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Wake dynamics in buoyancy-driven flows: Steady-state–Hopf-mode interaction
with O(2) symmetry revisited

Javier Sierra-Ausin ,1,2 David Fabre,1 and Edgar Knobloch 3

1UPS-IMFT, Allée du Professeur Camille Soula, 31000 Toulouse, France
2Università degli Studi di Salerno, 132 Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy

3Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA

(Received 14 July 2023; accepted 9 November 2023; published 12 January 2024)

We present a detailed mathematical study of a truncated normal form relevant to the bifurcations observed
in wake flow past axisymmetric bodies, with and without thermal stratification. We employ abstract normal
form analysis to identify possible bifurcations and the corresponding bifurcation diagrams in parameter space.
The bifurcations and the bifurcation diagrams are interpreted in terms of symmetry considerations. Particular
emphasis is placed on the presence of attracting robust heteroclinic cycles in certain parameter regimes. The
normal form coefficients are computed for several examples of wake flows behind buoyant disks and spheres, and
the resulting predictions compared with the results of direct numerical flow simulations. In general, satisfactory
agreement is obtained.
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I. INTRODUCTION

Bifurcation, defined here as a transition between two states
with different symmetry, is a key concept in many fields of
modern physics. Generally speaking, the larger the symmetry
of a problem, the greater is the number of ways the symmetry
may be broken, leading to the richest collections of bifurca-
tion scenarios. Equivariant bifurcation theory [1] constitutes
a mathematical framework for studying such problems and
predicts the possible states that may arise and the bifurcation
routes between them. A key idea for the parameter space
exploration of physical problems is the identification of points
of codimension two (or greater), namely, sets of parameters at
which two (or more) bifurcations arise simultaneously. The
richest range of possible behavior is usually encountered in
the vicinity of such points. The theory also provides a system-
atic procedure for constructing truncated dynamical systems
called normal forms that enable a classification of all admissi-
ble states near such codimension-two points and their stability
properties. This classification depends only on the symmetry
properties of the problem and is thus common to all problems
involving the same symmetry.

Fluid mechanics has proved to be a particularly rich play-
ground for the investigation of bifurcations [2]. The classical
problems for which bifurcation theory has proved both rele-
vant and helpful include, among others, Taylor–Couette flow
(TCF, [3,4]) and Rayleigh-Bénard convection (RBC, [5]).
Bifurcation theory is also relevant to wake flows, with the
wake of a fixed two-dimensional (2D) cylinder transverse
to the flow providing the classic example. Here the wake
experiences a Hopf bifurcation leading to the von Kármán
vortex street beyond Re ≈ 47, where Re is a suitably defined
Reynolds number. The case where the cylinder rotates was
recently shown to give rise to a much richer range of be-
havior that was also successfully explained using bifurcation
theory [6].

The present work is primarily devoted to transitions in
wake flows past axisymmetric objects (WFA) within a ho-
mogeneous fluid. The geometry which attracted the largest
number of studies is that of a sphere. Here experiments [7,8]
and numerical investigations [9–11] reveal a primary steady-
state bifurcation resulting in the loss of axisymmetry, followed
by a secondary bifurcation leading to reflection-symmetric
periodic states. The case of a rotating sphere, recently an-
alyzed in [12], reveals a primary bifurcation leading to a
rotating wave pattern. Secondary and tertiary bifurcations are
therein interpreted as the result of an interaction between three
rotating wave patterns. The cases of disks [13–15] and ellip-
soids [15] have also been investigated, revealing a collection
of new states and bifurcation scenarios involving the loss and
recovery of planar symmetry.

Two other related classes of problems will also be
considered here. The first is the path taken by objects in
free motion, such as rising bubbles or falling solid disks
(WFA-FO problem; see [16]). For falling or rising disks,
experiments [16–19]) and simulations [20,21] reveal a
rich range of possible behavior. As shown in [22], linear
stability analysis predicts correctly the primary bifurcations
for these flows, while weakly nonlinear analysis [23]
reproduces the zigzag path observed in experiments. The
case of a rising bubble proved to be more challenging. For
bubbles of a fixed ellipsoidal shape, linear stability analysis
predicts correctly the destabilization of the path observed
in experiments [24], while [25] conducted a linear stability
analysis for a deformable bubble, leading to the conclusion
that shape deformation plays little role in the resulting
dynamics.

The last class of problems considered here is closely re-
lated to the two previous ones and corresponds to wake
flows past fixed objects in a thermally stratified background
involving mixed convection due to Prandtl number effects
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(WFA-MC). Motivated by interest in the transition to a
turbulent wake in this system, the authors of Ref. [26]
conducted a parameter study using numerical simulations
at two different Prandtl numbers, Pr = 0.72 and Pr = 7.
For both ellipsoids and disks [15], a large collection of
states with various symmetry properties was revealed, closely
related to the states found in the two previous sets of
problems.

Fabre et al. [13] were the first to recognize that equivari-
ant bifurcation theory is relevant to these sets of problems,
and to note that the relevant spatial symmetry [correspond-
ing to the mathematical group O(2)] is the same as that in
Taylor-Couette flow, thus highlighting an unexpected analogy
between both systems. Fabre et al. thus reconsidered the nor-
mal form initially introduced in [3,4] for the TCF problem,
and showed that with an appropriate choice of the coefficients,
the dynamics of the flow past a sphere and a thin disk are cor-
rectly reproduced. Auguste et al. [14] successfully applied the
same approach to a thick disk. Subsequently, Meliga et al. [27]
reconsidered the case of the sphere and the thick disk using
a multiple scale analysis to determine the coefficients in the
normal form. Their results are in agreement with the numer-
ical simulations of [13], thereby confirming the relevance of
the approach. However, their derivation method is not fully
rigorous, as the problem is not strictly of codimension two.
However, exact codimension-two points were detected in both
the WFA-MC [26] and the WFA-FO [22] problems, indicating
that in these problems a rigorous normal form derivation may
be undertaken.

As previously mentioned, Golubitsky and collabora-
tors [3,28] investigated solutions of the normal form corre-
sponding to the state-state–Hopf interaction in the presence
of O(2) symmetry, with application to the TCF problem, ex-
ploring the dynamics up to secondary bifurcations. However,
they do not provide a systematic study of the problem, and
many details are left to the reader. Their study also overlooks
possible ternary bifurcation to states which are not observed in
the TCF problem but are nonetheless relevant to the problems
considered here. The purpose of this work is thus to revisit and
extend these results and to explain how they can be applied to
the TCF, WFA, and WFA-MC problems. Our method differs
from that of Golubitsky et al. [3,28] in several aspects:

(1) The study is restricted to a truncated problem where
only third-order nonlinearities are considered.

(2) Two systems are introduced: a polar coordinate rep-
resentation that eliminates the two continuous symmetries of
the system, and a second system written in its natural Hilbert
basis which reduces the dynamics to its fundamental domain.
These techniques, when systematically employed, reduce the
six-dimensional system to four dimensions and the fixed-point
solutions to a single representative of each group orbit and en-
able us to establish the presence of robust heteroclinic cycles
in this system.

(3) The amplification rates λs and λh of the two primary
modes are included explicitly in the unfolding of the problem.
Golubitsky et al. considered the amplification rates as unspec-
ified functions of a single control parameter only.

Our approach is thus much more in line with that used by
Hirschberg and Knobloch [29,30] for the related problem of
interaction of two steady-state modes with O(2) symmetry.

There are strong similarities between these two situations, as
emphasized in what follows.

The paper is organized as follows. Section II presents the
normal form and introduces a reduction to polar coordinates
that is used in what follows. Section III proposes a gen-
eral nomenclature for the various solutions of the problem.
Section IV reviews the fixed-point solutions of the normal
form: pure modes, mixed modes, and possible bifurcations of
higher order. Section V considers a degenerate case in which a
number of details can be investigated analytically. Section VI
presents a numerical exploration of various solutions of the
truncated problem. Next, Sec. VII explains how the various
results can be used to construct consistent stability diagrams,
while Sec. VIII applies these results to the flow past a fixed ax-
isymmetric object, in particular, a disk and a sphere. The paper
concludes with a brief discussion in Sec. IX. Some technical
details are relegated to a pair of Appendixes. Background
to the techniques we use and their application to problems
arising in fluid mechanics may be found in [2].

II. NORMAL FORM AND REDUCTION
TO AMPLITUDE EQUATIONS

A. Problem parametrization

The flow state q = [u, p] is specified by the velocity field
u and the hydrodynamic pressure p (the WFA-MC also in-
cludes the temperature field T ). Near the mode interaction (a
codimension-two bifurcation) the flow state takes the form

q = Q0 + Re[a0(t )e−iθ q̂s]

+ Re[a1(t )e−iθ q̂h,−1 + a2(t )eiθ q̂h,1] + h.o.t. (1)

Here Q0 is the steady-state flow state that is invariant under
the action of the whole O(2) group, q̂s is the steady mode, and
q̂h is the Hopf (unsteady) mode. The ansatz in Eq. (1) takes
into account the continuous (translation or rotation) symmetry
via the terms e±iθ , where θ ∈ S1 is an angle-like variable in
the periodicity direction; for axisymmetric problems it corre-
sponds to the azimuthal angle, while in the TCF it corresponds
to the axial direction: θ ≡ −2πx/�, where � is the mode
wavelength. Here without loss of generality the azimuthal
wave number m is taken to be m = 1. Both the steady-state
flow and the eigenmodes are functions of other spatial vari-
ables (radial distance and azimuthal angle for the TCF; radial
and axial distances for axisymmetric wake problems), but this
dependence is not of importance here.

In the following we shall be interested in the dynamics
arising from the interaction between the amplitude a0 of
the steady mode and the amplitudes a1, a2 of the left- and
right-rotating waves associated with the Hopf mode. All three
amplitudes are in general complex functions of the time t ,
and their behavior near the mode interaction is described by
normal form theory.

B. Universal normal form

The normal form is obtained in a standard way: provided
the original system of equations is �-equivariant under the
group � ≡ O(2) × S1, the normal form must also be �-
equivariant. The Hilbert-Weyl and Poénaru theorems, stated
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in [28, Ch. 1], ensure the existence of a finite set of �-
equivariant polynomials generating the �-equivariant Taylor
expansion (at the origin) of any smooth mapping. The group
� acts on C3, which decomposes into irreducibles C ⊕ C2

corresponding to the steady and Hopf modes. The action of
the group � is generated by rotations Rα , reflection κ , and
the temporal phase shift 	 of the Hopf mode. The canonical
representation of these actions is as follows:

Rα : (a0, a1, a2) → (a0eiα, a1eiα, a2e−iα ),

	 : (a0, a1, a2) → (a0, a1eiφ, a2eiφ ),

κ : (a0, a1, a2) → (a0, a2, a1). (2)

Based on these considerations, Golubitsky et al. [3,28] show
that the resulting normal form can be written as follows:⎛⎜⎜⎝

ȧ0

ȧ1

ȧ2

⎞⎟⎟⎠ = (c1 + iδc2)

⎛⎜⎜⎝
a0

0

0

⎞⎟⎟⎠ + (c3 + iδc4)

⎛⎜⎜⎝
a0a1a2

0

0

⎞⎟⎟⎠

+ (p1 + iq1)

⎛⎜⎜⎝
0

a1

a2

⎞⎟⎟⎠ + (p2 + iq2)δ

⎛⎜⎜⎝
0

a1

−a2

⎞⎟⎟⎠

+ (p3 + iq3)

⎛⎜⎜⎝
0

a2
0a2

a2
0a1

⎞⎟⎟⎠ + (p4 + iq4)δ

⎛⎜⎜⎝
0

a2
0a2

−a2
0a1

⎞⎟⎟⎠,

(3)

where δ ≡ |a2|2 − |a1|2, and the 12 real quantities ci, pi and
qi, i = 1, 2, 3, 4, are functions of the control parameters and
of the five generators of the ring of invariant polynomials
under the action of the group �:

ρ ≡ |a0|2, N ≡ |a1|2 + |a2|2,  ≡ (|a2|2 − |a1|2)2,

η ≡ Re
(
a2

0a1a2
)
, ξ ≡ (|a2|2 − |a1|2)Im

(
a2

0a1a2
)
. (4)

Note that the term δ is not an invariant polynomial as its
sign changes under the reflection κ . This feature is of impor-
tance when checking the equivariance properties of the normal
form. That is, the terms of Eq. (3) proportional to δ are, in fact,
�-equivariant.

C. Normal form in polar coordinates

Using the polar representation of the complex amplitudes
a j = r jeiφ j for j = 0, 1, 2, Eq. (3) can be reduced to a system
of four coupled equations governing the amplitudes r0, r1, r2

and the phase � ≡ φ1 − φ2 − 2φ0:

ṙ0 = [c1 + c3r1r2 cos � − c4δr1r2 sin �]r0,

ṙ1 = [p1+δp2]r1+[(p3 + δp4) cos � + (q3+δq4) sin �]r2
0r2,

ṙ2 = [p1−δp2]r2+[(p3 − δp4) cos � − (q3−δq4) sin �]r2
0r1,

�̇ = 2(q2δ − c2δ − c3 sin � − c4δ cos �)

+ r2
0

r1r2
[(q3 + Nq4) cos � − (N p3 + p4) sin �]. (5)

This system is four-dimensional owing to the two continu-
ous symmetries of the system (3). Invariance under the action
of the phase shift 	 reduces the three angle-like variables
(φ0, φ1, φ2) to two (φ0, φ1 − φ2); invariance under the rota-
tions Rα then leads to the single phase �.

The polar system is equivariant under the action of the
group �ρ which is isomorphic to the Pauli group �ρ � D4 �

Z2, where the symbol � indicates the semidirect product be-
tween groups. The generators of the group are the reflection κ

and Rπ/2	π/2, the discrete rotation through π/2 with an equal
time shift. For the sake of conciseness, let us introduce the ac-
tion of the following group elements on the polar vector field:

κ : (r0, r1, r2, �) → (r0, r2, r1,−�),

Rπ/2	π/2 : (r0, r1, r2, �) → (r0,−r1, r2, � + π ),
(6)

Rπ	π : (r0, r1, r2, �) → (−r0, r1, r2, �),

Rπ/2	−π/2 (r0, r1, r2, �) → (r0, r1,−r2, � + π ),

where Rπ/2	−π/2 = κ · (Rπ/2	π/2)
3 · κ and Rπ	π =

(Rπ/2	π/2)2. In the next section, we present a classification
of the various solutions based on the polar representation.

D. Group-theoretic considerations

Branching of solutions is determined by the structure of the
isotropy lattice acting on fixed points of the normal form (3).
The isotropy subgroups of solutions that arise at primary
bifurcations correspond to maximal isotropy subgroups of �,
that is, isotropy subgroups that are not included in any other
isotropy subgroup other than � itself. Similarly, solutions aris-
ing at secondary bifurcations have isotropy subgroups that are
maximal in a subgroup strictly smaller than �. This process
continues until the trivial group is reached, corresponding to
the most general fixed point subspace of the normal form.

Prior to the introduction of the isotropy lattice of the nor-
mal form (3), let us introduce the following notation to denote

some isotropy subgroups of �: the group of rotations S̃O(2):

S̃O(2) ≡ {Rφ	−φ | φ ∈ [0, 2π )}, (7a)

and the group Zn(g), a cyclic subgroup generated by the
element g, satisfying gn = Id. In Sec. III we use the infor-
mation extracted from this lattice to determine the types of
invariant solutions admitted by the normal form. In addi-
tion to the isotropy subgroups of the complex normal form,
Table III lists the isotropy subgroups of the solutions of the
polar system (5).

E. Third-order normal form

Here we do not deal with the general case, and instead
consider a truncated form retaining only nonlinearities of third
order. Such a truncated system can be expressed in the follow-
ing explicit form:

ȧ0 = λsa0 + l0a0|a0|2 + l1(|a1|2 + |a2|2)a0

+ il2(|a2|2 − |a1|2)a0 + l3a0a2a1, (8a)

ȧ1 = (λh + iωh)a1 + [B|a1|2 + (A + B)|a2|2]a1

+Ca1|a0|2 + Da2
0a2, (8b)
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TABLE I. Correspondence of the real coefficients of the normal
form (8) with the literature.

λs λh ωh l0 l1 l2 l3

[3,28] c1
μ · μ p1

μ · μ q1
0 c1

ρ c1
N c2

0 c3
0

[4] α0μ + β0ν α1μ + β1ν ω0 c0 Re(d0) −Im(d0) f0

ȧ2 = (λh + iωh)a2 + [B|a2|2 + (A + B)|a1|2]a2

+Ca2|a0|2 + Da2
0a1, (8c)

where l0, l1, l2, l3 are real coefficients while A, B,C, D are
complex. The correspondence with the notation of Golubitsky
et al. [3,28] is reported in Tables I and II.

The system (8) thus corresponds to the polar equations

ṙ0 = [
λs + l0r2

0 + l1
(
r2

1 + r2
2

)]
r0

+ l3r0r1r2 cos �, (9a)

ṙ1 = [
λh + Brr2

1 + (Ar + Br )r2
2 + Crr2

0

]
r1

+ r2
0 r2(Dr cos � + Di sin �), (9b)

ṙ2 = [
λh + Brr2

2 + (Ar + Br )r2
1 + Crr2

0

]
r2

+ r2
0 r1(Dr cos � − Di sin �), (9c)

�̇ = (Ai − 2l2)
(
r2

2 − r2
1

) − 2l3r1r2 sin �

+ r2
0 Di cos �

[
r2

r1
− r1

r2

]
− r2

0Dr sin �

[
r2

r1
+ r1

r2

]
.

(9d)

Interestingly, the polar system involves only nine of the 13
original coefficients, namely, l0, l1, l3, Ar , Br , Cr , Dr , Di and
Ai − 2l2. The system (9) is decoupled from the evolution of
the phase φ0 and the “mean phase” of the Hopf component
φm = (φ1 + φ2)/2, which evolve according to

φ̇0 = l2
(
r2

2 − r2
1

) + l3r1r2 sin �, (10a)

φ̇m = ωh +
(

Bi + 1

2
Ai

)(
r2

1 + r2
2

) + Cir
2
0

+ 1

2
r2

0Di cos �

[
r2

r1
+ r1

r2

]
+ 1

2
r2

0Di sin �

[
r1

r2
− r2

r1

]
. (10b)

In addition, we introduce a system whose coordinates are
invariant under the group action, except for the reflection
symmetry in �. The resulting system is useful for studying
a particular degenerate case considered in Sec. V. The ad-
vantage of such a system is that the dynamics occur in the

TABLE II. Correspondence of the complex coefficients of the
normal form (8) with the literature.

