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Delocalized nonlinear vibrational modes and discrete breathers in β-FPUT simple cubic lattice
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The problem of finding various discrete breathers (DBs) in the β-Fermi-Pasta-Ulam-Tsingou simple cubic
lattice is addressed. DBs are obtained by imposing localizing functions on delocalized nonlinear vibrational
modes (DNVMs) having frequencies above the phonon spectrum of the lattice. Among 27 DNVMs with the
wave vector at the boundary of the first Brillouin zone there are three satisfying this condition. Seven robust DBs
of different symmetries are found using this approach.
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I. INTRODUCTION

Nonlinear lattices admit localization of vibrational energy
in the form of discrete breathers (DBs), also called intrinsic
localized modes [1–3]. DBs have been extensively studied,
mainly in low-dimensional lattices [4–8]. At the same time,
most of the crystals used in practice are three-dimensional,
so the study of DBs in lattices of higher dimensions is an
important problem in condensed matter physics [9].

DBs in crystals are studied experimentally by measuring
vibrational spectra using Raman, x-ray, and neutron scattering
methods [10–13]. In addition to the signal from DBs, the spec-
tra contain information about vibrations localized at crystal
structure defects, which can overlap and make it difficult to in-
terpret the experimental data [13]. With this in mind, computer
simulation methods today remain the main tool for studying
DBs in crystals. With the help of molecular dynamics, DBs
were found in alkali halide crystals [14–16]; covalent crystals
such as diamond, Si, and Ge [17,18]; face-centered cubic (fcc)
metals [19–26], body-centered cubic (bcc) metals [19,27–
29], hexagonal close-packed (hcp) metals [30,31], α-uranium
[32], and ordered alloys [33–36]. One-dimensional [37] and
two-dimensional crystals also support DBs, e.g., crystals with
Morse potential [38,39], graphene [40–43], graphane (hydro-
genated graphene) [44,45], and carbon nanotubes [46–49].

DBs interact with crystal structure defects [48,50,51]; they
can exist at thermal equilibrium [16,38,52] and affect the
properties of crystals [53–58].
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Chaotic DBs are formed in the nonlinear lattices when a
short-wavelength vibrational mode with frequency outside the
phonon band is modulationally unstable [59]. Chaotic DBs
were studied in nonlinear chains [59–66], in two-dimensional
[7,60,67] and three-dimensional lattices [20].

Further progress in studying the effect of DBs on the
mechanical and physical properties of crystals is impossible
without knowing how many different types of DBs a particular
lattice supports. In the earlier works it was shown that, for
example, a two-dimensional triangular Morse lattice with an
on-site harmonic potential supports breathers of two types [7],
and later many more were discovered in a triangular β-Fermi-
Pasta-Ulam-Tsingou (β-FPUT) lattice [68].

Recently, a practical approach has been developed to
search for DBs of various symmetries in multidimensional
lattices. The starting point is a search for delocalized nonlinear
vibrational modes (DNVMs) that have frequencies outside
the phonon spectrum. DBs are obtained by superimposing a
localizing function upon such DNVMs. This approach was
shown to be very efficient in finding DBs in triangular [68]
and square [69] lattices, as well as in bcc metals V and Nb
[27]. This approach to finding DBs is not rigorous and does
not guarantee that the obtained localized solutions are single-
frequency exact solutions of the equations of motion. In fact,
this method detects long-lived quasi-breathers [70].

This approach is not rigorous and can be used to find
long-lived quasi-DBs [70], which are not necessarily ex-
act solutions to the equations of motion of the considered
lattice.

DNVMs are found using the group-theoretical approach
developed by Chechin and Sakhnenko [71]. Multidimensional
lattices usually support more than one DNVM with a fre-
quency outside the phonon band—for example, two in a
square lattice [69,72], three in a triangular lattice [57,73],
four in a bcc [74], and three in an fcc [75] lattice. Recently,
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DNVMs were applied to verify the accuracy of molecular
dynamics interatomic potentials [76].

