponding to zero
eigenvalues. Since Eq. (12) holds, delay-coupled oscillators
with ρ

(1,2)
� = 0,

Ẋ1(t ) = F (X1(t ), 0,�1) + K{X2(t − τ ) − X1(t )}
Ẋ2(t ) = F (X2(t ), 0,�2) + K{X1(t − τ ) − X2(t )}, (13)

are always included in the set of delay-coupled oscillators (10)
for � ∈ {1, . . . , N}. This inclusion indicates the following:
the instability of X ∗

1 = X ∗
2 = 0 in oscillators (13) is sufficient

for point (3) in network (1) to be unstable; the stability of
X ∗

1 = X ∗
2 = 0 in oscillators (13) is necessary for point (3) to

be stable. Note that oscillators (13) are frequency-mismatched
oscillators coupled by a delayed connection considered in our
previous work [40]. The instability can be represented by the
following corollary.

FIG. 2. Sets of (μ1, μ2) satisfying H (μ1, μ2, K ) = 0 (solid
black lines) and h(iλ,μ1, μ2) = 0 (red lines) in (μ1, μ2) space: (a)
(τ, K ) = (0.3, 0.9) and (b) (τ, K ) = (0.3, 1.4). M (M) is the region
over (under) the solid black line.

Corollary 2. If X ∗
1 = X ∗

2 = 0 in delay-coupled oscilla-
tors (13) is unstable, then equilibrium point (3) for network
(1) is never stabilized for any commuting L(1,2) or for any
intralayer coupling strength k � 0.

This corollary shows that the stability condition for point
(3) in network (1) is equally or more conservative than that
for X ∗

1 = X ∗
2 = 0 in oscillators (13). In other words, in the

coupling parameter space (τ, K ), the stability region for net-
work (1) must be inside that for oscillators (13). Note that our
previous study [40] analytically provides the boundary curves
dividing stability and instability regions in space (τ, K ) for
oscillators (13). Thus, with (τ, K ) in the instability region,
amplitude death never occurs in network (1) for any commut-
ing L(1,2) or for any k � 0. In addition, we see from h(s, 0, 0)
that, in the case of no delay time (τ = 0) and no frequency
mismatch (� = 0), amplitude death never occurs in network
(1) for any commuting L(1,2), K � 0, or k � 0.

Let us consider the (μ1, μ2) space shown in Fig. 2(a) (in
Fig. 2(b)) for K = 0.9 ∈ (1/2, 1] (for K = 1.4 > 1). Note
that, in what follows, we have to consider only the case
of K > 1/2 because X ∗

1 = X ∗
2 = 0 in oscillators (13) is not
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stabilized for any K � 1/2 [40]. The solid black line repre-
sents the set of (μ1, μ2) satisfying H (μ1, μ2, K ) = 0:

H (μ1, μ2, K ) := |μ1 + K − 1| · |μ2 + K − 1| − K2. (14)

The regions over and under the solid black line with μ1,2 � 0
are, respectively, defined by

M := {(μ1, μ2) ∈ R2
+ : H (μ1, μ2, K ) > 0}, (15)

M := {(μ1, μ2) ∈ R2
+ : H (μ1, μ2, K ) � 0}. (16)

The gray (white) area in Fig. 2 represents M (M). Now, we
provide a lemma on h(s, μ1, μ2) in Eq. (9) to support our main
result.

Lemma 2. Roots s of h(s, μ1, μ2) = 0 never intersect
the imaginary axis for any (μ1, μ2) ∈ M.

Proof. See Appendix C. �

Lemma 2 is used to derive the following main result.

Theorem 1. The equilibrium point (3) for multiplex os-
cillator network (1) is locally stable for any commuting
L(1) and L(2) and for any k � 0, if the following two
conditions are satisfied:

(a) (τ, K ) is chosen such that X ∗
1 = X ∗

2 = 0 in oscilla-
tors (13) is locally stable [i.e., h(s, 0, 0) is stable];

(b) There does not exist λ ∈ R for any (μ1, μ2) ∈ M
such that h(iλ,μ1, μ2) = 0 holds with the chosen (τ, K ).

Proof. See Appendix D. �

Condition (a) was easily realized in our previous study
[40]. Condition (b) is numerically checked as to whether there
exists λ ∈ R in region M. Note that, for small K ∈ (1/2, 1],
region M becomes large [see Fig. 2(a)], which makes this
region difficult to check numerically. In order to avoid such
difficulty, we restrict the region by introducing the upper limit
of the intralayer coupling strength k as follows.