A B C D

[3,28] 2(p2
0 + iq2

0 ) (p1
N − p2

0) + i(q1
N − q2

0 ) p1
ρ + iq1

ρ p3
0 + iq3

0

[4] e1 − d1 d1 c1 f1

“fundamental domain,” that is, there is only one representative
of each group orbit. The system is defined in terms of the
invariants

R = r2
0 , S = r2

1 + r2
2 , P = r1r2, Q = cos �. (11)

In terms of these coordinates, the evolution equations become

Ṙ = 2[λs + l0R + l1S + l3P]R, (12a)

Ṡ = 2[λh + BrS + CrR]S + 4[ArP + DrQR]P, (12b)

Ṗ = [λh + BrS + CrR]P + 4[ArP + DrQR]S

− DiR
√

(1 − Q2)(S2 − 4P2), (12c)

Q̇ =
[

2l3 + DrRS

P

]
(1 − Q2) +

[
(Ai − 2l2) − DiRQ

P

]
×

√
(1 − Q2)(S2 − 4P2). (12d)

In the study that follows, we take the nonlinear coefficients l j

( j = 1, 2, 3, 4) and A, B,C, D as constant and likewise for the
frequency ωh of the Hopf mode. The amplification rates λs and
λh will be used as unfolding parameters. Our study provides
predictions for the existence and stability of the possible solu-
tions in the (λs, λh) plane. To apply these results to the flows
we are interested in, we have to specify the dependence of
the amplification rates on the control parameters of the prob-
lem. The WFA problem employs a single control parameter
R, while the WFA-MC problem is specified by two control
parameters R1 and R2 related to the magnitude of the incoming
velocity and the temperature difference between the object
and the background, respectively. In this case, the amplifica-
tion rates can be assumed to have the following dependence:

λs = αs(R1 − R∗
1 ) + βs(R2 − R∗

2 ),

λh = αh(R1 − R∗
1 ) + βh(R2 − R∗

2 ), (13)

where R∗
1 and R∗

2 are the threshold values given by the linear
stability analysis of the axisymmetric steady state; for the
WFA problem βs = βh = 0.

In the TCF problem R1, R2 are related to the angular ve-
locities of the inner and outer cylinders; in the vicinity of the
bicritical (codimension-two) point (R∗

1, R∗
2) the amplification

rates can be assumed to depend linearly on the distance to this
point:

λs = c1
R1

(R1 − R∗
1 ) + c1

R2
(R2 − R∗

2 ),

λh = p1
R1

(R1 − R∗
1 ) + p1

R2
(R2 − R∗

2 ). (14)

Numerical values for (R∗
1, R∗

2 ) and for the parameters
c1

R1
, c1

R2
, p1

R1
, p1

R2
are tabulated in [3] for several values of the

radius ratio η < 1 (i.e., the ratio of the radii of the inner and
outer cylinders).

III. CLASSIFICATION OF THE SOLUTIONS

The nomenclature used to classify the various solutions
is given in Tables III and IV. We describe every possible
solution, although emphasis will be put on solutions that arise
generically in the third-order problem and in the degenerate
case considered in Sec. V.

To illustrate the various solutions graphically, we project
the four-dimensional phase space into a plane spanned either
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TABLE III. Nomenclature and symmetry groups of the steady-state solutions of the system (5).

Name Representative Isotropy group (complex) Isotropy group (polar) Frequency

Pure modes
TS (0, 0, 0, nd ) O(2) × S1 D4 � Z2(κ ) 0
SS (ra, 0, 0, nd ) Z2(κ ) × S1 Z2(κ ) × Z2(	π ) 0

RW (0, ra, 0, nd ) S̃O(2) Z4(Rπ/2	π/2) 1
SW (0, ra, ra, nd ) Z2(κ ) × Z2(Rπ	π ) Z2(κ ) × Z2(Rπ	π ) 1
Mixed modes
MM0 (ra, rb, rb, 0) Z2(κ ) Z2(κ ) 1
MMπ (ra, rb, rb, π ) Z2(κ · Rπ	π ) Z2(κ · Rπ	π ) 1
MW (0, ra, rb, �) Z2(Rπ	π ) Z2(Rπ	π ) 2
Precessing waves
General (ra, rb, rc, �) 1 1 2
Type A (ra, rb, rb, �) 1 1 2
Type B (ra, rb, rc, 0 or π ) 1 1 2
Type C (ra, rb, 0, �) 1 1 2

by the complex amplitude A(t ) or by A′
j (t ) for j = 0, 1, where

A(t ) ≡ a0(t ) + a1(t ) + a2(t ),

A′
j (t ) ≡ A(t )e−iφ j (t ), for j = 0, 1, (15)

hereafter referred to as the A projection and the A′ projection,
respectively.

The function A provides a global measure of the dynamics
of the system and combines contributions from both the steady
and unsteady components. In the wake problem, the real and
imaginary parts of A can be identified with the leading order
contribution to the lift forces in the y and z directions, respec-
tively. In the TCF problem they represent, for example, the
vorticity levels at two points located a quarter of a wavelength
apart in the periodicity direction.

The solutions that are stationary in the polar representa-
tion are summarized in Table III. The simplest solution is
the trivial solution [TS: (a0, a1, a2) = (0, 0, 0)]. This solution
corresponds to Couette flow in the TCF problem, and to
the axisymmetric solution in the WFA and WFA-MC prob-
lems. In the A projection this solution corresponds to the

origin [Fig. 1(a)]. There are three primary solutions: steady-
state modes (SSs), rotating waves (RWs), and standing waves
(SWs). The steady-state mode (SS) takes the form (a0, 0, 0),
a0 
= 0. This state corresponds to the Taylor vortex state in
the TCF problem and the steady shedding mode in the wake
problems. In the A projection, this state is represented by
an off-center point [Fig. 1(b)]. As shown in Table V and in
Fig. 1(b) using a thin dashed-dotted line, there is a circle
of such states related by the rotations Rφ0 ; each state is in
addition reflection-symmetric.

The RW and SW solutions arise in a primary Hopf bi-
furcation of the trivial state. Because of the O(2) symmetry,
the eigenvalues at the Hopf bifurcation are doubled, and the
Hopf bifurcation produces simultaneously a branch of rotat-
ing waves [RWs: (a0, a1, a2) = (0, a1, 0)] and standing waves
[SWs: (a0, a1, a2) = (0, a1, a1)]. The RWs break reflection
symmetry; consequently, there are two RWs, rotating in op-
posite directions and related by reflection. In contrast, the
SWs are reflection-symmetric oscillations with zero mean. In
the TCF problem the RWs correspond to the spiral vortex
state, while in the wake problem they correspond to the spiral

TABLE IV. Nomenclature and symmetry groups of limit cycle solutions of the system (5).

Name Representative Frequencies
of solution in polar coordinates Isotropy group in primitive coordinates

M̃M0,π (ra(t ), rb(t ), rb(t ), 0 or π ) 1 2
IMM (0, rb, rc, �(t )) 1 2
PuWs (ra(t ), rb(t ), rc(t ), �(t )) 1 2

with rb = rc and sin � = 0
3-frequency waves (3FW)
General (ra(t ), rb(t ), rc(t ), �(t )) 1 3
Type A (ra(t ), rb(t ), rb(t ), �(t )) 1 3

with sin � 
= 0
Type B (ra(t ), rb(t ), rc(t ), 0 or π ) 1 3

with rb 
= rc

Type C (0, rb(t ), rc(t ), nda) 1 3
with rb 
= rc

Type D (ra(t ), rb(t ), 0, �(t )) 1 3
with sin � 
= 0

a‘nd’ refers to ‘not defined’.
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TABLE V. Defining equations and eigenvalues of primary branches in the third-order normal form (8).

Name of solutions
(condition for supercriticality) Definition Eigenvalues Notes

Pure modes:
TS r0 = r1 = r2 = 0 λs (twice) Bif. to SS

λh ± iωh (twice each) Bif. to SW and RW

SS r0 =
√

− λs
l0

≡ rP 0 Inv. under rotation

l0 < 0 φ0 arbritrary 2l0r2
P Bif. from TS

r1 = r2 = 0 λh + iωh + (C + D)r2
P and c.c. Bif. to MM0

λh + iωh + (C − D)r2
P and c.c. Bif. to MMπ

SW r1 = r2 =
√

− λh
(2Br+Ar ) ≡ rS 0 Inv. under time shift

2Br + Ar < 0 r0 = 0 0 Inv. under rotation
φ1 − φ2 arbitrary (4Br + 2Ar )r2

S Bif. from TS
φ̇1 = φ̇2 = ωh + (2Bi + Ai )r2

S −2Arr2
S Bif. to RW

λs + (2l1 + l3)r2
S Bif. to MM0

λs + (2l1 − l3)r2
S Bif. to MMπ

RW r1 =
√

− λh
Br

≡ rR 0 Inv. under time shift + rotation

Br < 0 r0 = r2 = 0 2Brr2
R Bif. from TS

φ̇1 = ωh + Bir2
R Ar2

R and c.c. Bif. to SW
λs + (l1 + il2)r2

R and c.c. Bif. to PrW

shedding state, observed, for example, in the wake of a rising
bubble [31]. In the A projection, the RW state corresponds to
a limit cycle centered at the origin [Fig. 1(c)], while the SW
state is represented by a radial oscillation through the origin
[Fig. 1(d)]. In the TCF problem, the SWs correspond to the
ribbon state, while in the wake problem they correspond to
the symmetric periodic shedding state observed, for example,
in the wake of a disk when R ≈ 150. As for SS, there is a
circle of SW states related by rotations; see Fig. 1(d). Each of
these solutions corresponds to a one-dimensional fixed point

FIG. 1. (a) Trivial state TS and primary branching solutions (b)
SS, (c) RW, and (d) SW in the complex A plane.

subspace spanned either by a0 or a1, and their presence is
therefore guaranteed by the equivariant branching lemma.

Secondary bifurcations may lead to states with a higher-
dimensional fixed point subspace. These states correspond to
the next rung of the lattice of isotropy subgroups. An example
is provided by mixed mode states that correspond to a (non-
linear) superposition of the SS and SW modes. There are two
possible states of this type. The first is denoted by MM0 and
corresponds, respectively, to a pattern called twisted vortices
in the TCF problem and to the reflection symmetry-preserving
mode (RSP) in the wake problem. In the A projection the
solution oscillates back and forth in the radial direction but
now with nonzero mean [Fig. 2(a)]. The second mixed mode,
MMπ , corresponds, respectively, to wavy vortices in the TCF
problem and to the reflection symmetry-breaking mode (RSB)
in the wake problem. In the A projection, this solution corre-
sponds to a back-and-forth along a line segment perpendicular
to the radial direction [Fig. 2(b)]. The phase φ0 of both these
states is arbitrary. In other words, there is a circle of solu-
tions of each type, as indicated in Fig. 2(a) and Fig. 2(b).
Finally, one can also find a mixed mode state involving the
Hopf modes, referred to as a modulated wave state (MW),
consisting of a (nonlinear) superposition of two rotating wave
modes, and characterized in [32]. This state is referred to as
the modulated spiral mode (MSP) in the TCF problem and
the modulated wave mode (MW) in the wake problem. It is
a state with two temporal frequencies, which are in general
incommensurate, and so corresponds to a 2-torus as sketched
in Fig. 2(c). This type of solution does not occur generically
in the third-order system, although it arises in higher order
normal forms or in the degenerate case corresponding to Ar =
0 [33].

The last solution type, that is, a state arising in a tertiary
bifurcation, corresponds to a fixed point in the (r0, r1, r2, �)
coordinates with no further symmetry. According to Eq. (10),
in such states the phase φ0 of the steady mode generically
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FIG. 2. Secondary states (a) MM0, (b) MMπ , and (c) MW in the
complex A plane. (d) A′

1 projection of the MW state.

precesses at a constant rate given by φ̇0. Consequently, states
of this type display two frequencies, one of which is close to
the critical Hopf frequency while the other is a low frequency
given by Eq. (10a). Such modes have been called “modulated
rotating waves” in [3], but here we prefer to avoid the am-
biguous word “modulated,” which has been used to describe a
large variety of very different states in the past. Instead, these
solutions will be referred to as precessing waves (PrWs) or
“drifting waves.”

The precession of these states is best appreciated in the
A′ projection, showing the state in a frame of reference pre-
cessing with the steady-state component a0. In this frame
of reference, the PrW is periodic and takes the form of an
ellipse [Fig. 3(b)]. Note that in this representation the po-
lar coordinates (r0, r1, r2, �) can be interpreted graphically:
r0 is the distance of the center of the ellipse to the origin,
(r1 + r2)/2 and (r1 − r2)/2 are the major and minor axes, and
� is twice the angle between the major axis of the ellipse and
the direction of the steady-state component.

There are in fact four types of PrWs, as explained in
Table III. The general solution, PrW general, occurs generi-
cally in the third-order normal form and corresponds to the
most general fixed-point solution of Eq. (9). In addition, there

FIG. 3. Tertiary state PrW. (a) A projection. (b) A′
0 projection.

FIG. 4. The modulated mixed mode M̃Mπ in the complex A
plane. (a) A projection. (b) A′

0 projection.

are special PrW states. The first two, called PrW type A and
type B, do not occur generically in the third-order problem,
but they are found in normal forms of higher order or in
the degenerate case considered in Sec. V. The third solution,
PrW type C, is another degenerate solution that arises in
the third-order normal form but only when the three condi-
tions Ai − 2l2 = Dr = Di = 0 are satisfied. The solutions that
are periodic in the polar representation are summarized in
Table IV. We distinguish three types of solutions. The first
type is referred to as a modulated mixed mode, since it dis-
plays the same spatial symmetries as the mixed modes already
described. For example, in the A projection the modulated
mixed mode state M̃Mπ evolves on a 2-torus, whose shape re-
sembles that of MMπ [Fig. 4(a)]. The A′

0 projection [Fig. 4(b)]
yields an identical but rotated picture, indicating that the phase
of the steady-state component remains constant. The related
state M̃M0 is not displayed, since its A projection is identical
to that of the MM0 state. Its modulus |A|, however, pulsates
with two independent frequencies.

We also find periodic states we call pulsating waves
(PuWs). In such states, the polar coordinates (r0, r1, r2, �)
all oscillate periodically in time, but the pulsation retains a
certain symmetry. Specifically, r1 = r2 and sin � = 0, where
the overbar indicates an average over the pulsation period.
According to Eq. (10) the phase φ0 of the steady-state com-
ponent also pulsates periodically, but the average value of its
derivative over one pulsation period vanishes. Consequently,
the pattern does not precess. In the A projection, the solution
evolves on a 2-torus that remains confined within a given
angular sector [Fig. 5(a)], indicating the absence of net pre-
cession. The A′

0 projection [Fig. 5(b)] also reveals a 2-torus,
albeit of different form.

FIG. 5. Pulsating wave PuW in the complex A plane. (a) A pro-
jection. (b) A′

0 projection.
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FIG. 6. Three-frequency wave 3FW in the complex A plane. (a)
A projection. (b) A′

0 projection.

The last type of periodic solution corresponds to the
case where the (r0, r1, r2, �) variables are once again time-
periodic, but the conditions r1 = r2 and sin � = 0 are
violated. In the A projection, this state appears irregular [Fig. 6
a], while the A′

0 projection [Fig. 6(b)] revels a 2-torus. In fact,
this solution actually evolves on a 3-torus, owing to net drift
in the phase φ0. We call these states three-frequency waves
(3FWs), since they are characterized by a frequency near the
critical Hopf frequency, the pulsation frequency, and finally
the precession frequency.

The classification of the solutions of the generic steady-
Hopf interaction with O(2) symmetry presented by Golubit-
sky et al. [3,28] and covered in Sec. II D is based on maximal
isotropy subgroups of the symmetry group O(2) × S1 of the
normal form. The isotropy lattice of the normal form (3) is
represented in Fig. 7. This technique predicts the existence
up to tertiary bifurcations of fixed points of the complex
normal form (3). These isotropy subgroups correspond to the
symmetries of the solutions within the fixed point subspace
of each isotropy group (cf. Table III). However, several of the
states identified here have trivial symmetry (denoted by 1),
and their existence cannot be established by group-theoretic
arguments alone. Thus, the polar representation introduced
here is helpful for the explicit computations required to es-
tablish the presence of these more complex states.

IV. DYNAMICS OF THE SOLUTIONS

In this section we describe the various solutions of the
truncated third-order system (8). We summarize not only the

FIG. 7. Lattice of isotropy subgroups of the symmetry group �

(resp. �ρ).

solutions but also their stability properties, assuming that all
necessary nondegeneracy conditions hold.

A. Pure modes

Table V contains the definition and eigenvalues of the
trivial state and of the pure modes. Since the polar angle �

is undefined for these states, the results are obtained from the
primitive amplitude equations (8). Therefore, six eigenvalues
are listed for each branch. The condition for supercriticality
of the primary branch is also given. This can be deduced from
elementary considerations. For example, the SS branch is su-
percritical if l0 < 0, as can be seen in both the equation for the
branch (which is then defined for λs > 0) and the first nonzero
eigenvalue (which is then negative, implying that stability has
been transferred to the SS branch). The conditions for su-
percriticality also provide the conditions for the subcriticality
(if the corresponding parameter has the opposite sign) and
nondegeneracy (if the corresponding quantity is nonzero).

The bifurcation at λh = 0 is the standard Hopf bifurca-
tion with O(2) symmetry and so gives rise simultaneously to
branches of RWs and SWs. The RWs rotate counterclockwise
(clockwise) when ωh > 0 (ωh < 0). Reflection symmetry
implies that for each RW (r1, r2) = (r1, 0) there is also a
RW (r1, r2) = (0, r1) rotating in the opposite direction. The
condition Ar = 0 represents a degeneracy that is analyzed
theoretically in [1,2,33,34]. In the vicinity of this degeneracy,
two-frequency states are present, and these are analyzed in
Appendix B.

