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The eigenvalue statistics are an important tool to capture localization to delocalization transition in physical
systems. Recently, a β-Gaussian ensemble is being proposed as a single parameter to describe the intermediate
eigenvalue statistics of many physical systems. It is critical to explore the universality of a β-Gaussian ensemble
in complex networks. In this work, we study the eigenvalue statistics of various network models, such as small-
world, Erdős-Rényi random, and scale-free networks, as well as in comparing the intermediate level statistics of
the model networks with that of a β-Gaussian ensemble. It is found that the nearest-neighbor eigenvalue statistics
of all the model networks are in excellent agreement with the β-Gaussian ensemble. However, the β-Gaussian
ensemble fails to describe the intermediate level statistics of higher order eigenvalue statistics, though there
is qualitative agreement till n < 4. Additionally, we show that the nearest-neighbor eigenvalue statistics of the
β-Gaussian ensemble is in excellent agreement with the intermediate higher order eigenvalue statistics of model
networks.
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I. INTRODUCTION

Random matrix theory serves as a powerful tool to study
various phenomena in physical systems and finds its applica-
tion in different fields of physics including statistical physics
[1], quantum chaos [2], condensed matter physics [3], and
high energy physics [4]. Random matrix theory (RMT) pro-
vides predictions for the spectral fluctuations of the systems
[5,6]. There are exactly three matrix classes to which spectral
statistics are compared: Gaussian orthogonal (GOE), unitary
(GUE), and symplectic (GSE) ensemble. The three different
classes are identified by the Dyson index, β = 1, 2, and 4
for GOE (real), GUE (complex), and GSE (quaternions), re-
spectively. The Dyson index here is equivalent to the number
of independent real variables needed to describe one entry
of the random matrices. Further, Dumitriu and Edelman [7]
introduce a β-Gaussian ensemble with tunable parameter β ∈
(0,∞) which not only covers GOE(β = 1), GUE(β = 2),
and GSE(β = 4) classes but also includes the Poisson level
statistics (β → 0).

In general, delocalized and localized phases are distin-
guished by the level statistics, fundamentally built on RMT.
More specifically, the eigenvalues in the delocalized phase are
correlated and follow GOE statistics. On the other hand, in the
localized phase the eigenvalues are uncorrelated and follow
Poissonian level statistics. Recently, it has been shown nu-
merically that the β-Gaussian ensemble interpolates smoothly
between the Poisson and the Wigner-Dyson level statistics
in studies of many-body localization for the entire transition
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from delocalized to localized phase [8]. Here, the parameter
β signifies the pairwise interactions of the eigenvalues taking
all the pairs into account. Consequently, Sierant et al. [9]
proposed the β-h model where the interactions between the
eigenvalues are restricted to h nearest neighbors. The β-h
model is also in good agreement with the intermediate level
statistics of many-body localization and in fact it has been
claimed to be more superior than the β-Gaussian ensemble.

On the other hand, network science has emerged as an
effective framework to understand many real-world complex
systems ranging from technological to social systems. In
network theory, the constituent element of the systems are re-
ferred to as nodes and interactions between them are captured
by links. There are three popular model networks proposed to
capture the properties of real-world complex systems which
are Erdös-Renyi random network [10], scale-free network
[11], and small-world network [12]. In the last two decades,
RMT has been able to show its potential to study and cap-
ture phase transitions in complex networks. For example, in
Ref. [13] RMT has been used to study the localization to delo-
calization transition in Erdös-Renyi random network, Cayley
tree, and Barabasi-Albert scale-free networks. In Ref. [14],
RMT has been applied on random geometric graphs (RGG)
to show the gradual transition from the Poisson to the GOE
statistics with the change in tunable parameter. Moreover,
Ref. [15] has shown the universality of eigenvalue spacing
distribution with the network size.

In this article, we study the relevance of β-Gaussian en-
semble in complex networks. We show that the β-Gaussian
ensemble is in excellent agreement with the nearest-neighbor
eigenvalue statistics of all the model networks considered
here. However, it fails to describe the higher-order eigenvalue
statistics though there is a qualitative agreement till n < 4.
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Furthermore, we find that the nearest-neighbor eigenvalue
statistics of the β-Gaussian ensemble is in excellent agree-
ment with the intermediate higher order eigenvalue statistics
of model networks.