Corollary 3. If the intralayer coupling strength is re-
stricted to k ∈ [0, kmax), where kmax is the upper limit of
the strength, then region M of condition (b) in Theorem 1
is replaced with

M := {(μ1, μ2) ∈ R2
+ : H (μ1, μ2, K ) � 0, μ1,2 < 2kmax}.

(17)

Proof. See Appendix E. �

Note that, for the case of L(1) = L(2), condition (b) in
Theorem 1 can be simplified (see Appendix F). The next
section demonstrates Theorem 1 with Corollary 3 through
numerical examples.

FIG. 3. Multiplex oscillator networks consisting of commuting
L(1) and L(2): (a) local ring layer and all-to-all layer and (b) ring layer
with three nearest neighbors in each direction and all-to-all layer.

IV. DESIGN OF (τ, K )

In this section, based on Theorem 1 with Corollary 3, we
design (τ, K ) such that equilibrium point (3) of multiplex
oscillator network (1) is locally stable for any commuting
L(1) and L(2) and for any k ∈ [0, kmax). The procedure for
designing (τ, K ) consists of the following steps:

(1) (τ, K ) is designed for h(s, 0, 0) to be stable using our
previous result [40] and kmax is fixed;

(2) Obtain (λ,μ1, μ2) satisfying h(iλ,μ1, μ2) = 0 with
the designed (τ, K );

(3) If the obtained (μ1, μ2) does not exist in M defined by
Eq. (17), then the designed (τ, K ) satisfies Theorem 1 with
Corollary 3.

It must be emphasized that if (τ, K ) is obtained through
steps (1), (2), and (3), then point (3) of network (1) is lo-
cally stable for any commuting L(1) and L(2) and for any
k ∈ [0, kmax).

Let us numerically follow the procedure with (�,�) =
(10, 3.0). For step (1), based on our previous result [40], we
choose two sets: (A) (τ, K ) = (0.3, 0.9) and (B) (τ, K ) =
(0.3, 1.4). In addition, kmax = 3 is fixed. For step (2), we
numerically obtain (λ,μ1, μ2) satisfying h(iλ,μ1, μ2) = 0
using a software tool (e.g., MATLAB function fimplicit).
The obtained data (λ,μ1, μ2) for sets (A) and (B) are, respec-
tively, plotted as red curves on (μ1, μ2) space in Figs. 2(a)
and 2(b). For step (3), we check whether there exist red lines
(μ1, μ2) under black lines H (μ1, μ2, K ) = 0. For set (A),
there exist two red lines under the black line and within μ1,2 ∈
[0, 6). Thus, we see that set (A) does not satisfy Theorem 1
with Corollary 3. In contrast, for set (B), red lines do not exist.
Set (B) satisfies the conditions in Theorem 1. As a conclusion,
it is (is not) guaranteed that equilibrium point (3) for multiplex
oscillator network (1) with (B) (τ, K ) = (0.3, 1.4) (with (A)
(τ, K ) = (0.3, 0.9)) is locally stable for any commuting L(1)

and L(2) and for any k ∈ [0, 3).
In order to confirm the conclusion obtained above, as an

example, we use the multiplex oscillator networks (1) illus-
trated in Fig. 3. Now, we focus on the network with local
ring layer L(1) and all-to-all layer L(2) [see Fig. 3(a)] for
the cases of N = 15 and N = 20. Note that L(1) and L(2)

commute (i.e., �L = 0) independently of N . We use set (A)
(τ, K ) = (0.3, 0.9). Figure 4 is the enlarged illustration of
Fig. 2(a). The thin lines passing through points • represent
(μ1, μ2) = (kρ

(1)
� , kρ

(2)
� ) (� = 1, . . . , N ) with N = 15 for k ∈

[0, 3). This is shown as follows. At k = 0, (kρ
(1)
� , kρ

(2)
� )
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FIG. 4. Enlarged view of Fig. 2(a). The thin lines represent
(μ1, μ2) = (kρ

(1)
� , kρ

(2)
� ) for k ∈ [0, 3). The network consists of a

local ring layer and an all-to-all layer with N = 15 (•) and N = 20
(◦).