An introduction to the method of finding DNVMs devel-
oped by Chechin and Sakhnenko was given in the appendices
to Ref. [73]. Their approach was used in Refs. [77–81]. Note
that in the original papers, the authors spoke of bushes of
nonlinear normal modes (BNNMs), and later in some papers
they were called DNVMs.

The search for DBs in a simple cubic lattice is motivated
by the fact that there is one metal with such a lattice, namely,
polonium [82–85]. Also, the simple cubic lattice is the sim-
plest three-dimensional lattice that can be used to test various
ideas [86].

The paper is organized as follows: the model is presented
in Sec. II, the phonon dispersion relation is derived in Sec. III,
DNVMs with wave vectors at the boundary of the first Bril-
louin zone are described in Sec. IV, and in Sec. V DBs of a
simple cubic lattice are obtained. A summary of this study is
presented in Sec. VI.

II. SIMPLE CUBIC β-FPUT LATTICE

A three-dimensional simple cubic β-FPUT lattice is
considered taking into account nearest and next-nearest inter-
actions, see Fig. 1(a). The lattice with the step h is a set of
points having radius vectors

ξi, j,k = ie1 + je2 + ke3, (1)

where i, j, and k are integers and the basis vectors of the lattice
are e1 = (h, 0, 0), e2 = (0, h, 0), and e3 = (0, 0, h).

The atoms of mass m occupy the lattice points. Vector
δi, j,k = (ui, j,k, vi, j,k,wi, j,k ) describes the displacement of the
atom i, j, k from its lattice position so that the radius vector of
the atom at time t is ri, j,k (t ) = ξi, j,k + δi, j,k (t ).

The interaction between nearest (n) and next-nearest (nn)
neighbors is described by the β-FPUT potential

ϕn,nn(r) = cn,nn

2
(r − an,nn)2 + βn,nn

4
(r − an,nn)4, (2)

where r is the distance between atoms; an = h and ann = h
√

2
are the equilibrium lengths of the nearest and next-nearest
bonds, respectively; and cn and cnn (βn and βnn) are the coef-
ficients of the harmonic (anharmonic) part of the potential for
the nearest and next-nearest bonds, respectively. We set h = 1
and cn = 1 by normalizing the distance and energy units,
respectively. For the stiffness of the next-nearest bonds two
values are considered, cnn = 1 and 3. Setting βn = βnn = 10
ensures that the nonlinearity becomes noticeable for atomic
displacements of the order of h/10. The particle mass m = 1
is set by normalization of the time unit.

The reciprocal lattice of a simple cubic lattice is shown in
Fig. 1(b) in the space of wave numbers q, s, p. Letters desig-
nate highly symmetrical points and lines of the first Brillouin
zone.

The computational cell of I × J × K atoms is consid-
ered and the periodic boundary conditions, ri, j,k = ri+I, j,k =
ri, j+J,k = ri, j,k+K , are used.

The Hamiltonian of the computational cell is the sum of the
kinetic energies of atoms and potential energies of the nearest

FIG. 1. (a) Simple cubic lattice with lattice parameter h. The
lattice points are numbered by indices i, j, k; nearest and next-nearest
bonds are colored cyan and magenta, respectively, and numbered
with blue and red numbers, respectively. (b) Reciprocal lattice in the
space of wave numbers q, s, p. Highly symmetrical points and lines
of the first Brillouin zone are designated. Line � connects points �

and X ; line � connects points � and M; line � connects points �

and R; line T connects points M and R; and line Z connects points X
and M.

and next-nearest bonds:

H = K + Pn + Pnn =
I∑

i=1

J∑
j=1

K∑
k=1

m

2
|ṙi, j,k|2

+ 1

2

I∑
i=1

J∑
j=1

K∑
k=1

(
6∑

s=1

ϕn(|Ri, j,k,s|) +
18∑

l=7

ϕnn(|Ri, j,k,l |)
)