II. METHODS AND TECHNIQUES

The joint probability distribution for the eigenvalues {λi}
of N-dimensional matrices from the Gaussian ensembles is
given by

ρ(λ1, . . . , λn) = Cβ,N

∏
i< j

|λi − λ j |β
N∏

i=1

e− β

2 λ2
i , (1)

where Cβ,n is a known normalization constant.
Dumitriu and Edelman [7] have studied the eigenvalue

properties of a tridiagonal symmetric matrix (Tnβ) whose di-
agonal elements are random numbers from standard normal
distribution while the off-diagonal elements on both sides of
the diagonal line are taken from χ distribution with a degree of
freedom being equal to (n − 1)β for matrix elements Tn,n+1,

T = 1√
β

⎛
⎜⎜⎝

N (0, 1) χ(n−1)β 0 . . . 0
χ(n−1)β N (0, 1) χ(n−2)β 0 . . .

...
...

...
. . . χβ

0 . . . 0 χβ N (0, 1)

⎞
⎟⎟⎠.

(2)

The joint probability distribution of eigenvalues of such
matrices can still be described using the same equation as that
of random matrices[Eq. (1)], but the β value is not limited to
1, 2, and 4, and in fact, it can take on any continuous value
within the range β ∈ (0,∞). There exist numerous works on
the β ensemble in physical and mathematical contexts. The
β-Gaussian ensemble has been extensively studied in terms of
eigenvalues properties [16], eigenvector properties [17], fluc-
tuations [18,19], and operators [20]. The distribution of the
consecutive eigenvalue spacings is the widely used spectral
measure to compare the spectral statistics in RMT. However,
unfolding of the original eigenvalues is required to separate
the global and smooth part [21]. To unfold the eigenvalues,
there are no unique procedures and it may sometimes lead
to misleading results [22]. To address this issue, Oganesyan
and Huse [23] introduced a new parameter called the ratio
of consecutive eigenvalue spacings (r). This parameter is not
constrained by unfolding procedures and also incurs low com-
putational cost. The ratio of consecutive eigenvalue spacing is
defined as follows [23]:

ri = min(si+1, si )

max(si+1, si )
, (3)

where si = λi+1 − λi is the spacing between eigenvalues λi+1

and λi with i ∈ (1,2,3, . . . , N-1). In the subsequent years,
Ref. [24] derived the exact distribution function of r for GOE,
GUE, and GSE ensembles, and the distribution function [P(r)]
is given by Eq. (4):

P(r) ∼ (r + r2)β

(1 + r + r2)1+ 3
2 β

. (4)

Further, the distribution function for Poisson statistics is given
by Eq. (5):

P(r) ∼ 2

1 + r2
. (5)

The theoretical average value of r for the GOE, GUE,
and GSE classes is estimated to be 0.537, 0.60, and 0.67,
respectively, while for Poisson statistics, the average value
of r is equal to 0.38. Furthermore, we have also employed
nonoverlapping higher order spacing ratio in our study which
is defined as

rn
i = min

(
sn

i+n, sn
i

)

max
(
sn

i+n, sn
i

) i, n = 1, 2, 3, . . . , (6)

where sn
i = λi+n − λi. Additionally, the distribution function

of higher order ratio P(rn) satisfies the following equa-
tions [25,26]:

P(rn, β ) = P(r1, β ′), (7)

where

β ′ = n(n + 1)β

2
+ (n − 1). (8)

III. MODEL

A network is made up of a set of nodes
V = {v1, v2, v3, . . . , vN } and a set of links E =
{e1, e2, e3, . . . , eM}, where N and M represent the number of
nodes and the number of links in the network, respectively.
Conventionally, a network is expressed by its adjacency
matrix A with Ai j = 1 if nodes i and j are connected, and
zero otherwise. To study the localization to delocalization
transition through eigenvalue statistics, we introduce disorder
into the diagonal elements of the adjacency matrix. The
diagonal elements, denoted as Dii, are sampled from the
uniform distribution (−w,w) of width 2w. We consider
three popular network models in our analysis: (i) small-world
networks, (ii) scale-free networks, and (iii) Erdős-Rényi
random networks. We construct small-world networks using
the Watts and Strogatz algorithm, as follows. We first build
a regular network where each node has an equal number
of neighbors or an equal degree. We then randomly rewire
each link of the network with a probability pr such that
0 < pr � 1. The rewiring procedure will alter two major
structural features of the network: clustering coefficient and
average shortest path length. Initially, for a small rewiring
probability, the average shortest path length decreases
drastically while the clustering coefficient remains at a very
high value consistent with that of regular networks. As the
rewiring probability increases further, the average shortest
path length has attained the value of random networks, and the
clustering coefficient also starts decreasing. Thus, the rewiring
procedure transforms a regular network colored into a random
network via a small-world network characterized by a very
high clustering coefficient and a very small characteristic path
length [12]. We construct scale-free networks by following
a BA preferential model [11]. In this model, a network with
m0 nodes is first constructed and a new node at each time
step having m connections is added to the network such that
m � m0. The new node’s attachment to an existing node i
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TABLE I. The value of 〈r〉 for various β values.