B. Mixed modes

The defining equations for the mixed modes are given
in Table VI. We differentiate between nondegenerate solu-
tions of the third-order truncated normal form, which are the
mixed modes of type MM0,π , and degenerate solutions, which
are the modulated wave modes (MWs) briefly discussed in
Appendix B. The nondegeneracy conditions for the existence
of MM branches are ± = (2Br + Ar )l0 − (2l1 ± l3)(Cr ±
Dr ) 
= 0, with the positive sign for MM0 and the negative sign
for MMπ . Inspection shows that these states bifurcate super-
critically from the SS branch if ±l0 < 0 and from the SW
branch if ±(2Br + Ar ) < 0. Modulated wave modes (MWs)
are degenerate solutions of the third order normal form (9) and
exist when Ar = 0 and l3 sin � 
= 0.

At this point, it is interesting to point out the similarities
between the present problem and the related problem of the
interaction between two steady-state modes with opposite par-
ity analyzed by Hirschberg and Knobloch [29,30]. The latter
problem has two pure modes and two mixed modes, which
are defined by equations similar to those defining our SS and
SW pure modes and our mixed modes. So, if we restrict to
the subspace generated by the SS and SW pure modes, all the
results of Hirschberg and Knobloch [29,30] can be directly
applied to the present case. This is not so, however, within the
system (8), which reveals the presence of additional secondary
bifurcations (see below).
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TABLE VI. Defining equations and eigenvalues of mixed modes in the third-order normal form (8).

Name of solutions
(condition for supercriticality) Definition Eigenvalues Notes

MM0 r2
a = (2l1+l3 )λh−(2Br+Ar )λs

+ eigs of M+
a Bif. to M̃M0

+ 
= 0 r2
b = (Cr+Dr )λs−l0λh

+ eigs of M+
b Bif. to PrW and/or PuWs

+ = (2Br + Ar )l0 − (2l1 + l3)(Cr + Dr )

MMπ r2
a = (2l1−l3 )λh−(2Br+Ar )λs

− eigs of M−
a Bif. to M̃Mπ

− 
= 0 r2
b = (Cr−Dr )λs−l0λh

− eigs of M−
b Bif. to PrW and/or PuWs

− = (2Br + Ar )l0 − (2l1 − l3)(Cr − Dr )

MW r2
a = 1

2 [ − Ar
2p2

N
−

√
χ

4p1


p2
N

] −2r2
SW(Ar + 4r2

SW p2
N ) Bif. from/to SW

2Br + Ar < 0, Ar > 0 r2
b = 1

2 [ − Ar
2p2

N
+

√
χ

4p1


p2
N

] −r2
RW(Ar − 2r2

RW p2
N ) Bif. from/to RW

p2
N < 0, p1

 < 0 λs − l1
Ar
p2

N
Bif. to PrW or 3FW

Existence I: Ar/p2
N < 0

Existence II: 0 <
χ

p1


p2
N

<
A2

r
(p2

N )2 χ = Ar (Ar + 2Br ) − 4p2
N − Ar

p1
N2

p2
N

λh

C. Stability of mixed modes and tertiary bifurcations

Higher order bifurcations can be detected by linearizing
the normal form (8) around the mixed modes in Table VI.
Working with the primitive equations, as done in Golubitsky
et al. [28], leads to the same results, but the procedure is
more involved. Within the polar representation four eigenval-
ues need to be computed; the remaining eigenvalues are both
zero owing to the two continuous symmetries representing
the invariance of the mixed modes under rotation and time
translation.

1. Mixed modes

To obtain the results listed in Table VI, consider the fol-
lowing expansion: r0 = ra + x0, r1 = rb + x1, r2 = rb + x2,
and � = �0 + ψ , with either �0 = 0 for MM0 or �0 = π

for MMπ ; in either case we suppose the perturbation is in-
finitesimal, |x0|, |x1|, |x2|, |ψ | � 1. In terms of the quantities
ρ = x1 − x2 and xM = (x1 + x2)/2 the resulting liner stability
problem is block-diagonal:(

ẋ0

ẋM

)
= M±

a

(
x0

xM

)
with

M±
a = 2

(
l0r2

a (2l1 ± l3)rarb

(Cr ± Dr )rarb (2Br + Ar )r2
b

)
,

(
ρ̇

ψ̇

)
= M±

b

(
ρ

ψ

)
with

M±
b = 2

( −Arr2
b ∓ Drr2

a ±Dir2
arb

(2l2 − Ai )rb ∓ Dir2
a/rb ∓(

Drr2
a + l3r2

b

)),

(16)

with the upper sign applying to MM0 and the lower one
to MMπ . The matrices M+

a , M+
b , M−

a , M−
b correspond, re-

spectively, to the matrices denoted M0, M1, N0, and N1 in
Golubitsky et al. [28] but are obtained here in a much more
straightforward way. The expressions are identical, except for

the prefactor 2, which is missing in Golubitsky et al. and an
overall change of sign in their matrix M1.

Let us first discuss the situation in the subspace (x0, xM ),
which is governed by the system (16a). This system is
completely analogous to that studied by Hirschberg and
Knobloch [29], since it involves perturbations within the
SS/SW invariant subspace of the problem. In particular, the
determinant of the matrix M±

a (i.e., the product of the eigen-
values) is 4rarb±. It follows that a steady-state bifurcation
cannot occur along either mixed mode within the SS/SW
subspace. This fact could have been anticipated by noting that
this subspace does not admit symmetry-breaking bifurcations
of these states. As a result, only Hopf bifurcations are pos-
sible. It follows that the eigenvalues of the matrix M±

a are
either real with constant sign, or complex conjugate with a
possible Hopf bifurcation. Inspection shows that the situation
depends upon the signs of the quantities l0, 2Br + Ar , and
±. If ± < 0, both eigenvalues are real and their product
is negative. Therefore, one of the eigenvalues is stable and
the other unstable. This means that the corresponding branch
MM0,π is always less stable than the primary SS and SW
branches. In the case ± > 0, the product of the eigenvalues
is positive, and their sum is given by the trace of the matrix,
i.e., 2[l0r2

a + (2Br + Ar )r2
b ]. When l0 < 0 and 2Br + Ar < 0,

i.e., when both primary bifurcations are supercritical, the trace
remains negative, indicating that both eigenvalues are stable
along the whole mixed mode branch. Similarly, when l0 > 0,
and 2Br + Ar > 0, i.e., when both primary bifurcations are
subcritical, the trace remains positive, indicating that both
eigenvalues are unstable along the whole branch. The last
possibility, l0(2Br + Ar ) < 0, arises when one of the primary
bifurcations is subcritical while the other is supercritical. In
this case, the real part of the eigenvalues changes sign some-
where along the branch, signaling the occurrence of a Hopf
bifurcation. The solution born at such a Hopf bifurcation is
referred to here as a modulated mixed mode (M̃M�0 ; see
Table IV). The frequency of oscillation of the modulated
mixed mode at the Hopf bifurcation is given by the determi-
nant of the matrix M±

a and may be expressed in terms of r2
a as
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follows:

ω2
a = − l0±

2Br + Ar
r4

a . (17)

According to Hirschberg and Knobloch [29], the correspond-
ing bifurcation is degenerate within the third-order truncation,
and higher order terms are required to determine whether it is
subcritical or supercritical.

Consider now the situation in the (ρ,ψ ) subspace, gov-
erned by the system (16b). Inspection shows that the matrix
M±

b may have complex or real eigenvalues. So, in this
subspace, each of the mixed modes can experience steady
bifurcations (associated with the vanishing of a single eigen-
value of M±

b ) and/or Hopf bifurcations (associated with the
vanishing of the real part of a pair of complex eigenvalues
of M±

b ). To discuss the nature of the solutions born at these
tertiary bifurcations, it is useful to note that the phase drift φ̇0

of the steady mode component is related to these quantities by
the equation

φ̇0 = −2l2rbρ ± l3r2
bψ + O(ρ3, ρ2ψ,ψ2ρ,ψ3), (18)

obtained from Eq. (10a).
A steady-state bifurcation will generically give rise to

a branch with constant, nonzero (ρ,ψ ), and according to
Eq. (18) such a state will therefore precess at a constant an-
gular velocity. The corresponding bifurcation will be referred
to as a parity-breaking bifurcation, and the states produced as
precessing waves (PrWs; see Table III). On the other hand, a
Hopf bifurcation will generically give rise to a limit cycle in
the (ρ,ψ ) plane. Since this cycle is symmetric about (ρ,ψ ) =
(0, 0), Eq. (18) implies that the resulting state will drift back
and forth with zero net drift. The result is a direction-reversing
wave [35], and we refer here to states of this type as pulsating
waves (PuWs; see Table IV).

These predictions are in agreement with those of Golu-
bitsky et al. except for their expectation that the symmetry-
breaking Hopf bifurcation (i.e., the Hopf bifurcation in the
(ρ,ψ ) subspace) gives rise to a 3-frequency state. We see that
while the bifurcation is indeed associated with translations of
the pattern and hence motion along a three-torus, this motion
is in fact a two-frequency motion (in the original variables).

The eigenvalues of the matrix M±
b solve a quadratic equa-

tion which cannot be simplified easily and generally has to be
investigated on a case-by-case basis. However, it is instructive
to consider the situation in the vicinity of the bifurcation
points of the mixed modes from the pure modes. In the vicin-
ity of the bifurcation from the SS mode one has rb � ra, and
the eigenvalues of M±

b are, at leading order, (∓2Dr2
a ,∓Dr2

a ).
Thus, if Dr > 0 (resp. Dr < 0), the MM0 is more (resp. less)
stable than the MMπ mode in the vicinity of the bifurcation
from the SS mode. Similarly, near the bifurcation from the
SW mode, the requirement ra � rb shows that the eigenval-
ues of M±

b are, at leading order, (−2Arr2
b ,∓2l3r2

b ). The first
eigenvalue indicates stability for both MM0 and MMπ modes
provided Ar > 0. Recall that the parameter Ar also determines
if the SW branch is more or less stable than the RW branch.
Thus, the mixed modes inherit this property from the SW
branch in the vicinity of the bifurcation point. The second
eigenvalue likewise implies that if l3 > 0 (resp. l3 < 0), the

MM0 is more (resp. less) stable than the MMπ in the vicinity
of the bifurcation from the SW mode.

D. Bifurcation from rotating waves to precessing waves

As indicated in Table III, the RW branch has a couple of
complex eigenvalues, which may lead to a bifurcation to a
precessing wave (PrW). This situation was investigated by
Crawford et al. [36] using the primitive sixth-order system.
The derivation was lengthy and required the demonstration
of an extension of the Hopf theorem to complex equations.
The use of the polar representation introduced here leads to
substantial simplifications because, within this representation,
this bifurcation is in fact a steady-state one, and the resulting
precessing wave is a stationary solution of the polar equations.

We consider here the clockwise (ωh > 0) RW with
(r1, r2) ≡ (rR, 0), where rR is given in Table III. According
to the table, a bifurcation occurs along this branch when the
bifurcation parameter, defined by

σR ≡ λs + l1r2
R, (19)

vanishes. Inspection shows that the corresponding eigenvector
breaks the symmetry of the mixed mode (i.e., it points in the
a0 direction). We expect, therefore, that the branch originat-
ing in this bifurcation will be characterized by r0 = O(σ 1/2

R ).
We further anticipate that r2 = O(σR) and r1 = rR + x1 with
x1 = O(σR). We also assume that � has a finite limit in the
vicinity of the bifurcation point. With these assumptions, the
stationary solutions of the polar system (12) obey the follow-
ing equations at leading order:

σR + l0r2
0 + 2l1rRx1 + l3rRr2 cos � = 0, (20a)

2BrrRx1 + Crr2
0 = 0, (20b)

ArrRr2 = −r2
0 (Dr cos � − Di sin �), (20c)

(Ai − 2l2)rRr2 = −r2
0 (Di cos � + Dr sin �). (20d)

To solve these equations, we add the squares of Eqs. (20c)
and (20d) to obtain[

A2
r + (Ai − 2l2)2r2

Rr2
2

] = |D|2r4
0 . (21)

This equation allows us to express r2 in terms of r0. Eliminat-
ing sin � from Eqs. (20c) and (20d) leads to

cos � = − DrAr + Di(Ai − 2l2)

|D|√A2
r + (Ai − 2l2)2

. (22)

Finally, x1 is easily expressed as a function of r0 from
Eq. (20b). Introducing these expressions into Eq. (20a) yields
a classical branching equation which can be cast in the form

σR + Hrr2
0 = 0,

with Hr = l0 − l1
Cr

Br
− l3

DrAr + Di(Ai − 2l2)

A2
r + (Ai − 2l2)2

. (23)

It follows that in the vicinity of the bifurcation point, the
precessing waves are given by the branching equation r0 ≈
(−σR/Hr )1/2, and the bifurcation is then supercritical if
Hr < 0.
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FIG. 8. Structure within in the isotropy lattice suggesting that
there may exist of a robust heteroclinic cycle.

The precession rate corresponding to this solution is given
by Eq. (10a) and reads

φ̇0 = −l2r2
R + Hir2

0

with Hi = l2
Cr

Br
+ l3

DiAr − Dr (Ai − 2l2)

A2
r + (Ai − 2l2)2

. (24)

Note that the branching parameter Hr and the term Hi cor-
respond, respectively, to the real and imaginary parts of the
complex Hopf coefficient H computed in [36], at the end of a
much lengthier analysis.

E. Robust heteroclinic cycles

As already mentioned, one may expect the presence
of structurally stable or robust heteroclinic cycles in our
system in view of its similarity to the mode interaction
problem studied in [29,30] when written in polar co-
ordinates. More generally, a heteroclinic cycle is a set

of trajectories {(r( j)
0 (t ), r ( j)

1 (t ), r ( j)
2 (t ), �

( j)
(t ))} j=1,2,...,m that

connect equilibrium solutions {(r ( j)
0 , r ( j)

1 , r ( j)
2 , � ( j) )} j=1,2,...,m

with the property that (r ( j)
0 (t ), r ( j)

1 (t ), r ( j)
2 (t ), �

( j)
(t )) is back-

ward asymptotic to (r ( j)
0 , r ( j)

1 , r ( j)
2 , � ( j) ) and forward asymp-

totic to (r ( j+1)
0 , r ( j+1)

1 , r ( j+1)
2 , � ( j+1)) with the convention

(r (m+1)
0 , r (m+1)

1 , r (m+1)
2 , � (m+1)) = (r (1)

0 , r (1)
1 , r (1)

2 , � (1) ). Such
cycles are robust if each connection is robust, i.e., cannot
be destroyed by changing parameters. Robust heteroclinic
cycles do not exist in general nonsymmetric vector fields.
However, they may exist in symmetric systems such as ours.
First examples of robust heteroclinic cycles connecting saddle
points were found in [37,38]. Afterwards, Melbourne, Krupa,
and collaborators [39,40] established a general approach to
the existence and stability of structurally stable heteroclinic
cycles in �-equivariant systems. The existence of a robust
heteroclinic cycle requires the following conditions:

(1) Each saddle solution sits on a flow-invariant line
l j , say, and each such line is the fixed-point subspace
of the isotropy subgroup of the saddle solution, i.e., l j =
Fix(� j−1) ∩ Fix(� j ).

(2) The isotropy subgroups of the invariant lines are max-
imal isotropy subgroups.

(3) The invariant plane containing the invariant line is the
fixed point subspace of a maximal isotropy subgroup.

The proof of this result is based on the existence of cycles
in the isotropy lattice, such as Fig. 8 for the present case.

The isotropy lattice in Fig. 8 suggests the existence of a
robust heteroclinic cycle between the steady-state mode SS
and the standing wave mode SW. Such a heteroclinic cycle
possesses two connections that lie within the Fix(Z(κ )) and

Fix(Z[κ · (π, π )]) subspaces. In our notation, the heteroclinic
connections lie in the invariant subspaces of the two MM
solutions. Melbourne et al. [41] found that in the supercritical
case such a cycle exists whenever the steady-state mode SS
is a saddle (resp. sink) in the fixed-point subspace Fix(Z(κ ))
of the isotropy subgroup of the MM0 mode and a sink (resp.
saddle) in the fixed-point subspace Fix(Z[κ · (π, π )]) of the
isotropy subgroup of the MMπ mode. Similarly, the SW mode
must be a sink (resp. saddle) in Fix(Z(κ )) and a saddle (resp.
sink) in Fix(Z[κ · (π, π )]). These conditions are satisfied if
the first three existence conditions in Table VII are satisfied.
In addition, no other fixed point solutions can be present in
either of the fixed point subspaces, and solutions starting in
the neighborhood of the trivial mode are required to remain
bounded, a condition that is satisfied if the last two existence
conditions in Table VII hold.

The necessary and sufficient conditions for the asymp-
totic stability of a particular type of robust heteroclinic cycle
referred to as Type A are derived in [40]. This type of hetero-
clinic cycle is constructed in such a way that each trajectory
connecting two fixed-point solutions lies within the fixed point
subspace of an isotropy group isomorphic to Z2. Because
of this the necessary and sufficient condition for asymptotic
stability is

m∏
j=1

min
( − νc

j , ν
e
j − νt

j

)
>

m∏
j=1

νe
j , (25)

where νc
j , νe

j , νt
j , νr

j denote the contracting, expanding,
transversal, and radial eigenvalues of the solution j. The
contracting eigenvalue of the solution j corresponds to the
minimum eigenvalue (maximum −ν j) in the fixed point sub-
space of solution j; the expanding eigenvalue corresponds to
the eigenvalue with the largest real part among the eigenvalues
restricted to the fixed point subspace of the backward asymp-
totic heteroclinic connection; the radial eigenvalue is the
eigenvalue with the smallest real part (largest −νr

j ) within the
intersection between the two previous fixed point subspaces
and the transverse eigenvalue correspond to the eigenvalue
with the largest real part among the eigenvalues restricted to
the orthogonal complement. The proof of the identity (25) is
based on the use of a set of Poincaré return maps to obtain
global estimates of stability from local ones. For more details,
the reader is referred to [39,40]. Application of Eq. (25) to our
case shows that the heteroclinic cycle HetSS−SW is asymptot-
ically stable provided condition (ii) and either condition (i-a)
or (i-b) in Table VII hold. This possibility was not considered
in [28].