(� = 1, . . . , N ) are at the origin (0,0), where all of the roots
s ∈ C of h(s, 0, 0) = 0 are located in the open left-hand
side of the complex plane owing to (τ, K ) chosen by con-
dition (a) in Theorem 1, and (kρ

(1)
� , kρ

(2)
� ) (� = 1, . . . , N )

move from the origin to the top right as k increases from
0. At k = 1, (kρ

(1)
� , kρ

(2)
� ) (� = 1, . . . , N ) reach points •

representing eigenvalues (ρ (1)
� , ρ

(2)
� ) of L(1) and L(2), and

(kρ
(1)
� , kρ

(2)
� ) (� = 1, . . . , N ) continue to move to the top right

as k increases. We see that all (kρ
(1)
� , kρ

(2)
� ) (� = 1, . . . , N )

do not cross the red curve describing h(iλ,μ1, μ2) = 0. This
indicates that, for N = 15, there does not exist λ ∈ R for any
(μ1, μ2) = (kρ

(1)
� , kρ

(2)
� ) ∈ M such that h(iλ,μ1, μ2) = 0

holds with the chosen (A). In other words, every root s located
in the open left-hand side at k = 0 moves as k increases from
0 to 3, but never moves into the right-hand side.

For N = 20, the thin lines passing through points ◦ repre-
sent (μ1, μ2) = (kρ

(1)
� , kρ

(2)
� ) (� = 1, . . . , N ). As shown, one

of the lines crosses the red curve at point × with k = 0.644.
This indicates that, for N = 20, there exists λ ∈ R satisfying
h(iλ, kρ

(1)
� , kρ

(2)
� ) = 0. Therefore, as k increases from 0 to

3, at least one root s ∈ C of h(s, μ1, μ2) = 0 located in the
open left-hand side at k = 0 crosses the imaginary axis at k =
0.644, and then moves into the right-hand side. These results
with N = 15 and N = 20 agree with the observation that, for
(A) (τ, K ) = (0.3, 0.9), it is not guaranteed that equilibrium
point (3) is locally stable for any commuting L(1) and L(2) or
for any k ∈ [0, 3).

In contrast, for (B) (τ, K ) = (0.3, 1.4), since red lines do
not exist in Fig. 2(b), any root s located in the open left-hand
side at k = 0 does not cross the imaginary axis for any k � 0.
This indicates that, for (B) (τ, K ) = (0.3, 1.4), the stability is
guaranteed for any commuting L(1) and L(2) and for any k ∈
[0, 3). We consider the stability regions in (τ, K ) space (see
Fig. 5), where the boundary curves for stability, τ++,+−,−−,−+
as denoted in our previous study [40], are drawn. Root s of
h(s, 0, 0) = 0, which passes the imaginary axis at τ = τ++,−−

FIG. 5. Boundary curves for stability, τ++,+−,−−,−+ denoted in
our previous study [40], in the coupling parameter space (τ, K ) and
stability regions (blue areas) consisting of (τ, K ) obtained through
steps (1), (2), and (3).

(τ+−,−+), moves from left (right) to right (left) with increasing
τ . The stability regions of h(s, 0, 0) are surrounded by a thick
red line τ+− and a thin red line τ−−, or by a thick black line
τ−+ and a thin black line τ++. In addition, (τ, K ) obtained
through steps (1), (2), and (3) with kmax = 3 are plotted as
blue points.1 Note that if (τ, K ) is within the blue area, then
point (3) of network (1) is locally stable for any commuting
L(1) and L(2) and for any k ∈ [0, kmax). Here, set (B) is in the
blue area, but set (A) is not. This also agrees with the results in
Fig. 2. Furthermore, Fig. 5 shows that the instability (stability)
of X ∗

1 = X ∗
2 = 0 in oscillators (13) is sufficient (necessary) for

point (3) in network (1) to be unstable (stable). In addition,
it is obvious that M in step (3) shrinks with decreasing kmax

due to Eq. (17); this shrinking increases the possibility of
(τ, K ) passing through step (3). As a result, the blue area never
becomes smaller with decreasing kmax.