β 〈r〉 β 〈r〉
0.01 0.382 0.6 0.502
0.1 0.412 0.7 0.514
0.2 0.434 0.8 0.526
0.3 0.456 0.9 0.532
0.4 0.467 0.95 0.543
0.5 0.492 1 0.545

is determined by a probability proportional to ki where ki is
the degree of the ith node and thus incorporates preferential
attachment. It is easy to verify that after t time steps, the
network will have t + m0 nodes and mt connections, with
degree distribution following power law. ER random networks
are created using the ER model [27] as follows. For given
network parameter N nodes and 〈k〉 average degree, each pair
of the nodes can form links with a probability p = 〈k〉/N .

IV. RESULTS

In this section, we investigate the universality of
β-Gaussian ensembles in networks through the intermedi-
ate level statistics of delocalization to localization transition.
First, we generate the Gaussian beta ensemble following
Eq. (2) for N = 104 with ten random realizations for various
values of β. Next, we numerically diagonalize the β-Gaussian
ensemble and compute its eigenvalues. Subsequently, we cal-
culate the consecutive eigenvalue spacing ratio and nth order
eigenvalue spacing ratio of β-Gaussian ensemble. Thus, for
each value of β, we obtain the corresponding 〈r〉 value. It is
important to note that, unlike the approach in [8], we do not
unfold the eigenvalues and also consider all the eigenvalues
of the spectrum to reduce computational costs. This leads
to a slightly different correspondence between β and 〈r〉,
compared to [8], as shown in Table I. If we limit our analysis
to eigenvalues closer to zero, the relationship between 〈r〉
and β remains relatively stable as long as 0.20 < dλ, where
dλ is the width on both sides of λ ≈ 0. It is only when dλ

falls below 0.20 that noticeable variations in the relationship
between 〈r〉 and β become evident. When dealing with small
values of dλ, a substantial number of realizations are neces-
sary to ensure the statistical robustness of the analysis, which
is computationally exhaustive. We will use 〈r〉 to determine β

and subsequently compare the intermediate level statistics of
the model networks with that of the β-Gaussian ensemble.

Ratio of consecutive eigenvalue spacing: We first probe the
small-world networks and study its eigenvalue statistics. We
focus on eigenvalues within the central part of the spectrum,
approximately extending 0.5 on both sides of λ ≈ 0 which
is a standard procedure in the study of eigenvalue statistics
[28]. Further, we wish to emphasize here that a slight increase
or decrease in the width does not affect the results and 〈r〉
remains constant for 0.25 � dλ � 3. In [29], it was shown
that increasing the diagonal disorder strength leads to gradual
transition in the eigenvalue statistics of small-world networks
from the GOE to Poisson statistics. Additionally, it was found
that the critical disorder required to obtain the Poisson statis-
tics increases with the increase in the rewiring probabilities.

FIG. 1. Distributions of consecutive eigenvalue spacing ratios
of the small-world networks at various values of disorder strength
denoted with solid lines. The corresponding distributions for the
β-Gaussian ensemble are represented by dashed lines with an iden-
tical scheme of symbols and colors. (a) pr = 0.001, (b) pr = 0.01,

(c) pr = 0.1, and (d) pr = 1. We consider N = 2000 and 〈k〉 = 10
with 100 realizations.

Note that the critical disorder required to obtain the localiza-
tion transition is usually obtained by performing finite size
analysis with various system sizes. In the absence of finite size
scaling analysis, for a fixed N = 2000, we consider the critical
disorder (wc) to be the value at which eigenvalue statistics
exhibit Poisson statistics. In Fig. 1, we plot the probability
distribution P(r) of the consecutive eigenvalue spacing ratios
of the small-world networks for various rewiring probabilities.
In the same figure (Fig. 1), we also plot the corresponding
probability distribution P(r) of the β-Gaussian ensemble. It
is clearly visible from the figure that the level statistics of the
β-Gaussian ensemble is in excellent agreement with the level
statistics of the small-world networks. Next, in Fig. 2, we plot
the probability distribution P(r) of the Erdős-Rényi random
and scale-free networks. These two network types have been