,

(3)

where the overdot denotes differentiation with respect to time
and vectors connecting the six nearest (Ri, j,k,s) and 12 next-
nearest (Ri, j,k,l ) neighbors of the i, j, k particle are defined by
Eq. (A1).
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The equations of motion of the i, j, k atom derived from
Eq. (3) are

müi, j,k =
6∑

s=1

DnRi, j,k,s,x +
18∑

l=7

DnnRi, j,k,l,x,

mv̈i, j,k =
6∑

s=1

DnRi, j,k,s,y +
18∑

l=7

DnnRi, j,k,l,y,

mẅi, j,k =
6∑

s=1

DnRi, j,k,s,z +
18∑

l=7

DnnRi, j,k,l,z, (4)

where

Dn = ϕ′
n(|Ri, j,k,s|)
|Ri, j,k,s| , Dnn = ϕ′

nn(|Ri, j,k,l |)
|Ri, j,k,l | . (5)

The dynamics of DNVMs is analyzed using the compu-
tational cell with I = J = K = 4, which is sufficient for all
considered modes due to their spatial periodicity. DBs are
studied in the computational cell with I = J = K = 40, which
is sufficient due to their spatial localization.

In the analysis of DBs, absorbing boundary conditions are
used to damp low-amplitude waves emitted by the DB when
reaching a stationary dynamic regime.

The numerical integration of the equations of motion is
carried out by the symplectic Störmer method of the sixth
order [87] with a time step of 0.01, which is sufficient to
preserve the total energy with a relative error not exceeding
10−6 during the entire numerical run.

III. PHONON DISPERSION RELATION

In the Appendix, the cubic characteristic equation Eq. (A9)
is derived from the linearized equations of motion Eqs. (A2)–
(A4). The characteristic equation relates the frequencies of
the three branches of the dispersion relation with the wave
numbers q, s, and p.

Let us consider dispersion relations along the four high-
symmetry lines in the reciprocal space, see Fig. 1(b).

For � line q = s = p and the dispersion relations obtain
the form

mω2
1 = 4cn sin2 q

2
+ 8cnn sin2 q,

mω2
2,3 = 4cn sin2 q

2
+ 2cnn sin2 q. (6)

For � line q = s, p = 0, and one gets

mω2
1 = 8cnn sin2 q

2
,

mω2
2 = (4cn + 4cnn) sin2 q

2
,

mω2
3 = (4cn + 4cnn) sin2 q

2
+ 4cnn sin2 q. (7)

For � line s = p = 0, which leads to

mω2
1 = (4cn + 8cnn) sin2 q

2
,

mω2
2,3 = 4cnn sin2 q

2
. (8)

FIG. 2. Dispersion curves of the simple cubic lattice for the
highly symmetrical lines of the first Brillouin zone. (a) � line, see
Eq. (6); (b) � line, see Eq. (7); (c) � line, see Eq. (8); (d) Z line, see
Eq. (9). Results for cnn = 1 and cnn = 3 are compared while cn = 1
for all cases. Black squares show the frequencies of the phonons of
seven groups of DNVMs in the small-amplitude limit.

For Z line p = 0, s = π/h and the dispersion relations are

mω2
1 = 4cnn + 4cnn sin2 q

2
,

mω2
2 = (4cn + 4cnn) sin2 q

2
+ 4cnn sin2 q − π

2
,

mω2
3 = 4cn + 4cnn + 4cnn sin2 q − π

2
. (9)

In Fig. 2, the dispersion relations for the high-symmetry
lines in the first Brillouin zone are plotted.

For point M the frequency is equal to

ω2
M = 8cnn, (10)

and for point X the frequency is equal to

ω2
X = 4cn + 8cnn. (11)

The frequency at point X is higher than the frequency at point
M for any values of cn > 0 and cnn. We conclude that the
maximum phonon frequency is

ωmax = ωX = 2
√

cn + 2cnn. (12)
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FIG. 3. Zone boundary DNVMs of a simple cubic lattice. Atomic
trajectories are shown in blue. The circles show the atoms at the
moment of the greatest deviation from the position in the lattice.
An empty circle means zero z displacement, while dots and crosses
correspond to positive and negative z displacements, respectively. All
nonzero displacement components are equal to each other.