V. THE DEGENERATE CASE Di = 0, Ai − 2l2 = 0

In this section, we consider the scenario where the param-
eters Di and Ai − 2l2 both vanish. This situation arises when
all the nonlinear coefficients in Eq. (8) are real. This case is
of basic theoretical interest since it corresponds to the case
where an additional Z2 symmetry is present in the primitive
amplitude equations. In this case Eq. (8) reduces to a spe-
cial case of the equations studied in generality by Silber and
Knobloch [42] provided we also take l0 = Ar + 2Br , λs = λh.
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TABLE VII. Definining conditions for structurally and asymptotically stable heteroclinic cycles connecting SS and SW with ν±
SS ≡ λh +

(Cr ± Dr )r2
P and ν±

SW ≡ λs + (2l1 ± l3)r2
S .

Name of solution Asymptotic stability
(condition for supercriticality) Existence [Asymp. stable if (ii) and either (i-a) or (i-b)]

HetSS−SW ν+
SSν

−
SS < 0 (i-a) ν+

SSν
−
SW < −ν−

SS min(−ν+
SW, ν−

SW + 2Arr2
s )

l0 > 0 ν+
SWν−

SW < 0 (i-b) ν−
SSν

+
SW < −ν+

SS min(−ν+
SW, ν+

SW + 2Arr2
s )

Ar + 2Br > 0 ν+
SSν

−
SW > 0 (ii) Ar > 0

λs
λh

(Cr+Dr )
l0

+ λh
λs

(2l1+l0 )
(2Br+Ar ) > −2

λs
λh

(Cr−Dr )
l0

+ λh
λs

(2l1−l0 )
(2Br+Ar ) > −2

In this case, the equations in polar coordinates take the
form

ṙ0 = [
λs + l0r2

0 + l1
(
r2

1 + r2
2

) + l3r1r2 cos �
]
r0,

(26a)

ṙ2 + ṙ1 = [
λh + Br

(
r2

1 + r2
2

) + Arr1r2

+ r2
0 (Cr + Dr cos �)

]
(r1 + r2), (26b)

ṙ2 − ṙ1 = [
λh + Br

(
r2

1 + r2
2

) − Arr1r2

+ r2
0 (Cr − Dr cos �)

]
(r2 − r1), (26c)

�̇ = −
[

2l3r1r2 + Drr2
0

r2
1 + r2

2

r1r2

]
sin �, (26d)

while the PQRS equations take the form

Ṙ = 2[λs + l0R + l1S + l3PQ]R, (27a)

Ṡ = 2[λh + BrS + CrR]S + 4[ArP + DrRQ]P, (27b)

Ṗ = 2[λh + BrS + CrR]P + [ArP + DrRQ]S, (27c)

Q̇ = [2l3P2 + DrRS]
1 − Q2

P
. (27d)

The former possess an additional reflection symmetry

κr : (r0, r1, r2, �) → (r0, r2, r1, �) (28)

responsible for a reflection symmetry in �:

(κr · κ ) · (r0, r1, r2, �) = (r0, r1, r2,−�).

This symmetry has several consequences. First, the isotropy
group of the polar normal form is now �(d )

ρ � Z2
2 � D4 �

Z4
2 � Z2. Its isotropy lattice, depicted in Fig. 9, displays new

isotropy groups whose fixed point subspaces are of dimension
three, viz., �PrWA , �PrWB , �IMM. The fixed point subspaces
Fix(�PrWA ) and Fix(�PrWB ) are characterized by r1 = r2 and
sin � = 0, respectively, and are of dimension four in the space
of complex amplitudes, i.e., they display two-frequency be-
havior; see Table VIII. In contrast, the fixed point subspace
Fix(�IMM) is characterized by r0 = 0. Strictly speaking this
is not an invariant subspace of the cubic truncation (since
Ar 
= 0) but it does become so when the truncation is extended
to fifth order; cf. Appendix B. This subspace is also of dimen-
sion four and is spanned by solutions of the form (0, a1, a2),
i.e., by r1 
= r2 and the corresponding phases (φ1, φ2).

In addition, it turns out that the isotropy subgroups associ-
ated to the mixed waves �MW0 and �MWπ

are not conjugates
of each other, i.e., these solutions are distinct, just as in the

case of the mixed modes MM0 and MMπ . The reason be-
hind the distinction between the subgroups �SW0 , �SWπ

(resp.
�RW0 , �RWπ

) is algebraic: these isotropy groups are not con-
jugate of each other, although their fixed point representatives
are of the same type. This is because the phase � is undefined
for both rotating waves and standing waves, a consequence
of the fact that for these states a0 = 0. However, we find it
convenient to distinguish between SW0 and SWπ (resp. RW0

and RWπ ) based on the limiting behavior of the mixed modes
(resp. mixed waves) as r0 → 0, as indicated in the isotropy
lattice in Fig. 9.

In this degenerate case the conditions for higher order
bifurcations, as well as the complete definition of all possible
branches of precessing waves, can be obtained explicitly. The
corresponding results are tabulated in Table IX. It is found
that there are at most three branches of precessing waves.
The first two are denoted PrWA and PrWB, while the third
kind is generic with no additional symmetry and hence trivial
isotropy, and is denoted PrWG.

A. Bifurcations from mixed modes and rotating waves

Bifurcations from mixed modes are governed by the eigen-
values of the matrices M±

b defined in Sec. IV C (apart from the
possible bifurcation to a modulated mixed mode if l0(2Br +
Ar ) < 0). In the present case, the matrix is diagonal with real

FIG. 9. Lattice of isotropy groups of the degenerate normal form.
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TABLE VIII. Nomenclature and symmetry groups of steady-state solutions of the system (26).

Name Representative Isotropy group (polar) Frequency

Primary bifurcations
SS (ra, 0, 0, nd ) Z2(κr ) × Z2(κ ) × Z2(	π ) 0
RW0 (0, ra, 0, nd ) D4(Rπ/2	π/2, κ · κr ) 1
RWπ (0, ra, 0, nd ) D4(Rπ/2	π/2, κ · κr · 	π ) 1
SW0 (0, ra, ra, nd ) Z2(κr ) × Z2(κ ) × Z2(Rπ	π ) 1
SWπ (0, ra, ra, nd ) Z2(κr	π ) × Z2(κ ) × Z2(Rπ	π ) 1
Secondary bifurcations
MM0 (ra, rb, rb, 0) Z2(κr ) × Z2(κ ) 1
MMπ (ra, rb, rb, π ) Z2(κr	π ) × Z2(κ · Rπ	π ) 1
MW0 (0, ra, rb, 0) Z2(κr · κ ) × Z2(Rπ	π ) 1
MWπ (0, ra, rb, π ) Z2(κr · κ · 	π ) × Z2(Rπ	π ) 1
Tertiary bifurcations
PrWA (ra, rb, rb, �) Z2(κr ) 2
PrWB (ra, rb, rc, 0 or π ) Z2(κr · κ ) 2
IMM (0, ra, rb, �(t )), �(t ) = φ1(t ) − φ2(t ) Z2(Rπ	π ) 2

eigenvalues. Therefore, symmetry-breaking bifurcations from
MM can lead only to PrWs (precessing waves), excluding the
possibility of PuWs (pulsating waves). The number of such
bifurcations follows from the eigenvalues of M±

b . The first
of these is 2(−Arr2

b ∓ Drr2
a ), and this quantity changes sign

along the MM0 (MMπ ) branch. The second eigenvalue of M±
b

is ∓2(l3r2
b + Drr2

a ). Thus, if l3Dr > 0, this eigenvalue remains
of one sign for both mixed modes. On the other hand, if
l3Dr < 0, it changes sign somewhere along both branches. So
the number of branching points to precessing waves along the
MM branches is either one (if l3Dr > 0) or three (if l3Dr < 0).
These results are restated in the top part of Table IX, where the
conditions for a zero eigenvalue are stated in terms of λs and
λh instead of ra and rb using Table VI.

We also report in the table the branching point from the
RW branch, investigated in Sec. IV D. This point exists gener-
ically, and the corresponding branch has � = 0 (resp. � = π )
if ArDr < 0 (resp. ArDr > 0). We end up with a total number
of either two or four bifurcation points to precessing waves.

The IMM solution is degenerate, as was the case already
for the generic third-order normal form. The addition of
higher order terms, as done in Appendix B, leads to the
existence of the solution IMM, which in this degenerate case
is a heteroclinic connection between the mixed waves MW0

and MWπ . This last statement follows from the integration of
Eq. (26d) with r0 = 0, which leads to � → 0 as t → ∞ and
� → π as t → −∞ if l3rarb > 0 and to � → π as t → ∞
and � → 0 as t → −∞ if l3rarb < 0.

TABLE IX. Higher order bifurcations in the degenerate case Di = 0, Ai − 2l2 = 0. (1)Results relevant to the PrW of type A also hold in the
less degenerate case to Di = 0, Ai − 2l2 
= 0. (2)Results for bifurcations to modulated mixed modes hold in the generic case. (3)The bifurcation
from rotating waves leads to a PrWB in the present case, and to a general PrW in the generic case. (4)The conditions listed for the existence of
Hopf bifurcations ensure an odd number of Hopf lines (1 or 3). The condition for an odd number of Hopf lines in the case of a termination at
the MMπ fixed point is +�+

B > 0.

Branch New solution Bifurcation point Condition for existence of new solution

MM0 PrW(1)
A σ0A ≡ [l3(Cr + Dr ) − Dr (2Br + Ar )]λs + [(2l1 + l3)Dr − l0l3]λh = 0 l3Dr < 0

PrWB σ0B ≡ −[ArCr − 2BrDr]λs + [Arl0 − Dr (2l1 + l3)]λh = 0 ArDr < 0

M̃M
(2)
0 2(Br + Ar )(Cr + Dr − l0)λs + l0(2l1 + l3 − 2Br − Ar )λh = 0 (2Br + Ar )l0 < 0

MMπ PrW(1)
A σπA ≡ [l3(Cr − Dr ) − Dr (2Br + Ar )]λs + [(2l1 − l3)Dr − l0l3]λh l3Dr < 0

PrWB σπB ≡ −[ArCr + 2BrDr]λs + [Arl0 + Dr (2l1 − l3)]λh = 0 ArDr > 0

M̃M
(2)
π (2Br + Ar )(Cr + Dr − l0)λs + l0(2l1 + l3 − 2Br − Ar )λh = 0 (2Br + Ar )l0 < 0

RW PrW(2,3)
B σR ≡ λs − l1λh/Br = 0 Generic

PrWA PrWG σAG ≡ [l3(σ0A + σπA) − Ar (σπA − σ0A)]/(�Al3) = 0 l3Dr < 0, A2
r < l2

3

3FW(A) HA = 0 Eq. (38)

PrWB PrWG σBG ≡ [2l3BrDr − A2
rCr]λs + [A2

r l0 − 2l1l3Dr − l3ArDr]λh = 0 If ArDr < 0, A2
r − Arl3 < 0,

If ArDr > 0, A2
r + Arl3 < 0

3FW(B)(4) HB = 0 Eq. (49)

PrWG 3FW �4 − IIG�2 + DG = 0, TG�2 − IG = 0 –
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B. The subspace r1 = r2

The dynamics within the invariant subspace Fix(�PrWA ),
defined in polar coordinates as

Fix(�PrWA ) = {(r0, r1, r2, �) : r1 = r2}, (29)

take the form

ṙ0 = [
λs + l0r2

0 + 2l1r2
1 + l3r2

1 cos �
]
r0, (30a)

ṙ1 = [
λh + (Ar + 2Br )r2

1 + (Cr + Dr cos �)r2
0

]
r1, (30b)

�̇ = −2
[
l3r2

1 + Drr2
0

]
sin �. (30c)

The RPQ coordinates can also be used in this subspace (which
corresponds to S = 2P):

Ṙ = 2[λs + l0R + (2l1 + l3Q)P]R, (31a)

Ṗ = 2[λh + (2Br + Ar )P + (Cr + DrQ)R]P, (31b)

Q̇ = 2[l3P + DrR](1 − Q2). (31c)

The resulting systems are formally identical to those govern-
ing the interaction of two steady-state modes with opposite
parity studied by Hirschberg and Knobloch, Eq. (10) of [29],
given by the correspondence

r0 ≡ r, r1 ≡ ρ,� ≡ 2�, λs ≡ λ, λh ≡ μ, l0 ≡ a,

2l1 ≡ b, l3 ≡ e, 2Br + Ar ≡ d,Cr ≡ c, Dr ≡ f . (32)

The results of [29,30] can therefore be applied to the sys-
tem (30). We use these results to conclude that when Drl3 < 0
the two branches of mixed modes are connected by a tertiary
branch of the form r0 
= 0, r1 = r2 
= 0, sin � 
= 0. In the
nomenclature of the present manuscript, this branch corre-
sponds to a precessing wave of type A (see Table III). The
defining equations for this solution are

R = r2
0 = σ0A − σπA

2Dr�A
, (33a)

P = r2
1 = r2

2 = −σ0A − σπA

2l3�A
, (33b)

Q = cos � = σπA + σ0A

σπA − σ0A
, (33c)

where

�A ≡ (2Br + Ar + 2l1)Dr − l3(Cr + l0) 
= 0,

�a
A ≡ Dr (Ar + 2Br ) − l0l3,

H0,π
A ≡ (+ + −) − 4Drl3

(
1 − �A/�a

A

)
,

1
2 (σ0A + σπA) ≡ [(2Br + Ar )Dr − Crl3]λs + (2Drl1−l0l3)λh,

1
2 (σ0A − σπA) ≡ Drl3(λs + λh), (33d)

as in Eq. (17) of [29]. The range of existence of this con-
necting branch in the (λs, λh) plane is obtained by imposing
the requirement cos � ∈ [−1, 1] on Eq. (33c); the conditions
obtained from cos � = ±1 are identical to the conditions ob-
tained from the vanishing of the second eigenvalue of M±

b
and displayed in Table IX, confirming that the PrWA branch
connects the two mixed mode branches.

The stability of all the solutions within the invariant sub-
space Fix(�PrWA ) is determined as in Ref. [29]. The linearized
dynamics within this subspace are governed by a 3 × 3 matrix

with determinant DA, trace TA and second invariant IA given
below:

DA = − 4

Dr�
2
Al3

σπAσ0A(σπA − σ0A), (34a)

TA = �a
A(σπA − σ0A)

Drl3�A
, (34b)

IA = −+σ 2
πA + −σ 2

0A

Drl3�2
A

+ (−4Drl3 + + + −)

Drl3�2
A

σπAσ0A.

(34c)

Since −1 < Q < 1 along the PrWA branch, the quantity
σπA − σ0A ≡ −2Drl3(λs + λh) cannot vanish along it. As a
consequence, DA vanishes only at the bifurcations to mixed
modes (defined by Q = ±1), and no steady-state bifurcations
occur within the invariant subspace �PrWA along the branch.
The necessary and sufficient conditions for the stability of the
branch within its fixed point subspace are DA < 0, TA < 0,
IA > 0, and HA ≡ IA − DA/TA > 0. Inspection of Eq. (34a)
shows that the determinant is negative (resp. positive) when-
ever σπA − σ0A > 0, which occurs when l3 > 0, Dr < 0 (resp.
l3 < 0, Dr > 0) corresponding to the bifurcation of PrWA

from the MMπ mode (resp. MM0). When the determinant
is negative, the trace is negative if and only if �A�a

A > 0. If
these two conditions are satisfied, the necessary and sufficient
condition of the positivity of the second invariant IA all along
the branch is that + � 0 and − � 0 (defined in Table VI),
since σ0AσπA � 0 all along the branch. The fourth condition
is as follows:

0 < HA ≡ 1

Drl3�2
A

[ − +σ 2
πA − −σ 2

0A

+ σπAσ0A(+ + − − 4Drl3
(
1 − �A/�a

A

)]
.

(35)

Thus, if the previous three conditions are satisfied, the neces-
sary and sufficient condition for HA > 0 all along the branch
is ∣∣∣∣(1 − �A

�a
A

)
− + + −

4Drl3

∣∣∣∣ � −
√

+−
2Drl3

, (36)

which is immediately satisfied if 0 < �A/�a
A < 1. Summariz-

ing, the necessary and sufficient conditions for the stability of
the branch within the invariant subspace �PrWA are

+ > 0, − > 0, 0 <
�a

A

�A
< 1, l3 > 0. (37)

The condition �A
�a

A
< 1 can be replaced by Eq. (36).

The quantity HA(σ0A, σπA) can be interpreted as the dis-
tance to a Hopf bifurcation of the PrWA branch, which is
located at HA(σ0A, σπA) = 0. In particular, because the trace
TA divides DA, we have at most two Hopf bifurcations. There
is a supercritical Hopf from the PrWA branch leading to a
stable 3FW if the following conditions are satisfied:

+ > 0, − > 0, l3Dr < 0,
√

+−
2Drl3

�
(

1 − �A

�a
A

)
− + + −

4Drl3
� −

√
+−
2Drl3

. (38)
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The case of a single Hopf bifurcation arises when the follow-
ing two degeneracy conditions hold, −+ = 0 and �A =
�a

A. Therefore, whenever Eq. (38) is satisfied and +− 
=
0 we have two Hopf bifurcations in the (σ0A, σπA) plane,
located at

σπA = K±
A,Hσ0A,

K± ≡ H0,π
A

2+
± 1

+

[(
H0,π

A

)2 − 4+−
] 1

2 , (39)

with H0,π
A defined in Eq. (33d).

In the present situation, we also need to determine one
additional eigenvalue that describes the stability in the r2 − r1

direction. This eigenvalue, hereafter σAG, is given by

σAG ≡ 2P(l3Q − Ar )

= l3(σ0A + σπA) − Ar (σπA − σ0A)

�Al3
. (40)

A necessary and sufficient condition ensuring the existence of
a steady-state bifurcation associated with the vanishing of σAG

is that the signs of σAG at either end of the branch are opposite.
This leads to the condition reported in the last column of
Table IX.