FIG. 2. Distributions of consecutive eigenvalue spacing ratios
of the ER and SF networks at various values of disorder strength
denoted with solid lines. The corresponding distributions for the β-
Gaussian ensemble are represented by dashed lines with an identical
scheme of symbols and colors. (a) ER networks and (b) SF networks.
We consider N = 2000 and 〈k〉 = 10 with 100 realizations.
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FIG. 3. 〈rn〉 against diagonal disorder for various rewiring prob-
abilities of small-world networks. (a) pr = 0.001, (b) pr = 0.01,

(c) pr = 0.1, and (d) pr = 1. We consider N = 2000 and 〈k〉 = 10
with 100 realizations.

extensively studied and exhibit localization transition cap-
tured by the level statistics [13,30,31]. It is evident from Fig. 2
that the level statistics of the β-Gaussian ensemble provide an
accurate description of the intermediate level statistics of the
model networks.

Higher order spacing ratios: In this section, we explore
the universality of β-Gaussian ensemble in describing the
higher-order level statistics. We obtain the higher order spac-
ing ratio (rn) using Eq. (6) and compute 〈rn〉. The higher
order eigenvalue statistics have also been found to be useful
in understanding the behavior of the level statistics [8,32–34].
In Fig. 3, we first present the behavior of 〈rn〉 for various
values of n with the change in diagonal disorder. Notably,
for given network parameters, N = 2000 and 〈k〉 = 10, it re-
quires a very large value of disorder strength to reach Poisson
statistics. Furthermore, as the disorder strength increases, the
number of eigenvalues closer to zero also decreases. Thus,
to keep the analysis statistically sound, we restrict to n � 8.
We find that in the absence of diagonal disorder (w = 0) and

FIG. 4. 〈rn〉 against diagonal disorder for ER and SF networks.
(a) ER networks and (b) SF networks. We consider N = 2000 and
〈k〉 = 10 with 100 realizations.

FIG. 5. Distributions of higher-order spacing ratios of small-
world networks at various values of disorder strength are denoted
with solid lines. The corresponding distributions for the β-Gaussian
ensemble are represented by dashed lines with an identical scheme of
symbols and colors. We consider N = 2000 and 〈k〉 = 10 with 100
realizations. The first, second, third, and fourth rows correspond to
the cases when pr equals 0.001, 0.01, 0.1, and 1, respectively.

n > 2, 〈rn〉 increases with the increase in the rewiring prob-
ability up to pr � 0.01. However, for pr > 0.01, it reaches
a constant value and no longer changes with the further
adjustments to rewiring probabilities. This behavior can be
explained as follows. With an increase in the rewiring prob-
ability, the randomness in the network architecture increases,
leading to correlations between eigenvalues even at the longer
ranges [35]. Consequently, 〈rn〉 exhibits an increasing trend.
However, when the network achieves a sufficient level of
randomness (pr > 0.01), 〈rn〉 becomes constant and remains
unaffected by further changes in rewiring probability. When
diagonal disorder is introduced, it is found that 〈rn〉 decreases
with increasing disorder strength and becomes saturated after
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FIG. 6. �rn against n for various values of diagonal disorder
of small-world networks. (a) pr = 0.001, (b) pr = 0.01, (c) pr =
0.1, and (d) pr = 1. We consider N = 2000 and 〈k〉 = 10 with
100 realizations. Diagonal disorder from top to bottom (a) w =
1, 2, 3, 4, (b) w = 4, 6, 8, 10, (c) w = 12, 16, 20, 28, and (d) w =
18, 36, 48, 60. The corresponding β-Gaussian prediction is a solid
line with an identical color scheme.

the critical disorder (wc). It is worth noting that for each
rewiring probability, 〈rn〉(wc) takes on the same constant
value, similar to 〈r1〉(wc), which follow the Poissonian value.
We find that 〈rn〉(wc) ≈ 0.510 ± 0.01, 0.619 ± 0.01, 0.669 ±
0.01, 0.715 ± 0.01 for n = 2, 4, 6, 8 for all rewiring proba-
bilities. Further, in Fig. 4, we also plot the behavior of 〈rn〉

FIG. 7. Distributions of higher-order spacing ratios of ER and SF
networks at various values of disorder strength are denoted with solid
lines. The corresponding distributions for the β-Gaussian ensemble
are represented by dashed lines with an identical scheme of symbols
and colors. We consider N = 2000 and 〈k〉 = 10 with 100 realiza-
tions. The first and second rows correspond to ER and SF networks,
respectively.