Let us focus on the dotted box in Fig. 5. An enlarged view
of the box region is shown in Fig. 6(a). Now we compare the
stability region (blue area) with the stability regions (gray ar-
eas) that are numerically obtained by solving Eq. (7) at k = 1
(see Appendix G). Figures 6(b) and 6(c) show the regions2

with N = 15 and 20, respectively, for the network shown
in Fig. 3(a). The stability region with N = 15 in Fig. 6(b)
includes the blue area in Fig. 6(a) and set (A). For N = 20,
the region in Fig. 6(c) shrinks and does not include set (A).
These findings for N = 15 and 20 agree with the results shown
in Figs. 2 and 4. Figure 6(d) shows the stability region for the
network of Fig. 3(b). The network consists of a ring layer with

1(τ, K ) are set in 200 × 200 grids with τ ∈ [0.0, 0.5] and K ∈
[0.0, 3.0]. A blue point is plotted if (τ, K ) passes through all the
steps.

2(τ, K ) are set in 200 × 200 grids with τ ∈ [0.25, 0.40] and K ∈
[0.5, 2.0]. Gray points are plotted if the rightmost root of the charac-
teristic equation for the real state system (G1) (see Appendix G) on
the grids has a negative real part.
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FIG. 6. Boundary curves for stability, τ+−,−−, in coupling pa-
rameter space (τ, K ) and stability regions. (a) Stability region (blue
area) obtained through steps (1), (2), and (3). (b, c) Stability regions
(gray areas) obtained in Appendix G for the network with local ring
layer and all-to-all layer shown in Fig. 3(a) for (b) N = 15 and (c)
N = 20. (d) Stability region (gray area) with ring layer with three
nearest neighbors in each direction and all-to-all layer of Fig. 3(b) for
N = 20.

three nearest neighbors in each direction and an all-to-all layer
(N = 20), where L(1) and L(2) commute (i.e., �L = 0). The
region fits that for h(s, 0, 0) even for N = 20. These results
numerically support the finding that the stability region for
network (1) is inside that for oscillators (13). The stability
condition for point (3) in network (1) is equally or more
conservative than that of X ∗

1 = X ∗
2 = 0 in oscillators (13).

The main results of this section are summarized below.
Under the assumption that L(1) and L(2) commute and k is
restricted to k ∈ [0, kmax), the stability regions (blue areas)
obtained by the proposed procedure are valid independently
of the commuting L(1,2), the intralayer coupling strength k ∈
[0, kmax), and the number of oscillators, N . This result is an
advantage in the following situations: (1) information on the
network topology, the number of oscillators, or the intralayer
coupling strength is unknown, (2) information in situation (1)
is often changed, and (3) the number of oscillators is large. For
situation (1), characteristic equation (7) is not obtained; hence,
it is quite difficult to numerically check the stability. For
situation (2), even if information can be obtained in advance,
it is necessary to numerically estimate the stability region of
Eq. (7) using Appendix G every time information is changed.
For situation (3), the dimensions of matrices, A0, A1, and B,
in Eq. (7) are large; thus, the computation load in estimating
the stability regions is heavy. It should be noted that even for
such situations, the proposed procedure allows us to obtain the

FIG. 7. Multiplex oscillator network with noncommuting L(1)

and L(2), boundary curves τ+−,−−, and stability regions (gray areas)
obtained with Appendix G for N = 20 and k = 1: (a, b) local ring
layer and local ring layer with ten additional random shortcuts, (c,
d) local ring layer and star layer, and (e, f) all-to-all layer and chain
layer.

stability regions without a heavy computation load. We can
therefore conclude that, for network (1) with the commutative
property, the proposed procedure offers more versatility than
conventional procedures.

V. DISCUSSION

In this section, with some examples, we numerically inves-
tigate the case of noncommuting L(1) and L(2). Furthermore,
we discuss previous studies related to the present study.

For the case of noncommuting L(1) and L(2), we con-
sider three examples, where N = 20 and k = 1 are fixed (see
Fig. 7). For the first example illustrated in Fig. 7(a), layer 1 has
a local ring topology and layer 2 has a local ring topology with
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ten additional random shortcuts. Here, L(1) and L(2) do not
commute (i.e., ‖�L‖2 = 0.6148). Thus, the analytical results
obtained in Secs. III and IV cannot be used. Figure 7(b) shows,
in (τ, K ) space, the stability parameter set that is numerically
obtained by solving Eq. (7) with Appendix G3 is slightly
smaller than the stability region surrounded by the boundary
curves τ+−,−− (red lines). For the second example, layers 1
and 2 have local ring and star topologies, respectively, as
shown in Fig. 7(c) (‖�L‖2 = 5.2440). The stability parameter
set in Fig. 7(d) is smaller than the stability region. For the third
example, as shown in Fig. 7(e), layers 1 and 2, respectively,
have an all-to-all topology and a chain topology (‖�L‖2 =
0.2354). Figure 7(f) shows that the stability parameter set is
also smaller than the stability region. These examples show
that, even with noncommuting L(1) and L(2), the stability pa-
rameter set (gray area) is inside the stability region surrounded
by the boundary curves and contains the stability region (blue
area) in Fig. 6(a). These results appear to be the same as those
obtained with commuting L(1) and L(2). Thus, our analytical
results might be useful in the case of noncommuting L(1) and
L(2). However, this is not analytically guaranteed.