C. The subspace sin � = 0

The second fixed point subspace corresponds to sin � = 0.
At first glance, this subspace corresponds to two distinct cases,
� = 0 and � = π . However, because of the symmetry of the
polar equations, a jump in � by π is equivalent to a change
of sign of either r1 or r2. As a consequence, to investigate this
subspace, we may set � = 0 but allow arbitrary signs of r1

and r2. Both mixed mode solutions belong to this subspace
(MMπ corresponds to � = 0, r2 = −r1). The pure modes can
also be considered as part of this subspace, even though �

is not defined for these branches. Within this subspace, the
equations take the form

ṙ0 = [
λs + l0r2

0 + l1
(
r2

1 + r2
2

) + l3r1r2
]
r0, (41a)

ṙ1 = [
λh + Brr2

1 + (Ar + Br )r2
2 + Crr2

0

]
r1 + Drr2

0r2,

(41b)

ṙ2 = [
λh + Brr2

2 + (Ar + Br )r2
1 + Crr2

0

]
r2 + Drr2

0r1,

(41c)

Ṙ = 2[λs + l0R + l1S + l3P]R, (42a)

Ṡ = 2[λh + BrS + CrR]S + 4[ArP + DrR]P, (42b)

Ṗ = 2[λh + BrS + CrR]P + [ArP + DrR]S. (42c)

To detect the existence of precessing waves in the present
subspace, we look for steady solutions of the above equations.
From Eqs. (42b) and (42c) we obtain the conditions

λh + BrS + CrR = 0, ArP + DrR = 0. (43)

The precessing waves in question belong to this subspace,
leading to

R = r2
0 = − Ar

Dr

σ0B − σπB

4�B
, (44a)

S = r2
1 + r2

2 = −σ0B + σπB

2�B
, (44b)

P = r1r2 = σ0B − σπB

4�B
, (44c)

where �B ≡ Br (Arl0 − Drl3) − l1(ArCr ) 
= 0,

σR ≡ λs − l1
Br

λh,

σ0B + σπB ≡ 2[(ArCr )λs + (l3Dr − Arl0)λh],

σ0B − σπB ≡ 4BrDrσR. (44d)

These expressions define a single branch of precessing waves,
referred to as the PrWB branch. One may check that the
conditions obtained on imposing P = 0 and S = 2|P| yield,
respectively, the conditions listed in Table IX for the bifur-
cation from rotating waves and the relevant mixed mode,
confirming that the PrWB branch connects these two branches.
Note that the sign of P is given by ArDr . So, had we adopted
the convention that both r1 and r2 are positive and � is either
0 or π , we would have arrived at the conclusion that PrWB

is associated with � = 0 if ArDr < 0 and � = π if ArDr >

0. Note that the precession frequency given by Eq. (10a)
vanishes when l2 = 0. In this case the resulting mode will
actually be singly periodic in the primitive variables, instead
of a two-frequency wave. However, this property is not visible
when working with the polar variables. The stability of the
PrWB branch within its invariant subspace Fix(�PrWB ) can
be determined by studying its characteristic polynomial in a
similar manner as done for PrWA in Sec. V B. The invariants
of the 3 × 3 stability matrix are the determinant DB, trace TB

and IB given below:

DB = −4�BR(2P − S)(2P + S)

= Ar

Dr�
2
B

σπBσ0B(σπB − σ0B), (45a)

TB = 2l0R + (Ar + 2Br )S

= Arl0(σπB − σ0B) − Dr (Ar + 2Br )(σ0B + σπB)

2Dr�B
, (45b)

IB = R[+(2P + S) + −(−2P + S)] + 2ArBr (S2 − 4P2)

= Ar

4Dr�
2
B

(
−σ 2

πB − +σ 2
0B

)
+ Ar

4Dr�
2
B

(8BrDr + + − −)σ0BσπB. (45c)

The vanishing of σR coincides with the origin of the PrWB

branch along the RW branch. Note that the vanishing of σR

implies σ0B = σπB. Similarly, one of the quantities σ0B or σπB

vanishes at the termination of the PrWB branch on one of the
mixed modes. One may verify that the third point where DB

vanishes is located outside the existence interval of the branch,
confirming that no parity-breaking bifurcation occurs along
the branch. In addition, one may confirm that σ0BσπB > 0,
except at the termination point. The necessary conditions for
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stability within the Fix(PrWB) subspace are DB < 0, TB < 0,
IB > 0 and HB ≡ IB − DB/TB > 0. From Eq. (45a) one may
easily verify that the determinant is negative if and only if
�B < 0. Similarly, the trace has a negative sign if Ar + 2Br <

0 and l0 < 0, which are the conditions for the supercriticality
of standing waves and the steady-state mode, respectively. If
instead l0(Ar + 2Br ) < 0, then the trace changes sign within
the region of existence of the PrWB solution. Analogously, the
necessary conditions for a positive sign of the second invariant
IB everywhere along the branch are

ArBr > 0 and + > 0 if ArDr < 0

or − > 0 if ArDr > 0. (46)

The first condition ensures that the second invariant is positive
at its birth from the RW branch, while the second condition
ensures that IB is positive at its termination on the corre-
sponding MM branch. To ensure that IB > 0 along the whole
PrWB branch it suffices to have − > −+ if ArDr < 0, a
condition that depends only on + and BrDr , or + > −−
if ArDr > 0 for − > 0, a condition that depends only on
− and BrDr . The PrWB branch is stable when HB > 0. If
HB changes sign along the PrWB branch, a Hopf bifurcation
with frequency � takes place (HB = 0), characterized by the
following set of conditions:

TB�2 − DB = 0, �2 − IB = 0. (47)

These equations yield the conditions for the presence of a
Hopf bifurcation along the PrWB branch stated above. In
terms of the eigenvalues σ0B(λs, λh) and σπB(λs, λh) of the
mixed modes the Hopf distance HB is given by

HB ≡ − Ar

8D2
r �

3
B

{
−�−

B σ 3
πB − +�+

B σ 3
0B

+ [�+
B (8BrDr − −) + 2Arl0+ − 8Dr�B]σπBσ 2

0B

+ [�−
B (8BrDr + +) + 2Arl0− + 8Dr�B]σ 2

πBσ0B
}
,

�±
B ≡ Dr (Ar + 2Br ) ± Arl0. (48)

The condition HB = 0 describes a planar cubic algebraic curve
in (σ0B, σπB). A possible procedure is to determine the type
of the planar curve isomorphic to one of the five canonical
forms [43] and then determine the number of solutions from
it. Instead of following this procedure, we prefer to provide a
sufficient condition for the appearance of a Hopf bifurcation
along this branch. Provided Eq. (46) holds, the frequency
� is real, and there exists an odd number (one or three) of
Hopf bifurcations whenever HB has opposite signs at the two
endpoints of the branch. This occurs when

−�−
B < 0 (MM0), +�+

B > 0 (MMπ ). (49)

When Eq. (49) does not hold, the number of Hopf bifurcations
is even (none or two). In such a case one can distinguish be-
tween the different scenarios using, for instance, the Descartes
sign rule for positive roots. In addition to the three eigen-
values governing the stability of the PrWB branch within the
sin � = 0 subspace discussed above, there is a fourth eigen-
value governing the stability in the orthogonal direction, given

by

σBG = −(2l3P − ArS). (50)

The vanishing of this eigenvalue leads to the birth of a branch
of general precessing waves. The resulting condition in terms
of λs and λh is listed in Table IX. A condition ensuring that
such a bifurcation occurs somewhere along the branch is that
σBG has opposite signs at its termination points on RW and
the relevant MM. This leads to the condition reported in the
last column of Table IX. This condition is the same as for the
bifurcation from PrWA.

D. The third branch of precessing waves

As demonstrated in the previous sections, two bifurcations
can occur along the precessing waves of type A and B giving
rise to a precessing wave with no symmetry called PrWG.
Here we investigate this branch as well as its stability. We
look for a steady solution of the polar equations with r0 
= 0,
r1 
= r2 and sin � 
= 0; cf. Table VIII. The same manipula-
tions as before lead to the following conditions:

0 = PQl3 + Rl0 + Sl1 + λs,

0 = BrS + CrR + λh,

0 = ArP + DrQR,

0 = DrRS + 2P2l3. (51)

The solution of this system yields the conditions for the pres-
ence of the PrWG branch:

R = 2Brλs − (2l1 + Ar )λh

�G
,

S = 2
Crλs − l0λh

�G
,

P = −1

l3�G
{Drl3[Brλs−(2l1 + Ar )λh](Crλs−l0λh)} 1

2 ,

Q = Ar

{
Crλs − l0λh

Drl3[2Brλs − (2l1 + Ar )λh]

} 1
2

,

where �G = Cr (Ar + 2l1) − 2Brl0 
= 0. (52)

These expressions define a single solution branch. One may
check that imposing Q2 = 1 and S = 2|P| yields, respectively,
the same conditions as found for the steady bifurcations from
the PrWA and PrWB branches listed in Table IX, confirm-
ing that the PrWG solution indeed links these two branches.
The invariants of the stability matrix are

TG = 2Rl0 + S(Ar + 2Br )

= 2[σS (Ar + 2Br ) + l0σR]

�G
,

DG = 8�GDrl3R2(4P2 − S2)(Q2 − 1)

= 32

�3
Gl3

σSσR
(
A2

r σS + Drl3σR
)
(DrσR + σSl3),

IG = 4Ar

�2
G

[
2(Br − Ar )σ 2

S − D2
r σ

2
R

]
+ σSσR

�2
Gl3

[
4Dr

(
2ArBr − 3l2

3

) + 4l0l3(Ar + 2Br )
]
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TABLE X. Defining conditions for structurally and asymptotically stable heteroclinic cycles connecting mixed modes or standing waves
and a mixed mode.

Name of solution Asymptotic stability
(comments) Existence conditions [Asymp. stable if either (i-a) or (i-b)]

HetMM0−MMπ

Stable radial dir. + > 0, − > 0, l0 < 0, Ar + 2Br < 0 (i-a) σπA + σπB < 0

Sink-saddle conditions σ0Aσ0B > 0, σπAσπB < 0, l3Dr < 0, ArDr > 0 (i-b) σ0A − σ0B > 0

Nonattractivity of PrW 2l1 ± l3 > 0, Cr ± Dr > 0

HetSW−MMπ

Stable radial dir. − > 0, l0 < 0, Ar + 2Br < 0, Ar > 0 (i-a) 2(2Br + Ar )λs − (2l1 − Ar )λh > 0

SW saddle in Fix(�MMπ
) σ−

SW > 0, σ+
SW < 0 (i-b) σπA + σπB < 0

MMπ saddle in Fix(�PrWB ) σπAσπB < 0, ArDr > 0

HetSW−MM0

Stable radial dir. + > 0, l0 < 0, Ar + 2Br < 0, Ar > 0 (i-a) 2(2Br + Ar )λs − (2l1 − Ar )λh > 0

SW saddle in Fix(�MM0 ) σ−
SW < 0, σ+

SW > 0 (i-b) σπA − σπB > 0

MM0 saddle in Fix(�PrWB ) σ0Aσ0B > 0, ArDr < 0

− 4
σSσR

�2
Gl3

[(Ar + 2l1)(ArDr + Crl3)],

IIG = − 8

�3
G

(
D2

r l0σ
3
R + 4A2

r Brσ
3
S

)
+ 8DrσSσ

2
R

�3
Gl3

[
2�B + l3(�A − 4BrDr ) − l0

(
A2

r + l2
3

)]
+ 8σ 2

S σR

�3
Gl3

(
Arl3�G − 6BrDrl2

3

)
+ 8σ 2

S σR

�3
Gl3

A2
r [DrAr + 2Dr (l1 − Br ) − 2l3l0]. (53)

The determinant DG only vanishes at the termination points,
that is, whenever Q2 = 1 or S = 2|P|, which rules out the
possibility of a steady-state bifurcation. Thus there can only
be Hopf bifurcations along the PrWG branch. The frequency
� solves the following equations obtained from the character-
istic polynomial

�4 − IIG�2 + DG = 0, TG�2 − IG = 0, (54)

leading to the following sixth-order equation in terms of λs

and λh:

II2
G − IIGIGTG + T 2

G DG = 0. (55)

E. A robust heteroclinic cycle

The isotropy lattice (see Fig. 9) of the degenerate case
under discussion suggests the possibility that new heteroclinic
cycles may exit. One of the most intriguing possibilities is
a connection between the isotropy subspace of mixed modes
and the subspaces of precessing waves A and B, correspond-
ing to a cycle of type C in the classification of Krupa and
Melbourne [40]. The conditions for the existence of a ro-
bust heteroclinic cycle connecting mixed modes consists in
demanding that MM0 is a saddle whose unstable manifold is

of dimension one (resp. sink) within �PrWB and a sink (resp.
saddle) within �PrWA . Then MMπ would need to be a sink
(resp. saddle) within �PrWB and a saddle (resp. sink) within
�PrWA . However, for the mixed mode MMπ to be a saddle
within �PrWA and the mixed mode MM0 to be a sink it is
necessary that σπA − σ0A < 0 with Drl3 < 0, conditions that
indicate that there is a fixed point within the invariant sub-
space �PrWA , i.e., PrWA (resp. PrWB). Despite the existence
of a fixed point within the invariant subspace �PrWA (resp.
�PrWB ), a robust heteroclinic cycle may still exist; cf. [44].
In the case of an invariant fixed point subspace of dimension
two the existence of heteroclinic cycles relies on the use
of the Poincaré-Bendixson theorem; see, for instance, [41].
In this case, the fixed-point subspace is required to be free
of any other fixed point other than those connected by the
heteroclinic cycle. Instead, when the dimension is three, one
may use the invariant sphere theorem, or more generally
a Lyapunov functional, to establish attraction. In our case,
the presence of a robust heteroclinic cycle requires that the
coefficients Cr ± Dr and 2l1 ± l3 should both be positive,
since otherwise the precessing waves A and B are globally
attracting except possibly within a ball of size O(λs, λh) in
the subspace R, P, S. These conditions are listed in Table X.
Note that our reasoning does not exclude the existence of a
small heteroclinic cycle within the O(λs, λh) ball near PrW,
although such a state (if it exists) would require a larger set of
defining conditions and would be restricted to a small region
of phase space. If the conditions listed in Table X are satisfied,
then there exists a robust heteroclinic cycle between the mixed
modes, which bifurcates to a 3FW in the case Ai − 2l2 
= 0
and Di = 0, and to a PuWs or 3FW in the case with Ai − 2l2 
=
0 and Di 
= 0; see Fig. 10. Finally, the application of the theory
of Krupa and Melbourne [40] also allows one to establish
the existence of heteroclinic cycles between standing waves
and mixed modes, whose existence and stability conditions
are listed in Table X. As for the heteroclinic cycles between
mixed modes, these heteroclinic cycles persist in the form of
limit cycles of the polar normal form when the degeneracy
conditions are not satisfied; see Fig. 11.
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FIG. 10. Heteroclinic cycle between MM0 and MMπ in the polar
normal form (9) with Ai − 2l2 = Di = sin � = 0 (black line) and
corresponding results when Ai − 2l2 
= 0 and Di = 0 (red line) or
Di 
= 0 and Ai − 2l2 = 0 (blue line). (a) (r0, r1 + r2) projection. (b)
(r2 − r1, r1 + r2) projection.

VI. NUMERICAL EXPLORATION OF THE THIRD-ORDER
NORMAL FORM (9)

Section V has shown the existence of multiple fixed points
with additional symmetries, e.g., PrWA and PrWB, in the de-
generate case [equivariant under the group O(2) × Z2 × S1].
The additional Z2 symmetry is characteristic of mode in-
teractions in O(2) symmetric systems with strong resonance
conditions (1:2 [44], 1:3 [45]). Departure from the degeneracy
conditions (Ai − 2l2 = Di = 0) breaks this additional Z2 sym-
metry and may be responsible for destroying the HetSS−SW

heteroclinic cycle, leading to more complex dynamics. This
section is devoted to the numerical exploration of the de-
generate case Ai − 2l2 = Di = 0 and the implications of the
departure from this condition (Ai − 2l2 
= 0 and/or Di 
= 0).
For this purpose, we choose generic values for the normal
form coefficients, listed in Table XI. These coefficients are
chosen in such a way that primary bifurcations, that is, bifur-
cations leading to SS, SW, and RW, are supercritical, and the
flow is globally stable, that is, there is no finite-time blow-up.
As the bifurcation parameter, we have selected the polar angle
θ such that the unfolding parameters are λS = ρ cos θ and
λH = ρ sin θ , with ρ = (0,∞) and θ ∈ [0, 2π ). In contrast
to [44] the bifurcation diagram barely depends on ρ, and we
have fixed the value of ρ at ρ = 0.5. The numerical continua-
tion of the polar normal form is carried out with the numerical
continuation software MATCONT [46]. In the following, we

FIG. 11. Heteroclinic cycle (black) between MMπ and SW in
the polar normal form (9) with Ai − 2l2 = Di = sin � = 0 (black
line) and corresponding results with Ai − 2l2 
= 0 (red line) or
Di 
= 0 (blue line). (a) (r0, r1 + r2) projection. (b) (r2 − r1, r1 + r2)
projection.

TABLE XI. Cubic coefficients of the normal form.

l0 l1 l3 Ar Br Cr Dr

−6.19 −1.4 −1.7 0.96 −1.08 4 10

show the bifurcation diagrams associated with the degenerate
and nondegenerate cases. There are two major differences.
First, the two connected branches of symmetric precessing
waves (PrWA and PrWB) are a characteristic feature of the
degenerate case [symmetry O(2) × Z2 × S1]. In the nonde-
generate case, these two branches split into two disconnected
branches of general precessing waves PrWG. Second, in the
degenerate case we observe HetSS−SW cycles, which break
apart as the orbit intersects the invariant subspace r1 = r2.
Instead, in the nondegenerate case, we have identified com-
plex heteroclinic cycles around HetPrWA . Such a feature was
also observed by Porter and Knobloch [44], who concluded
that the transition from HetSS−SW cycles to this second set is
a characteristic of systems with O(2) × Z2 symmetry where
the Z2 symmetry is weakly broken.