IV. ZONE BOUNDARY DNVMS OF SIMPLE
CUBIC LATTICE

There are 27 one-component DNVMs of a simple cubic
lattice with wave vectors at the boundary of the first Bril-
louin zone; they are shown in Fig. 3. The method of deriving
DNVMs has been reported in the Appendix of Ref. [72].
All these vibrational modes are dynamical systems with one
degree of freedom. Thick blue lines show the trajectories of
atoms projected onto the xy plane. The white circles show
the positions of the atoms at the moment of their maximum
displacement from the lattice sites. Empty circles mean that
the z component of displacement is equal to zero. Circles
with dots and crosses are used to denote the positive and
negative z components of the displacement, respectively. It
is important to note that all nonzero components of initial

FIG. 4. Frequency as the function of amplitude for 27 DNVMs
for cn = 1 and cnn = 3. The upper edge of the phonon spectrum,
ωmax = 2

√
7 = 5.29, is shown by the horizontal dashed line. All

DNVMs are divided into seven groups labeled G1–G7 according
to the frequency � in the small-amplitude limit, see Table I. The
DNVMs are ordered according to their frequencies, and the higher
numbered mode has the higher frequency. DNVMs of group G7 have
frequencies above the phonon spectrum for all amplitudes.

atomic displacements are equal in magnitude. For exam-
ple, for DNVM1 |u0

i, j,k| = |v0
i, j,k| = |w0

i, j,k| > 0, for DNVM2
|u0

i, j,k| = |w0
i, j,k| > 0, |v0

i, j,k| = 0, for DNVM3 |u0
i, j,k| > 0,

|w0
i, j,k| = |v0

i, j,k| = 0, and so on.
For most DNVMs, atomic displacements are shown in

Fig. 3 for a translational cell containing 2 × 2 × 2 primitive
cubic cells, or eight atoms. For each DNVM, the displace-
ments are shown for two planes, z = 0 and z = h. The two
exceptions are DNVM20 and DNVM21; they have rectangu-
lar translation cells with 4 × 2 × 1 atoms and it is sufficient to
show only the z = 0 plane.

In DNVMs 6, 8, 15, 17, 20, and 22 there are atoms with
zero initial displacement, and they remain at rest while ini-
tially displaced atoms oscillate.

In Fig. 4, the frequency response of 27 DNVMs is shown
for cn = 1 and cnn = 3. The upper edge of the phonon spec-
trum is shown as a horizontal dashed line, ωmax = 2

√
7 =

5.29, see Eq. (12).
In Fig. 5, similar results are shown for cn = cnn = 1. The

upper edge of the phonon spectrum is shown as a horizontal
dashed line, ωmax = 2

√
3 = 3.46, see Eq. (12).

TABLE I. DNVMs separated into groups according to their fre-
quency � in the small-amplitude limit. Results for cn = 1, cnn = 3.

Group G1 G2 G3 G4

DNVMs 1–3 4–11 12–19 20
� 2.00 3.46 4.00 4.24
Group G5 G6 G7

DNVMs 21 22-24 25–27
� 4.69 4.90 5.29
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FIG. 5. Frequency as the function of amplitude for 27 DNVMs
for cn = cnn = 1. The upper edge of the phonon spectrum, ωmax =
2
√

3 = 3.46, is shown by the horizontal dashed line. DNVMs from
25 to 27 have frequencies above the phonon spectrum for all ampli-
tudes, the same as in Fig. 4.

It can be seen from Fig. 4 that DNVMs can be divided
into seven groups, designated from G1 to G7, according to
the frequency in the limit of small amplitudes, when DNVMs
are transformed into zone-boundary phonons. Table I shows
the division of DNVMs into groups and the mode frequencies
in the limit of small amplitudes for cn = 1, cnn = 3. These
frequencies are also shown in Fig. 2 by black squares. In
Fig. 5, some groups are combined due to a special choice of
model parameters, namely, cn = cnn = 1.

V. DISCRETE BREATHERS

As mentioned above, here we aim to find long-lived quasi-
DBs [70], which are not necessarily exact solutions of the
equations of motion of the simple cubic lattice. For brevity,
quasi-DBs will be called DBs.

DBs are obtained below by superimposing the localizing
functions on the DNVMs with frequencies above the phonon
spectrum, i.e., on DNVM25, DNVM26, and DNVM27; they
belong to group G7.