Here, we briefly review three previous studies related to
the present study. For the case in which the network topology
in layers 1 and 2 are identical, networks (1) are categorized
into a particular class of Cartesian product networks of delay-
coupled oscillators, as denoted in a previous study [83], in
which a procedure for designing the coupling parameters in-
ducing amplitude death is provided. The previous study [83]
treated time-delay mismatch, but not frequency mismatch.
Recently, it was reported that various phenomena, including
amplitude death, occur on multiplex networks consisting of
Hindmarsh-Rose neuron models [84], and amplitude death
occurs on multiplex Stuart-Landau oscillator networks with
both attractive and repulsive connections [85]. However, these
studies did not treat the delayed interlayer coupling focused
on in the present study.

VI. CONCLUSIONS

In the present paper, we have investigated the stability
of amplitude death in a delay interlayer coupled multi-
plex Stuart-Landau oscillator network with two frequency-
mismatched layers. It was analytically revealed that the
characteristic equation governing the stability can be simpli-
fied if the matrices describing the topologies of each layer
commute. The simplified equation clarified that the stability
of amplitude death in the multiplex network is equally or
more conservative than that in a pair of frequency-mismatched
oscillators coupled by a delayed connection. Based on our
previous study [40], we provided a procedure consisting of
the three steps for designing the delayed interlayer connection
such that amplitude death is stable for any commuting matri-
ces and for any intralayer coupling strength. Furthermore, we
discussed the results for the case in which the commutative
property does not hold.

3The numerical procedure is the same as that for Figs. 6(b), 6(c),
and 6(d).
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APPENDIX A: PROOF OF LEMMA 1

If the matrices L(1) and L(2) commute (i.e., L(1)L(2) =
L(2)L(1)), then there exists a common nonsingular matrix
Q ∈ RN×N such that Q−1L(1)Q = diag(ρ (1)

1 , . . . , ρ
(1)
N ) and

Q−1L(2)Q = diag(ρ (2)
1 , . . . , ρ

(2)
N ) hold [86]. By introducing

det[I2 ⊗ Q−1] and det[I2 ⊗ Q], Eq. (7) can be rewritten as

det

⎡
⎢⎣

h
(
s, kρ

(1)
1 , kρ

(2)
1

) · · · 0
...

. . .
...

0 · · · h
(
s, kρ

(1)
N , kρ

(2)
N

)
⎤
⎥⎦ = 0.

(A1)
Thus, Eq. (A1) is equivalent to Eq. (8).

APPENDIX B: PROOF OF COROLLARY 1

Lemma 1 shows that the local stability of equilibrium point
(3) is governed by G(s) = 0 that depends on eigenvalues
ρ

(1,2)
� (� = 1, . . . , N ). Then h(s, kρ

(1)
� , kρ

(2)
� ) is the charac-

teristic function for delay-coupled oscillators (10) at X ∗
1 =

X ∗
2 = 0. Function G(s) is the product of h(s, kρ

(1)
� , kρ

(2)
� ) (� =

1, . . . , N ). Thus, the stability of G(s) is equivalent to the local
stability of X ∗

1 = X ∗
2 = 0 in delay-coupled oscillators (10) for

all � ∈ {1, . . . , N}.

APPENDIX C: PROOF OF LEMMA 2

If the roots s of h(s, μ1, μ2) = 0 intersect the imaginary
axis with some (μ1, μ2) ∈ M, then at least one λ ∈ R of
h(iλ,μ1, μ2) = 0 exists. In other words, if there does not
exist λ ∈ R satisfying h(iλ,μ1, μ2) = 0 for any (μ1, μ2) ∈
M, then the roots never intersect the imaginary axis for any
(μ1, μ2) ∈ M. Here h(iλ,μ1, μ2) = 0 can be rewritten as

[μ1 + K − 1 − i(�1 − λ)][μ2 + K − 1 − i(�2 − λ)]