A. The degenerate case Ai − 2l2 = Di = 0

Figure 12 shows the bifurcations of the fixed point
branches of the polar normal form with the parameters listed
in Table XI and the degeneracy conditions Ai − 2l2 = Di = 0.
Along this particular path, the trivial state first loses stability
at θ = −π/2 in a primary pitchfork bifurcation to the SS
mode, which terminates at θ = π/2. The SS mode gives birth
to the MM0 branch when θ = arctan (Cr + Dr )/l0 ≈ −1.15
and to the MMπ branch when θ = arctan (Cr − Dr )/l0 ≈ 0.77
(Table V). The mixed mode MM0 subsequently produces
the PrWA branch in a symmetry-breaking bifurcation when
σ0A = 0 (Table IX) and then terminates on the SW branch.
A magnified visualization is displayed in Fig. 13(a), where
we can see the PrWA branch which terminates on the MMπ

branch and eventually gives birth to a general precessing wave
PrWG via a symmetry-breaking bifurcation when σAG = 0.
The PrWG mode experiences a Hopf bifurcation that leads to
a 3FW (blue point in Fig. 12); Fig. 14 illustrates the stable
periodic orbit (3FW) with a thick black line and the stable
manifold of PrWA with a thin gray line. The existence of a
global attractor (PrWA) in the invariant subspace r1 = r2 pre-

FIG. 12. Bifurcation diagram in the degenerate case when ρ =
0.5, showing |r| = √

r2
0 + r2

1 + r2
2 as a function of the angle θ .
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FIG. 13. Bifurcation diagram in the degenerate case when ρ = 0.5, showing |r| = √
r2

0 + r2
1 + r2

2 as a function of the angle θ . Legend:
Solid (dashed) lines correspond to stable (unstable) fixed points. Symmetry-breaking bifurcations are illustrated with gray points, and Hopf
bifurcations with blue points. Note: In (a) as well as in Fig. 12 the PrWG branch has been artificially displaced upwards to visually differentiate
it from the PrWA branch.

vents the existence of a true heteroclinic cycle HetSS−SW, but
allows the existence of shadowing stable periodic orbits that
approximate it; see Fig. 14. These orbits exist in 0.52 < θ <

0.592 and collapse in a global bifurcation when the limit cycle
intersects the invariant subspace r1 = r2 at θ ≈ 0.592. Once a
trajectory intersects the r1 = r2 subspace, it is trapped within
it and so is attracted to the only attractor in this subspace, i.e.,
the PrWA state. The same phenomenon occurs in the small
region of coexistence of MMπ and the heteroclinic cycle,
0.78 < θ < 0.82. The PrWG branch terminates on the PrWB

branch, which connects RW and MMπ . Finally, the MMπ

branch is stable between its endpoint on the SW branch and its
symmetry-breaking bifurcation that leads to the PrWB branch.
For 0.82 < θ � π the only stable state is the SW branch.

B. Nondegenerate case Ai − 2l2 = −1, Di = 0.35

The general picture of the bifurcation scenario, depicted
in Fig. 12, remains qualitatively unchanged. However, the
precessing wave branches are modified. We first examine
the case when one of the two degeneracy conditions is still
satisfied. The case Ai − 2l2 = 0 but Di 
= 0 is illustrated in
Fig. 13(b) and reveals the existence of two distinct PrWG

FIG. 14. Example of the heteroclinic cycle SS-SW (thick line).
The gray line corresponds to the stable manifold of PrWA.

branches. This case corresponds to an imperfect bifurcation,
where the two symmetry-breaking pitchfork bifurcations lead-
ing to the PrWG branch in the degenerate case are replaced by
a saddle-node bifurcation on each branch. The second case,
Di = 0 but Ai − 2l2 
= 0, illustrated in Fig. 13(c), shows the
presence of PrWA and PrWG branches, the latter replacing
the symmetric PrWB branch. These branches connect via a
transcritical bifurcation, which is responsible, in this case, for
the stability of the whole upper section of the PrWG branch
since no Hopf bifurcation takes place. We next turn our at-
tention to the nondegenerate case Ai − 2l2 
= 0, Di 
= 0. The
bifurcation diagram of the fixed points of the polar normal
form is depicted in Fig. 15. The figure displays two discon-
nected branches of general precessing waves PrWG. The first
of these, referred to as PrWG,1 in the figure, becomes unstable
through a Hopf bifurcation, leading to a 3FW branch (not
shown). The second PrWG branch, labeled PrWG,2, bifurcates
from and terminates on the MMπ branch with a saddle-node

FIG. 15. Bifurcation scenario in the nondegenerate case, show-
ing |r| = √

r2
0 + r2

1 + r2
2 as a function of the angle θ with the same

legend as in Fig. 13. The end point of PrWG,1 is located at θ ≈ 0.6581
(gray point), i.e., below θSN but above the global bifurcation at
θ ≈ 0.6454 (not shown). Note: The blue point and the associated
3FW branch have been artificially displaced, so the crossing point
between the SW and PrWG,1 and the blue Hopf point do not coincide.
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FIG. 16. Heteroclinic cycle at θSN ≈ 0.663445.

bifurcation in between: the upper section is stable, whereas the
lower is unstable. Because of the symmetry under the reflec-
tion κ , there is in fact a pair of such saddle-node bifurcations,
PrW±

G,2, both occurring at θ = θSN ≈ 0.663445. Moreover,
each is of saddle-node-in-a-periodic-orbit (SNIPER) type but
with complex leading eigenvalues at the fold points PrW±

G,2:
(0, −0.6795, −0.0182 ± 0.4418i). For a study of this situa-
tion in the absence of κ symmetry, see [47]. In the presence
of this symmetry, this case can either lead to a pair of
symmetry-related homoclinics to PrW±

G,2 or, as in this case,
to a heteroclinic cycle connecting PrW+

G,2 to PrW−
G,2 and vice

versa, a consequence of the intertwined nature of the stable
and unstable manifolds of PrW±

G,2. In the former case the
near-homoclinic orbit to the left of PrW±

G,2 contains a certain
number of decreasing oscillations as it approaches and leaves
PrW±

G,2, the number of these oscillations depending on the
speed with which the trajectory passes through the PrW±

G,2
neighborhood, and hence on the distance of θ from θSN. In
the latter case the unstable manifold associated with the de-
generate eigenvalue injects the trajectory into the image fold
point, and the same local behavior there leads to reinjection
back into the original fold, generating a κ-symmetric hetero-
clinic cycle; cf. [48]. Figure 16 shows such an orbit in two
projections, computed for θ just below θSN ≈ 0.663445. At
this θ the PrW±

G,2 points are absent, and the orbit shown is

FIG. 17. (a) Evolution of the period of the stable limit cycles
shadowing the heteroclinic cycle as a function of the distance θSN − θ

to the saddle-node bifurcation. (b) Evolution of the period near the
heteroclinic bifurcation at θhet , where σhet = −0.0251 is the leading
stable eigenvalue of the PrWG,1 fixed point.

actually a long period periodic orbit. Figure 17(a) shows the
period of such orbits as a function of θSN − θ , confirming
the expected relation T ∼ (θSN − θ )−1/2. This divergence is
a consequence of a slowdown of the trajectory in the vicinity
of the phase space location where the PrWG,2 appear when
θ increases through θSN, resulting in increased accumulation
of turns as this point is approached. Note that these orbits
inherit the stability of the (upper) PrWG,2 branch (cf. Fig. 15)
and hence represent attractors of the system. Figure 18 shows
sample attractors found on decreasing θ further. Figure 18(a)
shows a stable symmetric orbit at θ = 0.663, followed by
asymmetric chaotic attractors (with a positive Lyapunov ex-
ponent) generated with increasing distance from θSN. The
absence of chaotic states near θSN is a consequence of the
fact the flow in this region is locally contracting. To under-
stand the origin of these states, we examine the behavior of
a typical periodic orbit associated with the SNIPER bifur-
cation. As already explained this orbit depends sensitively
on the value of θ < θSN. In Fig. 19(a) we show the period
T of this orbit as a function of θ obtained using numerical
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FIG. 18. Stable attractors in a (r0, r1, r2) projection for (a) θ = 0.663 (symmetric periodic orbit); (b) θ = 0.647 (asymmetric orbit); (c) θ =
0.645 (asymmetric orbit); (d) θ = 0.643 (asymmetric orbit). The symmetry-related PrWG,2 fixed points corresponding to the saddle node at
θ ≈ 0.663445 are indicated by red points, with the PrWA point (present in the degenerate case only) depicted as a blue point; these are shown
for orientation only.

continuation. This period diverges as θ → θSN from below
and the orbit approaches the heteroclinic cycle shown in
Fig. 16. As θ decreases, the period T decreases, although
this decrease is interrupted by a series of back-to-back folds.
Each such pair is responsible for the elimination of one small
amplitude turn of the trajectory (not shown), resulting in a
gradual unwinding of the trajectory. As θ decreases towards
the leftmost fold and beyond, the trajectory develops small

loops in the vicinity of PrWG,1 (Fig. 20) and its period begins
to diverge again, this time logarithmically [Fig. 17(b)], indi-
cating approach to a heteroclinic connection involving PrWG,1

and located at θ = θhet ≈ 0.6454. Since the leading unstable
eigenvalues of PrWG,1 at this parameter values are complex,
0.2446 ± 0.3661i, while the leading stable eigenvalue is real,
−0.0251, these points are both saddle foci. The complex
unstable eigenvalues account for the oscillatory approach to

FIG. 19. (a) Evolution of the period T of a symmetric periodic orbit born in the SNIPER bifurcation θ ≈ 0.663445 and terminating in a
heteroclinic bifurcation at θ ≈ 0.6454 (thick solid line). Secondary branches of asymmetric states are displayed in thin lines: solid line for the
branch whose period diverges at θ ≈ 0.64377 and dashed lines for the other branches; see panel (b) for more detail. The secondary branches
are accompanied by back-to-back period-doubling cascades (three period-doubling points are indicated with solid circles of the same color
as the branch), which open up via the formation of subsidiary homoclinic orbits as in panel (c), black line; the superposed red curve shows
an accompanying period-doubled solution. Panels (d)–(f) display the (r1, r2) projection at θ = 0.65 for the dashed magenta, blue, and orange
branches in (b) showing a symmetric and two asymmetric periodic orbits, respectively. The location of PrW±

G,1 is indicated with a small circle
in (c)–(f). Only (c) is close to homoclinic; the proximity of orbit (e) to the lower fixed point is a projection effect.
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FIG. 20. Periodic orbit at the seventh and eighth folds from the
right in Fig. 19(b), with a period-doubling bubble in between (not
shown). (a) θ = 0.6437; (b) θ = 0.6466.

the global bifurcation at θ ≈ 0.6454 while the fact that the
flow near PrWG,1 is locally expanding implies that we should
expect stable chaotic dynamics near this parameter value, as
in the classical example of Shil’nikov where the signs of the
eigenvalues are reversed [49–51]. In Fig. 19(a) the solid line
tracks the period of the κ-symmetric orbit. As θ → θhet ≈
0.6454 from above, this orbit collides with PrWG,1, forming a
heteroclinic connection from PrWG,1 to its image under κ and
back again. Near θhet this orbit is accompanied by back-to-
back symmetry-breaking bifurcations, generating asymmetric
periodic orbits [Fig. 19(b)]. These asymmetric orbits are free
to period-double into chaos, resulting in “bubbles” of chaotic
behavior, as described in [52] and references therein. Close to
the primary heteroclinic bifurcation, these bubbles “burst” via
the formation of pairs of subsidiary homoclinic orbits. The
red dashed and thin solid lines in Fig. 19(b) show examples
of this generic behavior in our problem; Fig. 19(c) compares
the homoclinic orbit at the green dashed asymptote with the
corresponding period-doubled orbit on the red dashed branch
at the same θ value. Further details are omitted. Thus, the
primary symmetric periodic orbit is associated with a num-
ber of chaotic intervals located around subsidiary homoclinic
orbits originating in global bifurcations of asymmetric orbits
associated with it; cf. Fig. 18. In particular, stable chaotic
motion is also observed for θ below the primary heteroclinic
bifurcation at θhet ≈ 0.6454.

We mention that the periodic orbit originating from the
Hopf point on the PrWG,1 branch (θ ≈ 0.3841, blue point in
Fig. 15) is stable from the Hopf point to θ ≈ 0.4518, where
the first of several Neimark-Sacker bifurcations takes place.
These are interspersed with additional global bifurcations and
intervals of chaos as θ increases towards θhet ≈ 0.6454. Some
sample solutions are shown in Fig. 21 to whet the appetite.
The details depend on the parameters used and are omitted.

VII. NORMAL FORM REDUCTION

The process of reducing the governing equations to normal
form near a multiple bifurcation is based on center mani-
fold reduction followed by a series of near-identity variable
changes to simplify the dynamical equations on the center
manifold. The resulting equations are then unfolded by intro-
ducing parameters that break apart the multiple bifurcation in
a generic way. In infinite-dimensional problems, such as those
arising in fluid mechanics, it is preferable to employ multiple
scales techniques to compute both the normal form and the

FIG. 21. (a) Phase portrait of a near-homoclinic orbit to the SW
state in the (r0, r1, r2) space at θ = 0.452, and (b) the corresponding
time series showing r0(t ) (red), r1(t ) (green), and r2(t ) (blue). Near
the homoclinic connection r1 approaches r2 and r0 falls to zero. (c) A
trajectory at θ = 0.457 in the (Re(a0), Im(a0), r2) space showing that
the trajectory intermittently visits SW states with different phases
φ, each visit resulting in a switch between an oscillation about one
PrWG,1 state to an oscillation about the other; red circles represent the
group orbit of the two PrWG,1 states while the blue circle represents
the group orbit of the SS states [53]. (d) Chaotic attractor at θ =
0.49 (thin dashed gray line) together with an (unstable) κ-symmetric
periodic orbit computed at θ ≈ 0.4896.

coefficients within it as part of the same calculation. We
employ here this technique to determine all the coefficients
in the third-order normal form (8). First, let us introduce the
following formal expression for the governing equations on a
domain �:

B
∂q
∂t

= F(q, η) ≡ Lq + N(q, q) + G(q, η), x ∈ �,

Dbcq(x) = q∂�, x ∈ ∂�. (56)

Here ∂� represents the domain boundary. This form of the
governing equations takes into account a linear dependence
on the state variable q through L and a quadratic depen-
dence on the state variable and the parameters η through
the operators G(·, ·) and N(·, ·). Equation (56) formally in-
cludes the incompressible Navier-Stokes equations written in
cylindrical coordinates for the TCF and WFA problems,
whereas for WFA-MC one must consider the Boussinesq
approximation of the incompressible Navier-Stokes equa-
tions written in cylindrical coordinates as well. For this set of
equations, the operators in Eq. (56) take the following form:

Lq =
⎛⎝−∇P

∇ · U
0

⎞⎠,

N(q1, q2) = −
⎛⎝U1 · ∇U2

0
U1 · ∇T

⎞⎠,
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G(q, η) =
⎛⎝ 1

Re∇ · (∇U + (∇U)T
) + Ri T ez

0
1

Re Pr∇2T

⎞⎠. (57)

In red we have included the modification for the WFA-MC
problem with respect to the WFA problem. The set of pa-
rameters η ∈ RNp , where Np is the number of parameters, is
composed of the two dimensionless angular velocities of the
cylindrical annulus for TCF, the inverse Reynolds number
for WFA, and the inverse Reynolds number together with
the Richardson and Prandtl numbers for WFA-MC. In the
following, we will consider the most general case, that is,
the WFA-MC case where the vector of parameters takes the
form η ≡ [η0, η1, η2] = [Re−1, Ri, Pr]T . The Reynolds num-
ber is defined as the ratio of inertial and viscous forces, i.e.,
Re = U∞D

ν
, with U∞ the uniform velocity at the far field, D

the diameter of the bluff body, and ν the kinematic viscosity;
the Prandtl number, Pr = ν

κ
, is the ratio of viscosity and the

thermal diffusivity κ . The Richardson number is defined as
Ri = − β(eU∞ ·g)(Tb−T∞ )D

U 2∞
, with β the thermal expansion coeffi-

cient, eU∞ = U∞/U∞ the unit vector in the direction of the
far field velocity, g the gravitational acceleration, and Tb and
T∞ the temperature of the bluff body and in the far field,
respectively. Finally, we suppose that the dependence of the
solution restricted to the boundary of the domain is linear, i.e.,
we take Dbc to be a linear boundary condition operator. One
can also consider the dependence of the boundary conditions
on parameters, that is, either Dbc(η) or q∂�(η), which may
be used, for instance, for modeling of a moving wall. For
the sake of simplicity this possibility is not considered. The
multiple scales expansion of the solution q of Eq. (56) consists
of an expansion of Eq. (1) in powers of a small parameter
ε � 1:

q(t, τ ) = Q0 + εq(ε)(t, τ ) + ε2q(ε2 )(t, τ ) + O(ε3). (58)

The departure η − ηc of the parameters from criticality is
assumed to be of second order, i.e., ηi − ηi,c = O(ε2) for
i = 0, 1, 2. The expansion (58) encompasses a two-scale ex-
pansion of the original time, t �→ t + ε2τ , that incorporates
the fast time scale t of the self-sustained instability and the
slow timescale τ of the evolution of the amplitudes ai(τ ) in
Eq. (1), for i = 0, 1, 2. The resulting expansion of the left side
of Eq. (56) up to third order is given by

εB
∂q(ε)

∂t
+ ε2B

∂q(ε2 )

∂t
+ ε3

[
B

∂q(ε3 )

∂t
+ B

∂q(ε)

∂τ

]
, (59)

while the right side is

F(q, η) = F(0) + εF(ε) + ε2F(ε2 ) + ε3F(ε3 ). (60)

The resulting problem is solved order by order.

1. Order ε0

The leading order solution Q0 of the multiple scales
expansion (58) is the steady state of the governing equa-
tions evaluated at the threshold of instability, i.e., η = ηc,

0 = F(Q0, 0), x ∈ �,

DbcQ0(x) = Q0,∂�, x ∈ ∂�. (61)

2. Order ε1

The first-order correction q(ε)(t, τ ) in the multiple-scale
expansion (58) is composed of the eigenmodes of the lin-
earized system

q(ε)(t, τ ) ≡ Re[a0(τ )e−im0θ q̂0]

+ Re[a1(τ )e−iωt e−im1θ q̂1]

+ Re[a2(τ )e−iωt e−im2θ q̂2], (62)

where the reflection symmetry in O(2) imposes the require-
ment m2 = −m1. Each term q̂� in the first-order expansion
(62) solves the corresponding linear problem:

J(ω�,m� )q̂� =
(

iω�B − ∂F
∂q

∣∣∣∣
q=Q0,η=ηc

)
q̂� = 0, x ∈ �,

Dbcq̂�(x) = 0, x ∈ ∂�, (63)

where ∂F
∂q |q=Q0,η=ηc

q̂� =Lm�
q̂�+Nm�

(Q0, q̂�)+Nm�
(q̂�, Q0).