The DB is localized at the point of intersection of three
orthogonal planes,

L1x + L2y + L3z + L4 = 0, (13)

M1x + M2y + M3z + M4 = 0, (14)

N1x + N2y + N3z + N4 = 0, (15)

and the conditions of their orthogonality are

L1M1 + L2M2 + L3M3 = 0, (16)

L1N1 + L2N2 + L3N3 = 0, (17)

M1N1 + M2N2 + M3N3 = 0. (18)

The localizing function is taken in the form

ai jk = A

cosh(γ1di jk ) cosh(γ2 fi jk ) cosh(γ3gi jk )
, (19)

where ai jk is the magnitude of the initial displacement of par-
ticle with the lattice position ξi, j,k ; A is the DNVM amplitude;
γ1, γ2, and γ3 are the localization parameters; and di jk , fi jk ,
and gi jk are the distances from the lattice point i, j, k to the
planes Eqs. (13)–(15), respectively, which are calculated as

di jk = |L1xi jk + L2yi jk + L3zi jk + L4|√
L2

1 + L2
2 + L2

3

, (20)

fi jk = |M1xi jk + M2yi jk + M3zi jk + M4|√
M2

1 + M2
2 + M2

3

, (21)

gi jk = |N1xi jk + N2yi jk + N3zi jk + N4|√
N2

1 + N2
2 + N2

3

. (22)

Initial velocities of all particles are equal to zero for all types
of DBs.

In short, according to Eq. (19), the value of the initial dis-
placements of atoms, ai jk , decays exponentially with distance
from each of the three orthogonal planes Eqs. (13)–(15).

The strategy of quasi-DB search is very simple. All quasi-
DBs are obtained at the intersection of three orthogonal
planes,

x + L4 = 0, (23)

y + M4 = 0, (24)

z + N4 = 0. (25)

That is, in Eqs. (13)–(15) L1 = M2 = N3 = 1 and L2 =
L3 = M1 = M3 = N1 = N2 = 0. The orthogonality condi-
tions Eqs. (16)–(18) are met. Parameters L4, M4, and N4 define
the localization center relative to the lattice nodes. The choice
of localization parameters is not optimized. For typical values
of A = 0.2 and γ1 = γ2 = γ3 = 1, the ansatz Eq. (19) usually
gives a localized vibrational mode, which, after the emission
of some part of the initial energy, is transformed into a quasi-
DB with a very long lifetime. The time required to stabilize
the quasi-DB is denoted as t∗. Typically, t∗ is between 15 and
30 oscillation periods, which corresponds to about 20–40 time
units. The energy emitted by the DB during stabilization is
absorbed at the boundaries of the computational cell.

In all cases the model parameters are cn = cnn = 1, βn =
βnn = 10, and m = 1.

A. DBs based on DNVM 25

In Fig. 6(a), the DB based on DNVM25 localized at the
intersection of the x = 0, y = 0, and z = 0 planes is shown.
Thus, in Eqs. (23)–(25) L4 = M4 = N4 = 0. Parameters of
the localization function Eq. (19) are A = 0.2, γ1 = 0.8 and
γ2 = γ3 = 1.0. Atomic trajectories are shown projected onto
the xy, xz, and yz planes. Atoms are shown at the moment of
maximum deviation from their lattice positions. This on-site
DB has one atom vibrating with the largest amplitude. In
Fig. 6(b), the displacement ui jk for the atom colored red is
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FIG. 6. (a) DB based on DNVM25 localized at the intersection
of the x = 0, y = 0, and z = 0 planes. Atomic trajectories are shown
in projections onto the xy, xz, and yz planes. (b) Displacement ui jk of
the atom colored red as a function of time for t > t∗.

plotted as the function of time for t > t∗, where t∗ is the time
needed for stabilization of the DB.

In Fig. 7(a), the DB based on DNVM25 localized at the
intersection of the x = h/2, y = 0, and z = 0 planes is shown.
In Eqs. (23)–(25), L4 = −h/2 and M4 = N4 = 0. Parameters
of the localization function Eq. (19) are A = 0.2, γ1 = 0.8,
and γ2 = γ3 = 1.0. This intersite DB has two atoms vibrating
with the largest amplitude. In Fig. 7(b), the displacement ui jk

for the atom colored red is plotted as the function of time for
t > t∗.