= K2e−i2λτ . (C1)

From the viewpoint of polar coordinates, we see that the
modulus of the right-hand side of Eq. (C1) is K2. It is
clear that both the first and second factors on the left-hand
side have moduli equal to or larger than |μ1 + K − 1| and
|μ2 + K − 1|, respectively, for any λ ∈ R. This fact guaran-
tees that, if H (μ1, μ2, K ) > 0 holds, then Eq. (C1) does not
hold for any λ ∈ R. It is easy to see that (μ1, μ2) satisfying
H (μ1, μ2, K ) > 0 are described by the region M. As a result,
roots s of h(s, μ1, μ2) = 0 never intersect the imaginary axis
for any (μ1, μ2) ∈ M.

APPENDIX D: PROOF OF THEOREM 1

Lemma 1 indicates that the local stability of equilibrium
point (3) is equivalent to that of h(s, kρ

(1)
� , kρ

(2)
� ) for all

� ∈ {1, . . . , N}. Here k � 0 holds, and ρ
(1,2)
� are restricted

by Eqs. (11) and (12). Thus, if h(s, μ1, μ2) is stable for all
(μ1, μ2) ∈ R2

+, then equilibrium point (3) is locally stable
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for any k � 0 and for any commuting L(1) and L(2). In what
follows, we will focus on the stability of h(s, μ1, μ2) for
(μ1, μ2) = (0, 0), for (μ1, μ2) ∈ M, and for (μ1, μ2) ∈ M.
For (μ1, μ2) = (0, 0), if condition (a) holds, all roots s of
h(s, 0, 0) = 0 are located in the open left-hand side of the
complex plane. For any (μ1, μ2) ∈ M, if condition (b) holds,
then none of the roots ever intersect the imaginary axis. For
any (μ1, μ2) ∈ M, Lemma 2 shows that none of the roots
ever intersect the imaginary axis. As a result, if conditions (a)
and (b) are satisfied, then the roots s of h(s, 0, 0) = 0 located
in the open left-hand side never intersect the imaginary axis
for any (μ1, μ2) ∈ R2

+ (i.e., h(s, μ1, μ2) is stable for any
(μ1, μ2) ∈ R2

+).

APPENDIX E: PROOF OF COROLLARY 3

Since the upper limit of the eigenvalues ρ
(1,2)
� is 2, the

upper limit of kρ
(1,2)
� is 2kmax. Thus, it is sufficient for us to

consider the region defined by Eq. (17) rather than that defined
by Eq. (16).

APPENDIX F: CASE OF L(1) = L(2)

Consider our results in Theorem 1 for the case in which
the network topologies in layers 1 and 2 are identical
(that is, L(1) = L(2) holds). Their eigenvalues are equivalent,
ρ

(1)
� = ρ

(2)
� ∈ [0, 2] for all � ∈ {1, . . . , N}. Region M shrinks

to line μ = μ1 = μ2 ∈ [0, 1] in (μ1, μ2) space. Therefore,
condition (b) in Theorem 1 can be simplified as follows.

There does not exist λ ∈ R for any μ ∈ [0, 1] such that
h(iλ,μ,μ) = 0 holds with the chosen (τ, K ).

APPENDIX G: SYSTEM (4) WITH REAL STATE
VARIABLES

The time-delay linear system (4) with complex state vari-
ables can be rewritten as

˙̂z(t ) = Â0ẑ(t ) + B̂ẑ(t − τ ) − kÂ1ẑ(t ), (G1)

Â0 :=

⎡
⎢⎢⎢⎣

(1 − K )IN −�1IN 0 0

�1IN (1 − K )IN 0 0

0 0 (1 − K )IN −�2IN

0 0 �2IN (1 − K )IN

⎤
⎥⎥⎥⎦,

Â1 := diag
(
L(1), L(1), L(2), L(2)

)
, B̂ :=

[
0 I2

I2 0

]
⊗ KIN ,

(G2)

with real state variables,

ẑ(t ) := [
Re

(
z(1)(t )

)�
Im

(
z(1)(t )

)�
Re

(
z(2)(t )

)�

Im
(
z(2)(t )

)�]�
, (G3)

where z( j)(t ) := [z( j)
1 (t ) · · · z( j)

N (t )]
�

, j ∈ {1, 2}. The
roots of the characteristic equation for the real state sys-
tem (G1) can be numerically found using the software tool
eigAM [87].
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