The subscript m� indicates the azimuthal wave number used
for the evaluation of the operator.

3. Order ε2

The second-order expansion term q(ε2 )(t, τ ) is determined
from the resolution of a set of forced linear systems, with the
forcing terms evaluated in terms of the (known) zeroth- and
first-order terms. The expansion in terms of amplitudes ai(τ )
of q(ε2 )(t, τ ) is assessed from term-by-term identification of
the forcing terms at the second order. The nonlinear second-
order terms are

F(ε2 ) ≡
2∑

j,k=0

(a jakN(q̂ j, q̂k )e−i(mj+mk )θe−i(ω j+ωk )t + c.c.)

+
2∑

j,k=0

(a jakN(q̂ j, q̂k )e−i(mj−mk )θe−i(ω j−ωk )t + c.c.)

+
2∑

�=0

η�G(Q0, e�), (64)

where e� is an element of the orthonormal basis of RNp , a
vector composed of zeros except at the position � where it is
equal to unity. Since no quadratic combination of elements in
Eq. (62) results in resonant terms, the second-order term can
be expanded as

q(ε2 ) ≡
2∑

j,k=0
k� j

(a jakq̂ j,k + a jakq̂ j,−k + c.c. ) +
2∑

�=0

η�Q(η� )
0 ,

(65)

with the rules q̂ j,k = q̂k, j and q̂− j,−k = q̂ j,k . Note the slight
abuse of notation with q̂−0 = q̂0. Terms q̂ j, j are harmonics
of the flow, q̂ j,k with j 
= k are coupling terms, q̂ j,− j are har-
monic base flow modification terms, and Q(η� )

0 are base flow
corrections due to the assumed departure of the parameter
η� = η�c − η� from the critical point measured by ε. Finally,
the second-order terms are computed by solving the following
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FIG. 22. Construction of the stability diagram for the WFA-MC problem with a fixed disk of aspect ratio χ = 10. (a) The unfolding plane
(λs, λh ). Dashed lines indicate the loci of bifurcations from SS and SW to MM0,π . The paths labeled ηRe|Ri=Ric and ηRe|Ri=0 are the paths
followed in this plane for Ri = Ric and Ri = 0, respectively. For this case Ric < 0 and so increasing Ri destabilizes the system. (b) Bifurcation
diagram corresponding to the ηRe|Ri=0 path. See Sec. VIII B for details.

nonresonant system of equations,

J(ω j+ωk ,mj+mk )q̂ j,k = F̂( j,k)
(ε2 ) , (66)

where F̂( j,k)
(ε2 ) ≡ N(q̂ j, q̂k ) + N(q̂k, q̂ j ) and

J(0,0)Q
(η� )
0 = G(Q0, e�). (67)

4. Order ε3

At third order resonant terms are generated, and these lead
to secular (nonperiodic) terms in the expansion. We eliminate
these terms by imposing a solvability condition on the system
via the Fredholm alternative. This condition determines the
required normal form at third order in ε. Specifically, the
linear terms λs and λh are determined as follows:

λs =
〈
q̂†

0, F̂(a0 )
(ε3 )

〉
〈q̂†

0, Bq̂0〉
, λh =

〈
q̂†

1, F̂(a1 )
(ε3 )

〉
〈q̂†

1, Bq̂1〉
=

〈
q̂†

2, F̂(a2 )
(ε3 )

〉
〈q̂†

2, Bq̂2〉
, (68)

while the (real) cubic coefficients li for i = 0, 1, 2, 3 are given
by

l0 =
〈
q̂†

0, F̂(a0|a0|2 )
(ε3 )

〉
〈q̂†

0, Bq̂0〉
, l3 =

〈
q̂†

0, F̂(a0a1a2 )
(ε3 )

〉
〈q̂†

0, Bq̂0〉
,

l1 − il2 =
〈
q̂†

0, F̂(a0|a1|2 )
(ε3 )

〉
〈q̂†

0, Bq̂0〉
, l1 + il2 =

〈
q̂†

0, F̂(a0|a2|2 )
(ε3 )

〉
〈q̂†

0, Bq̂0〉
. (69)

Finally, the complex coefficients A, B,C, and D are given by

B =
〈
q†

1, F̂(a1|a1|2 )
(ε3 )

〉
〈q̂†

1, Bq̂1〉
, A + B =

〈
q†

1, F̂(a1|a2|2 )
(ε3 )

〉
〈q̂†

1, Bq̂1〉
,

C =
〈
q†

1, F̂(a1|a0|2 )
(ε3 )

〉
〈q̂†

1, Bq̂1〉
, D =

〈
q†

1, F̂(a2
0a2 )

(ε3 )

〉
〈q̂†

1, Bq̂1〉
. (70)

The forcing terms associated with the solvability conditions in
Eqs. (68), (69), and (70) are detailed in Appendix A 1.

VIII. CONSTRUCTION OF BIFURCATION DIAGRAMS

We now explain how the results derived in the previous
section can be used to construct consistent bifurcation dia-
grams. The method is similar to that used in Hirschberg and
Knobloch [29] and is explained in Fig. 22. As illustrated in
this figure, the conditions for the occurrence of the various bi-
furcations can be interpreted as lines in the (λs, λh) plane. For
example, the primary steady-state bifurcation occurs along the
line λs = 0, which is the horizontal axis in this representation.
Similarly, the primary Hopf bifurcation occurs along the line
λh = 0, which is the vertical axis. The conditions relevant to
the birth of mixed modes also correspond to straight lines, as
displayed in the figure. For both the wake problem (WFA or
WFA-MC) and the TCF problem, variation of the base-flow
parameters defines a path in the (λs, λh) plane. The bifurcation
diagram can then be constructed by considering the successive
crossings of this path with the lines defining the bifurcations.

Let us consider first the bifurcation scenario of the WFA-
MC case as a function of the parameters ηRe and ηRi, at a
constant distance in terms of the second parameter from the
organizing center. We denote by ηRe|Ri=Ric the path followed
at a constant Richardson number equal to that at which the
unsteady and steady modes become simultaneously unstable.
Similarly, we denote by ηRe|Ri=0 the straight line path from
quadrant III (defined by λs < 0, λh < 0), traversing quad-
rant IV (λs > 0, λh < 0), and then crossing into quadrant I
(λs > 0, λh > 0). This path is relevant to the wake problem
(WFA) for increasing Reynolds number if we assume a linear
dependence of the form (13). When following this path, the
first bifurcation is the primary bifurcation leading to the SS
mode. There are two possible secondary bifurcations on this
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branch, leading to MM0 and MMπ , and these occur along the
lines −l0λh + (Cr ± Dr )λs = 0 with positive sign for MM0

and negative sign for MMπ . The sign of Dr indicates which
of these bifurcations occurs first along the given path. For
example, if Dr < 0, as displayed in the figure, the bifurcation
to MMπ occurs first. Moreover, if − > 0 (as assumed in
the figure), this bifurcation is supercritical and gives rise to
a stable branch. The bifurcation from SS to MMπ may occur
subsequently, as found in the figure, but the branch born at this
bifurcation is necessarily unstable, according to the consider-
ations in Sec. IV C.

Similarly, the lines −(2Br + Ar )λs + (l1 ± l3)λh = 0 indi-
cate secondary bifurcations from SW to MM0 (positive sign)
and MMπ (negative sign). Starting from the pure SW mode
and following the prescribed path backward, the sign of l3 lets
us distinguish which of these lines will be crossed first. For
example, if l3 < 0, as displayed in the figure, the bifurcation
to MMπ occurs first, leading to a stable branch if − > 0.

Figure 22(b) exhibits the case corresponding to l3 < 0,
Dr < 0, + > 0, − > 0, the situation relevant to wake flow
past a fixed disk. The figure displays the bifurcation diagram
for a disk of aspect ratio χ = 10. For details, see Sec. VIII B.

In the following, we analyze the predicted transition be-
havior of the flow past a fixed sphere and a fixed disk. In some
figures, we use the lift coefficient to illustrate the bifurcation
diagram; this is defined as CL = L

1
2 ρ∞U 2∞D

, with L the lift force,

ρ∞ and U∞ the density and velocity in the far field (assumed
equal to unity), respectively, and D the diameter of the object.

A. Mixed convection in the flow past a sphere

Let us revisit the problem of pattern formation behind
a sphere falling through a thermally stratified fluid. In our
formulation the sphere is held fixed, with upward flow past
it (the WFA-MC problem). Specifically, a sphere of diameter
D is held at a constant temperature Tb subject to upward
flow characterized by a constant velocity U∞ and tempera-
ture T∞ far from the body. The problem is specified by the
Reynolds number as Re = U∞D

ν
and the Richardson num-

ber Ri = − β(eU∞ ·g)(Tb−T∞ )D
U 2∞

. This problem has many practical
applications in engineering such as cooling, heating [26],
sedimentation [54], melting [55], combustion [56], and vapor-
ization [57]. A hot sphere represents a heat source embedded
within the physical domain, where the solid body is subjected
to forces of hydrodynamic and thermal origin. There are two
main cases of interest. The case of a hot falling sphere where
the fluid within the wake is accelerated with respect to the
spherical body is called the assisting case and is characterized
by a positive Richardson number (Ri > 0). The opposite case,
where the wake of a hot ascending spherical particle is decel-
erated by buoyancy effects, is referred to as the opposing case
and corresponds to a negative Richardson number (Ri < 0).
Kotouc et al. [26] studied numerically both configurations for
two Prandtl numbers, Pr = 0.72 and Pr = 7. The assisting
flow case displays an organizing center of Hopf-Hopf type
with azimuthal wave numbers m = 1 and m = 2.

The opposing flow configuration exhibits instead a point
in the (Re, Ri) parameter space where a steady-state mode
and a pair of unsteady modes with azimuthal wave number

FIG. 23. Predicted flow patterns for flow past a hot sphere (the
opposing case of mixed convection) in parameter space. Snapshots
of the reconstructed states are included. The direction of gravity g
is represented by a dashed line parallel to the axis of revolution and
points from the sphere towards the wake when Tb − T∞ > 0.

m = ±1 are simultaneously unstable; cf. Figs. 23 and 24. The
opposing flow case at Pr = 0.72 displays a large variety of
patterns. The codimension-two point at (Rec, Ric) point (see
Tables XII and XIII) splits the parameter space in the follow-
ing sense: for Ric < Ri < 0 the primary bifurcation breaks the
axisymmetry of the steady-state solution, i.e., it corresponds
to a steady-state mode (state I in Kotouc et al. [26]); for
Ri < Ric the primary branch is a standing wave (state XIV
in Kotouc et al. [26]), i.e., a solution with mean-zero lift force
preserving the symmetry plane. For Richardson numbers Ri <

Ric the observed transition to more complex spatio-temporal
patterns is explained by the interaction between the unsteady
pair of modes. In this regime the cubic truncation is degener-

FIG. 24. Predicted flow patterns for flow past a hot disk with
χ = 10 (the opposing case of mixed convection) in parameter space.
Snapshots of the reconstructed states are included. The direction of
gravity g is represented by a dashed line parallel to the axis of revo-
lution pointing from the disk towards the wake when Tb − T∞ > 0.
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TABLE XII. Location of the codimension-two point at Pr = 0.72 and the corresponding Strouhal number (Src) at unsteady onset, together
with the linear coefficients in the normal form for the WFA-MC flow past a sphere or a disk.

Case Rec Ric Src λs λh

Sphere 172 −0.13 8.5 × 10−2 86.7 · ηRe + 0.82 · ηRi (84.7 − 67.9i) · ηRe + (2.19 − 3.31i) · ηRi

Disk χ = 10 129.4 −0.069 1.07 × 10−1 76.8 · ηRe + 0.057 · ηRi (66.0 − 25.2i) · ηRe + (0.52 − 1.10i) · ηRi

Disk χ = 3 152.9 −0.079 9.5 × 10−2 95.3 · ηRe + 0.37 · ηRi (92.5 − 40.0i) · ηRe + (1.10 − 1.48i) · ηRi

ate, as already explained, and in order to lift the degeneracy
between the modulated wave states MW and IMM (these
states are labeled XX in Kotouc et al. and not distinguished)
one must either include higher order terms in the normal
form or introduce terms that break the O(2) symmetry; see
Appendix B. These modulated wave states then bifurcate
further, generating general Precessing Waves. In the study
of Kotouc et al. [26], the authors did not observe PrWG,
and instead identified aperiodic states, i.e., states that did not
display any particular spatiotemporal symmetry. This finding
could be explained by a subsequent bifurcation towards a
3FW, although this is not taken into account in the normal
form.

When Ri > Ric a large variety of states exist. The ax-
isymmetric steady state loses stability with respect to a
nonaxisymmetric steady-state mode, thereby losing axisym-
metry. The resulting SS state then transitions into a mixed
mode MM0 that preserves reflection symmetry and is as-
sociated with a nonzero mean lift. The MM0 state further
transitions into a general precessing wave PrWG, i.e., a state
without a symmetry plane and slowly rotating mean lift,
which in turn bifurcates into a 3FW and finally to a pulsating
wave state. These three states are located within small regions
of the parameter space. However, they have been numeri-
cally determined: PrWG was numerically observed by Kotouc
et al. [26] for Ri > −0.1 (state XIII) and the 3FW (or PuWs)
state was identified for Ri ≈ −0.1 (state XIX), which is a state
that displays a temporary symmetry plane and at least two
frequency components. The pulsating wave state eventually
transitions into MMπ , i.e., a mixed mode without a symmetry
plane (see also state XIII in [26]). This series of bifurcations
is followed either by SW or MW (or a precessing wave), in
qualitative accordance with the study of Kotouc et al.

B. Mixed convection in the flow past a disk

Let us now examine the transition scenario for axisymmet-
ric wake flow past a disk, focusing again on the opposing
flow case under mixed convection conditions. This problem
depends on three control parameters, the Reynolds number

TABLE XIII. Cubic and quintic coefficients of the normal form
for the WFA-MC flow past a sphere for Pr = 0.72.

l0 l1 l2 l3 p1


−10.57 −4.57 −0.078 0.27 −201.1

A B C D p2
N

1.07 + 0.75i −2.8 + 3.54i −3.78 + 3.02i 0.79 − 1.0i −18.10

Re, the Richardson number Ri, and the aspect ratio of the disk
χ , where 1/χ is the dimensionless thickness.

The WFA problem for Ri = 0 and 1/χ ≈ 0 has already
been studied by Fabre et al. [13] using numerical simulations
and normal form coefficients fitted from the simulations. The
case χ = 3 was studied in detail by Auguste et al. [14].
A more rigorous study via multiple-scale analysis was per-
formed by Meliga et al. [27]. Later Chrust et al. [15] explored
the flow dependence on the parameters (Re, χ ) using numer-
ical simulations and proposed a classification of the patterns
observed. These studies demonstrated the importance of the
disk thickness on the transition scenario. Chrust et al. ob-
served that, when the thickness 1/χ is large, for instance,
χ = 1, the symmetry plane is preserved for large values of the
Reynolds number, i.e., only SS and MM0 (possibly with mod-
ulated mixed modes or precessing waves) are observed before
spatio-temporal chaos appears. In the limit of zero thickness,
when 1/χ ≈ 0, we will see that the transition scenario starts
with the formation of a SS pattern followed by the breaking of
the symmetry plane, leading to a MMπ mode and eventually
to standing waves SW. At intermediate values of the thickness,
a large variety of spatio-temporal patterns may be observed, as
highlighted by the study of Auguste et al. In the present study,
we shall look for the connections between the opposing flow
case in mixed convection and the situation at Ri = 0, in terms
of the spatio-temporal patterns observed in the flow.

Figure 25 displays the location of the codimension-two
point corresponding to the Hopf–steady-state bifurcation, ob-
tained by varying 1/χ ∈ [0, 1]. The top panels show the
corresponding temperature distribution in space and the grow-
ing extent of the recirculation bubble in the steady states
associated with two distinct values of the aspect ratio χ of the
disk. In the range of aspect ratios considered here, the critical
Reynolds number grows linearly with the thickness 1/χ of
the disk, as previously observed by Fernandes et al. [18].
In addition, the critical Richardson number displays a max-
imum around 1/χ ≈ 0.1 followed by a linear decrease. In the
following, we shall discuss in detail the two cases χ = 10
and χ = 3. The case χ = 10 corresponds to a case with a
relatively simple transition scenario, similar to that explained
by Meliga et al. [27]. On the other hand, the case χ = 3
displays a larger number of spatio-temporal structures and
is qualitatively similar to the case of the sphere discussed in
Sec. VIII A.

The coefficients of the normal form for χ = 10 at the
codimension-two point are listed in Table XIV, and the
parameter space summarizing the normal form predictions
is displayed in Fig. 24. In this case, to the left of the
codimension-two point (gray point in the diagram), the trivial
steady-state transitions to standing waves and the subsequent
bifurcations are uniquely explained by the unsteady modes. To
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FIG. 25. Location of the codimension-two Hopf–steady-state bi-
furcation in the (Re, Ri) plane as a function of the aspect ratio χ of
the disk (Re: black line; Ri: red line). The color-coded symbols refer
to the points obtained in numerical computations. Top: Temperature
distribution in the trivial steady state at (a) 1/χ = 0.1 (Re ≈ 130,
Ri ≈ −0.068) and (b) 1/χ ≈ 0.33 (Re ≈ 150, Ri ≈ −0.078).

the right of the codimension-two point the primary bifurcation
breaks the axisymmetry of the steady state, i.e., it generates
the SS state, followed by a periodic state with no reflection
symmetry and nonzero mean lift, i.e., the MMπ state. The
mixed mode MMπ state eventually bifurcates into a standing
wave solution, which finally bifurcates to MW via the effect
of higher order terms.