B. DBs based on DNVM 26

In Figs. 8–10, DBs based on DNVM 26 are presented. In
Figs. 8(a), 9(a), and 10(a), trajectories of atoms are shown
projected onto the xy, xz, and yz planes. The atoms are shown
at the time of maximum deviation from the lattice positions.

FIG. 7. (a) DB based on DNVM25 localized at the intersection of
the x = h/2, y = 0, and z = 0 planes. Atomic trajectories are shown
in projections onto the xy, xz, and yz planes. (b) Displacement ui jk of
the atom colored red as a function of time for t > t∗.

FIG. 8. (a) DB based on DNVM26 localized on the intersection
of the planes x = 0, y = 0, and z = 0. Displacements of atoms are
shown projected onto the xy, xz, and yz planes. (b) Displacement ui jk

of the atom colored red as the function of time for t > t∗.

In Figs. 8(b), 9(b), and 10(b), displacement ui jk of the atom
colored red is plotted as the function of time for t > t∗.

In Fig. 8, the DB is localized at the intersection of the
planes x = 0, y = 0, and z = 0. Parameters of the local-
ization function Eq. (19) are A = 0.2, γ1 = γ2 = γ3 = 1.0.
This on-site DB has one atom vibrating with the largest
amplitude.

In Fig. 9, the DB is localized on the intersection of the
planes x = 0, y = 0, and z = h/2. Parameters of the localiza-
tion function Eq. (19) are A = 0.24, γ1 = γ2 = γ3 = 1.0. For
this DB two atoms have the largest vibration amplitude.

In Fig. 10, the DB is localized on the intersection of
the planes x = h/2, y = h/2, and z = 0. Parameters of the
localization function Eq. (19) are A = 0.2, γ1 = γ2 = γ3 =
1.0. For this DB four atoms have the largest vibration
amplitude.

FIG. 9. (a) DB based on DNVM26 localized on the intersection
of the planes x = 0, y = 0, and z = h/2. Displacements of atoms are
shown projected onto the xy, xz, and yz planes. (b) Displacement ui jk

of the atom colored red as the function of time for t > t∗.
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FIG. 10. (a) DB based on DNVM26 localized on the intersection
of the planes x = h/2, y = h/2, and z = 0. Displacements of atoms
are shown projected onto the xy, xz, and yz planes. (b) Displacement
ui jk of the atom colored red as the function of time for t > t∗.

C. DBs based on DNVM 27

In Figs. 11 and 12, DBs based on DNVM 27 are presented
similarly to the other DBs.

In Fig. 11, the DB is localized at the intersection of the
planes x = h/2, y = h/2, and z = h/2. Parameters of the lo-
calization function Eq. (19) are A = 0.22, γ1 = γ2 = γ3 =
1.2. This intersite DB has eight atoms vibrating with the
largest amplitude.

In Fig. 12, the DB is localized on the intersection of the
planes x = 0, y = 0, and z = 0. Parameters of the localization
function Eq. (19) are A = 0.22, γ1 = γ2 = γ3 = 1.2. For this
on-site DB one atom has the largest vibration amplitude.

VI. DISCUSSION AND CONCLUSIONS

In this study, 27 zone-boundary DNVMs of the simple
cubic lattice were obtained (see Fig. 3) using the group-
theoretical approach according to Chechin and Sakhnenko

FIG. 11. (a) DB based on DNVM27 localized on the intersec-
tion of the planes x = h/2, y = h/2, and z = h/2. Displacements of
atoms are shown projected onto the xy, xz, and yz planes. (b) Dis-
placement ui jk of the atom colored red as the function of time for
t > t∗.

FIG. 12. (a) DB based on DNVM27 localized on the intersection
of the planes x = 0, y = 0, and z = 0. Displacements of atoms are
shown projected onto the xy, xz, and yz planes. (b) Displacement ui jk

of the atom colored red as the function of time for t > t∗.