FIG. 8. Distributions of higher-order spacing ratios of small-
world networks at various values of disorder strength are denoted
with solid lines. The corresponding nearest-neighbor distributions
for the β-Gaussian ensemble are represented by dashed lines with an
identical scheme of symbols and colors. We consider N = 2000 and
〈k〉 = 10 with 100 realizations. The first, second, third, and fourth
rows correspond to the cases when pr equals 0.001, 0.01, 0.1, and 1,
respectively.

against diagonal disorder strength for Erdős-Rényi random
and scale-free networks. It is evident from the figure that,
similar to the small-world networks, 〈rn〉 decreases with
increasing disorder strength and gets saturated for higher di-
agonal disorder strength.

To describe the level statistics of the physical system,
typically, P(rn) of the random matrix model (in our case,
its β-Gaussian ensemble) is compared with that of P(rn) of
the physical systems under consideration by finding out the
β value from corresponding 〈r1〉 value [8,9,36]. We plot the
distribution of higher-order ratios, P(rn), for various disorder
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FIG. 9. Distributions of higher-order spacing ratios of ER and SF
networks at various values of disorder strength are denoted with solid
lines. The corresponding nearest-neighbor distributions for the β-
Gaussian ensemble are represented by dashed lines with an identical
scheme of symbols and colors. We consider N = 2000 and 〈k〉 = 10
with 100 realizations. The first and second rows correspond to ER
and SF networks, respectively.

strengths in small-world networks in Fig. 5. It is important
to note that the corresponding level statistics of P(rn) for the
β-Gaussian ensemble is also plotted in Fig. 5. It is visible
from the figure that P(rn) of the β-Gaussian ensemble is in
qualitative agreement with the intermediate level statistics of
the small-world networks for n < 4 for all values of disorder
strength, consistent with the findings in [8]. To get a more
quantitative insight, we calculate �rn = 〈rn〉 − 〈rn

PS〉, where
〈rn

PS〉 represents the nth order spacing of Poissonian statistics.
Note that �rn measures the degree of correlation between the
eigenvalues at the nth scale [9]. From Fig. 6, it is evident that
for n � 2, �rn is overestimated when compared to predictions
from the β-Gaussian ensemble. Furthermore, in Fig. 7, we
plot the P(rn) for various disorder strengths in Erdős-Rényi
random and scale-free networks, respectively. The result is
consistent with that of small-world networks, and we find

that P(rn) of the β-Gaussian ensemble is only in qualitative
agreement for n < 4.

As according to Eq. (6), we have P(rn, β ) = P(r1, β ′)
with the relation followed by Eq. (8). Hence, we are also
interested in comparing the higher-order level statistics of
the model networks with the nearest-neighbor eigenvalue
statistics of the β-Gaussian ensemble, i.e., comparing P(rn)
of the model networks with the corresponding P(r1) of the
β-Gaussian ensembles. We first calculate 〈rn〉 and then deter-
mine the corresponding β value to obtain the level statistics
of corresponding β ensembles. Intriguingly, we find that the
nearest-neighbor eigenvalue statistics of β-Gaussian ensem-
bles closely align with the higher-order level statistics of the
small-world networks, as evident in Fig. 8. Next, in Fig. 9, we
check the results for Erdős-Rényi and scale-free networks and
it is found that the results are in good agreement similar to the
small-world networks.

V. CONCLUSION

To conclude, we have explored the universality of
β-Gaussian ensemble in describing the intermediate level
statistics of the localization transition in complex networks.
We have made several noteworthy observations which are
as follows. For the nearest-neighbor distribution, the level
statistics of the β-Gaussian ensemble perfectly describes the
intermediate level statistics of the model networks. However,
when it comes to higher-order spacing ratios, our findings
indicate that the level statistics of a β-Gaussian ensemble can
only be compared at a qualitative level until n < 4. Further-
more, we find that the nearest-neighbors eigenvalue statistics
of the β-Gaussian ensemble is in excellent agreement with the
intermediate higher order eigenvalue statistics of model net-
works. It is important to note that various models apart from
the β-Gaussian ensemble have also been proposed such as a
β-h model [9], mixed (Brownian) ensemble [37], Pechukas-
Yukawa distribution [38], and short-range plasma model [36],
to capture the intermediate level statistics of the many physical
systems.
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