The dynamics near the organizing center for the flow past
a disk with thickness 1/χ = 1/3 is richer. As in the previ-
ous cases, to the left of the organizing center the transition
scenario is based on the initial formation of standing waves,
followed by modulated waves and a possible tertiary bifur-
cation, not taken into account in the normal form, leading
to temporal chaos. To the right of the organizing center, the
transition scenario is qualitatively similar to that of the sphere
(compare Figs. 23 and 26), although in the present case the
codimension-two point is sufficiently close for the theory to
provide quantitative predictions of the transition scenario. The
coefficients of the normal form are listed in Table XV. In other
words, the transition scenario in the simple WFA problem

TABLE XIV. Cubic and quintic coefficients of the normal form
for the WFA-MC flow past a disk with χ = 10 for Pr = 0.72.

l0 l1 l2 l3 p1


−4.45 −5.94 0.92 −2.28 −50

A B C D p2
N

0.1 − 1.29i −2.14 + 1.69i −0.64 − 2.35i −1.05 + 1.10i −1

FIG. 26. Predicted flow patterns for flow past a hot disk with χ =
3 (the opposing case of mixed convection) in parameter space, at
Pr = 0.72. Snapshots of the reconstructed states are included. The
direction of gravity g is represented by a dashed line parallel to the
axis of revolution pointing from the disk towards the wake when Tb −
T∞ > 0.

of the disk with aspect ratio χ = 3 is constrained by the
dynamical structures emanating from the organizing center
at Ri 
= 0, something that is not the case for the sphere; see
Kotouc et al. [26, Fig 4]. Figure 27 displays the reconstruction
of the lift coefficient from the normal form at Ri = 0, in
comparison to the results obtained numerically by Auguste
et al. in [14]. It distinguishes five regions, with the Knit-Knot
(KK) region among them. The transition begins at Re ≈ 159.4
(Re ≈ 159.8 [14]) via the formation of a steady-state pattern
(SS), which eventually bifurcates into a mixed mode (MM0)
at around Re ≈ 182.5 (Re ≈ 179.9 in [14]). The MM0 state
loses stability at around Re ≈ 184.5. Quantitatively, up to this
point, the sequence of bifurcations is reasonably well pre-
dicted with regard to the data reported in [14]. The Knit-Knot
region in our analysis covers a large variety of states with
similar characteristics in terms of the frequency components
(at least two) and the lift coefficient CL. Auguste et al. [14]
identified this motion as temporally quasiperiodic motion re-
sulting from spontaneously broken reflection symmetry. The
temporal dynamics of the KK state may be described as the
composition of a state with frequency ωh and a low-frequency
state, whose frequency experiences large variation within its
region of existence (from Tp ≈ 96 2π

ωh
at Re = 185 to Tp ≈

48 2π
ωh

at Re = 187 and then to Tp ≈ 54 2π
ωh

at Re = 190; cf.
Fig. 28). This bifurcation sequence is followed by the appear-
ance of the MMπ state, estimated to be around Re ≈ 198.5

TABLE XV. Cubic and quintic coefficients of the normal form
for the WFA-MC flow past a disk with χ = 3 for Pr = 0.72.

l0 l1 l2 l3 p1


−6.19 −4.86 0.47 −2.76 −50

A B C D p2
N

0.56 − 0.38i −2.3 + 2.3i −1.7 + 0.32i 0.79 + 0.52i −6
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FIG. 27. Bifurcation diagram for a disk with χ = 3 in terms of
the lift coefficient CL for the WFA problem (Ri = 0). Solid lines
were computed from the normal form, dashed lines were extracted
from [14]. Black lines denote CL,max and red lines denote the average
of CL . See legend in Fig. 29 for a description of the markers.

FIG. 28. Homoclinic orbit ReHom
MM0

(gray line) at Re = 186.4 of
Fig. 29. The gray dot is the location of MM0, and the red markers
indicate the location of the PrWG states. The red and blue trajec-
tories represent limit cycles for higher values of Re; the period of
these states diverges logarithmically as Re → 186.4 from above (not
shown).

FIG. 29. Bifurcation diagram in the Knit-Knot region of Fig. 27
in terms of the period Tp of the low-frequency modulation. Square
markers: Hopf bifurcation; circles: saddle-node bifurcation; trian-
gles: Neimark-Sacker bifurcation.

(Re ≈ 190.4 in [14]), which connects to the standing wave
branch at around Re ≈ 214 (Re ≈ 215.2 in [14]). According
to theory, this sequence of bifurcations should be followed
by the formation of a modulated wave branch and precessing
waves. However, we do not discuss these patterns here due to
the lack of simulation data to compare with and because these
patterns can be described only using the fifth-order normal
form whose coefficients we have not computed. For more
information, see Fig. 26.

Let us return to the discussion of the Knit-Knot region. In
our more detailed analysis, this state is actually composed
of several simpler states; see Fig. 29. The MM0 bifurcates
into a precessing wave PrWG at Re ≈ 184.5. This precess-
ing wave is stable up to Re ≈ 186.3, where a saddle-node
bifurcation takes place leading to a 3FW, denoted as 3FWA

in Fig. 29. The three-frequency wave is observable only in a
small interval, however, and eventually reconnects to a pul-
sating wave via a global homoclinic bifurcation at around
Re ≈ 186.9. This pulsating wave is stable up to around Re ≈
191.9. At this stage, we can observe two other bifurcations
leading to three-frequency waves with 3FWB (unstable) and
3FWC (stable); both of these branches reconnect to the main
branch (PuWs) following a saddle-node bifurcation of limit
cycles. The pulsating wave state finally reconnects with the
symmetry-breaking mixed mode (MMπ ) branch.

IX. DISCUSSION AND CONCLUSION

In this article, we have analyzed the properties of the
normal form and the bifurcation scenario relevant to the bi-
furcations observed in axisymmetric wakes described by the
Navier-Stokes equation. We have shown that near the onset
of instability, it is possible to reduce the dynamics via center
manifold reduction to a normal form, i.e., an ordinary dif-
ferential equation, whose unfolding fully captures the local
behavior of the Navier-Stokes equation. Such normal forms
inherit the discrete and continuous symmetries of the system,
in the present case O(2) symmetry. We have shown that this
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approach, carried out in the vicinity of a steady-state–Hopf-
mode interaction, suffices to predict much of the observed
behavior.

Our analysis of the generic steady-state–Hopf-mode case
relied on a reduction to polar coordinates. The fixed point so-
lutions of the normal form, e.g., the pure modes and the mixed
modes, have been observed in a variety of fluid flows, includ-
ing Taylor-Couette and wake flows. Here we have attempted
to provide a complete description of the fixed point solutions
of the normal form, as well as the possible bifurcations to
periodic solutions of the polar normal form corresponding to
two- and three-frequency waves.

Particularly noteworthy is our discovery of robust, poten-
tially attracting, heteroclinic cycles in this mode interaction.
In previous studies [58,59], self-sustained processes have
been related to a three-step process involving rolls advecting
streamwise velocity, leading to streaks which once unstable
lead to wavy perturbations whose nonlinear interaction with
itself feeds the rolls. In terms of the mode interaction, the
self-sustained cycle described by Dessup et al. [58] corre-
sponds to a HetSS−SW cycle or to an orbit that shadows it.
In this sense, one could expect that other, more complex dy-
namics, for instance, a HetPrWA cycle, may also be observed in
the bifurcation scenario of real fluid systems. We mention that
the indefinite increase in period associated with the approach
to an attracting robust heteroclinic cycle cannot in general be
seen in numerical integration of the normal form, on account
of rounding error. Instead, the solution trajectory settles into
a statistical limit cycle with a finite mean period [60]. This
is even more so for partial differential equations [61] and in
experiments where the presence of noise prevents approach
to such a cycle [62]. This fact points to the importance of
fluctuations in applications of the theory to fluid dynamics
problems, as also emphasized in [48] in connection with the
SNIPER bifurcation.

We have applied here the general theory to several distinct
fluid flows and used it to explore the bifurcation scenario
of wake flows behind a sphere or disk falling through
either a constant density fluid or a vertically stratified fluid
(problems WFA and WFA-MC, respectively). In particular,
in Sec. VII we determined the normal form coefficients
for these problems on the assumption that each object is
held fixed, and used these results in Sec. VIII to construct
consistent stability diagrams for these flows, comparing
the predicted bifurcation scenarios for mixed-convection
flow past a fixed axisymmetric object, a disk or a sphere,
with the results of direct numerical simulations of these
flows. These results enabled us to rationalize the results of
previous numerical studies including those in the complicated
Knit-Knot region of Auguste et al. [14] for the WFA problem
for a disk of thickness χ = 3 and the WFA-MC problem
for a sphere of Kotouč et al. [26], states XIII or XIX,
thereby demonstrating the utility of our bifurcation-theoretic
approach. Unfortunately, neither of these cases predicts the
presence of structurally stable heteroclinic cycles, although
such states may arise for other parameter values.
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APPENDIX A: NORMAL FORM REDUCTION

1. Third-order forcing terms

The third-order forcing terms are obtained from the substi-
tution of the ansatz (58) into F(q, η). The general expression
of the third-order forcing term F(ε3 ) is as follows:

F(ε3 ) ≡
2∑

j=−2
k,�=−2

a jaka�[N(q̂ j, q̂k,�) + N(q̂k,�, q̂ j )]e
−imnθe−iωnt

+
2∑

j=−2,�=0

a jη�

[
N

(
q̂ j, Q(η� )

0

) + N
(
Q(η� )

0 , q̂ j
)]

× e−im jθe−iω j t

+
2∑

j=−2,�=0

a jη�G(q̂ j, e�)e−im jθe−iω j t , (A1)

with a slight abuse of notation such that q̂ j = q̂− j , q̂k, j =
q̂−k,− j , and a j = a− j . Therefore, the azimuthal wave num-
ber and the frequency associated with a negative index are
both considered to be of the opposite sign, i.e., ω− j = −ω j

and m− j = −mj . Finally, ωn and mn are defined by the re-
lations ωn = ω j + ωk + ω�, mn = mj + mk + m�, where n =
j + k + �. Resonant terms are those for which (ωn, mn) is
equal to either (0, m0), (ω1, m1) or (ω1,−m1) (plus the
complex conjugate pairs). The remaining terms play a role
only in higher-order truncations. Hierarchically, the first class
of third-order forcing terms consists of those that are linear
with respect to the amplitudes aj for j = 0, 1, 2,

F̂(a j )
(ε3 ) ≡

2∑
�=0

η�

([
N

(
q̂ j, Q(η� )

0

) + N
(
Q(η� )

0 , q̂ j
)] + G(q̂ j, e�)

)
.

(A2)

The second type of resonant forcing terms are those used to
compute the real coefficients l j for j = 0, 1, 2, 3. These are
proportional to the cubic terms in the first equation of the
complex normal form (8) and are given by

F̂(a0|a0|2 )
(ε3 ) ≡ [N(q̂0, q̂0,−0) + N(q̂0,−0, q̂0)]

+ [N(q̂−0, q̂0,0) + N(q̂0,0, q̂−0)], (A3)

with the notation q̂−0 = q̂0. Similarly, the terms F̂(a0|a j |2 )
(ε3 ) for

j = 1, 2 are given by

F̂(a0|a j |2 )
(ε3 ) ≡ [N(q̂0, q̂ j,− j ) + N(q̂ j,− j, q̂0)]

+ [N(q̂− j, q̂0, j ) + N(q̂0, j, q̂− j )]

+ [N(q̂ j, q̂0,− j ) + N(q̂0,− j, q̂ j )], (A4)

while F̂(a0a1a2 )
(ε3 ) is expressed as

F̂(a0a1a2 )
(ε3 ) ≡ [N(q̂−0, q̂1,−2) + N(q̂1,−2, q̂−0)]

+ [N(q̂1, q̂−0,−2) + N(q̂−0,−2, q̂1)]

+ [N(q̂−2, q̂−0,1) + N(q̂−0,1, q̂−2)]. (A5)
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The third class of forcing terms are those used for the com-
putation of the complex coefficients A, B,C, and D. These are

F̂(a j |a j |2 )
(ε3 ) for j = 1, 2:

F̂(a j |a j |2 )
(ε3 ) ≡ [N(q̂ j, q̂ j,− j ) + N(q̂ j,− j, q̂ j )]

+ [N(q̂− j, q̂ j, j ) + N(q̂ j, j, q̂− j )], (A6)

F̂(a j |ak |2 )
(ε3 ) for j = 1, 2 and k = 0, 1, 2 with j 
= k,

F̂(a j |ak |2 )
(ε3 ) ≡ [N(q̂ j, q̂k,−k ) + N(q̂k,−k, q̂ j )]

+ [N(q̂−k, q̂ j,k ) + N(q̂ j,k, q̂−k )]

+ [N(q̂k, q̂ j,−k ) + N(q̂ j,−k, q̂k )]. (A7)

Finally, the term F̂(a2
0a2 )

(ε3 ) is expressed as

F̂(a2
0a2 )

(ε3 ) ≡ [N(q̂0, q̂0,2) + N(q̂0,2, q̂0)]

+ [N(q̂2, q̂0,0) + N(q̂0,0, q̂2)]. (A8)

APPENDIX B: MODULATED WAVE MODE

The modulated wave mode is a degenerate solution of
the normal form (8) truncated at third order. Crawford and
Knobloch [33] analyzed the unfolding of the three simplest
degeneracy conditions: (1) Ar + 2Br = 0, (2) Br = 0, and (3)
Ar = 0. Here we briefly summarize some of their results and
list sufficient conditions for the branching and stability of the
modulated wave solution. The existence of the MW solution
is subject to the following conditions:

p1
(
0, r2

1 + r2
2 ,

(
r2

2 − r2
1

)2
, 0, 0, λ

) ≡ 0,

p2
(
0, r2

1 + r2
2 ,

(
r2

2 − r2
1

)2
, 0, 0, λ

) ≡ 0. (B1)

Hill and Stewart [63] observed that the condition p2 ≡ 0 is a
degeneracy condition if one evaluates the polynomial p2 at the
origin, i.e., p2(0, 0, 0, 0, 0, 0) ≡ Ar . Since, to fifth order,

p1
(
0, r2

1 + r2
2 ,

(
r2

2 − r2
1

)2
, 0, 0, λ

)
≡ λh + (

1
2 Ar + Br

)(
r2

1 + r2
2

)
+ p1



(
r2

2 − r2
1

)2 + p1
N

(
r2

1 + r2
2

)2
,

p2
(
0, r2

1 + r2
2 ,

(
r2

2 − r2
1

)2
, 0, 0, λ

)
≡ 1

2 Ar + p2
N

(
r2

1 + r2
2

) + p2


(
r2

2 − r2
1

)2
, (B2)

the {r1, r2} evolution is given by

ṙ1 = r1
[
λh + Brr2

1 + (Ar + Br )r2
2

+ (
p1

 + p1
N2 − p2

N

)
r4

1 + (
p1

 + p1
N2 + p2

N

)
r4

2

+ 2
(
p1

N2 − p1


)
r2

2r2
1 + p2



(
r2

2 − r2
1

)3]
,

ṙ2 = κ · ṙ1, (B3)

where κ · ṙ1 stands for the action of the reflection symmetry,
defined in Eq. (6), and p2

 = 0 to restrict the equation to fifth

order. Inspection of Eq. (B3) shows that the fixed points ra, rb

satisfy

r2
a = 1

2

[
− Ar

2p2
N

−
√

χ

4p2
N p1



]
,

r2
b = 1

2

[
− Ar

2p2
N

+
√

χ

4p2
N p1



]
, (B4)

where the symbol χ , which is a function of the parameter
λh, is defined in Table VI. Evidently, the MW states exist
when Ar/p2

N < 0 and 0 < χ/(p2
N p1

) < A2
r /(p2

N )2. The stabil-
ity within the MW subspace, i.e., with respect to perturbations
in {r1, r2} only, can be analyzed in terms of the determinant
and trace of the Jacobian stability matrix restricted to this
subspace:

det(MMW) = 32p2
N p1

r2
ar2

b (ra − rb)2(ra + rb)2, (B5a)

tr(MMW) = Ar

p2
N

[
Ar p1

N2

p2
N

− 1

2
(Ar + 2Br )

]
+ (

r2
a − r2

b

)2(
4p1

 − 2p2
N

)
, (B5b)

In view of Eq. (B5a), the determinant vanishes when rarb = 0
corresponding to the rotating wave branch and when ra = rb

corresponding to the standing wave branch. Therefore, the
modulated wave branch connects the branches of rotating and
standing waves. The standing wave changes stability when
σSW ≡ −2r2

SW(Ar + 4r2
SW p2

N ) changes sign, which can hap-
pen if Ar p2

N < 0. The corresponding standing wave amplitude
is given by r2

SW = − Ar

4p2
N

. The standing wave emerges as a
stable (resp. unstable) solution within the {r1, r2} subspace
if Ar > 0 (resp. Ar < 0), and it becomes unstable (resp. sta-
ble) when r2

SW = − Ar

4p2
N

. The stability of the rotating wave
within the {r1, r2} subspace is determined by the eigenvalue
σRW ≡ −r2

RW(Ar − 2r2
RW p2

N ), which is stable (resp. unstable)
if Ar < 0 (resp. Ar > 0). The corresponding amplitude is
r2

RW = − Ar

2p2
N

.
The conditions on the determinant show that the MW

branch does not experience steady bifurcations, except at the
two end points. The MW solution is stable if det(MMW) > 0,
that is, p2

N p1
 > 0, and the trace is negative. It is sufficient to

ensure that the trace is negative at the end points, a condition
equivalent to Ar > 0, p2

N < 0, p1
 < 0 and Br + Ar < 0. Oth-

erwise, the MW branch may experience a Hopf bifurcation
leading to a 3FW.

Let us now focus on the stability of the MW branch with
respect to perturbations in the variable r0. We see that the MW
can bifurcate into a precessing wave solution whenever

λs − l1
Ar

p2
N

� 0.

In the supercritical case, the PrW connects in parameter space
a mixed mode with a modulated wave. Finally, a possible
scenario for a bifurcation from PrW towards a three-frequency
wave arises whenever Eq. (9d) does not possess a fixed point.
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