[71]. We limited ourselves to consideration of only zone-
boundary modes, since we are looking for DNVMs that have
a frequency above the phonon spectrum for all vibration am-
plitudes, and such modes should have a wave vector at the
boundary of the first Brillouin zone.

In the small-amplitude limit, DNVMs transform into the
zone-boundary phonon modes, but even at large amplitudes
they retain the oscillation pattern and do not excite other
modes, making them special among the ordinary phonons that
begin to interact with other modes at large oscillation ampli-
tudes. This special property of the DNVMs is guaranteed by
the symmetry of the lattice. It is important to note that the
DNVMs shown in Fig. 3 exist as exact solutions in a simple
cubic lattice with any type of interatomic interaction, since
only the symmetry of the lattice was taken into account in
their derivation. In particular, all 27 DNVMs exist as exact
nonlinear solutions in the simple cubic lattice of polonium, as
guaranteed by the lattice symmetry.

The properties of DNVMs depend on the choice of inter-
particle potentials. Any type of potential can be considered,
including first-principles simulations [74], but for the first
study of DNVMs in a simple cubic lattice, the classical β-
FPUT potential was chosen, which does not include the cubic
anharmonicity in the potential energy. The introduction of the
cubic term could lead to a softening of the potential and less
favorable conditions for the existence of DBs in the lattice.
Our second important goal is to establish the relationship
between DNVMs and DBs, and this justifies the use of the
β-FPUT potential for demonstration purposes.

The frequency response of the DNVMs was obtained,
see Figs. 4 and 5. Three DNVMs have frequencies above
the phonon band for any amplitude, namely, DNVM25,
DNVM26, and DNVM27. These modes in the small-
amplitude limit reduce to the phonons with the wave vector
at point X of the first Brillouin zone, see Fig. 1(b).

Seven robust quasi-DBs were obtained by applying the lo-
calization function Eq. (19) to three DNVMs with frequencies
above the phonon spectrum, see Figs. 6–12. The parameters
of the localization function were not optimized, since the
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purpose of this study is only to demonstrate the simplicity of
obtaining quasi-DBs by the proposed method. The problem of
finding multiple solutions to the nonlinear equations of motion
does not have a general solution. However, in this work we
were able to find quasi-DBs of different symmetry. An al-
ternative approach for analyzing the multiplicity of solutions
is the numerical continuation [88–91], a method for tracking
families of solutions of a nonlinear system as a function of
some parameter.

It is important to discuss the effect of the on-site potential.
There is no such potential in crystals, but it is often used in
theoretical discrete nonlinear models. The introduction of an
on-site potential produces a low-frequency gap in the phonon
spectrum. At the same time, a new DNVM appears in the form
when all particles move synchronously in the on-site poten-
tial. If the on-site potential has a soft-type anharmonicity, the
frequency of this DNVM will decrease with the amplitude and
enter the gap. Then, by applying a localizing function, one can
try to obtain a DB in accordance with the approach offered in
this work.

The quasi-DBs obtained in this study can be used as initial
conditions for finding time-periodic exact DBs, if they are
supported by the considered lattice. We have not done so,
since the purpose of our study is to show the relationship
between the delocalized and spatially localized long-lived
vibrational modes.

As can be seen from Figs. 4 and 5, the frequencies of some
DNVMs are within the phonon spectrum at low amplitudes
and rise above the spectrum as the amplitude increases. Inter-
estingly, in some cases, DBs can be obtained based on such
DNVMs [27]. We do not analyze such DBs here, since they
can exist only at large amplitudes.

An important issue is the effect of perturbations such as
thermal oscillations on the dynamics of DNVMs and DBs.
Typically, at amplitudes above the threshold, DNVMs become
modulationally unstable and are destroyed even in the pres-
ence of very small perturbations. If the DNVM frequency is
outside the phonon spectrum, its energy cannot be directly
given to the extended phonons and the modulational insta-
bility leads to the formation of chaotic DBs [20,57]. As for
DBs, they are also affected by the thermal fluctuations, but
in a different way. On the one hand, fluctuations limit the
lifetime of DBs, but on the other hand, they produce thermally
populated DBs [13,16,38].

In further work, DNVMs and DBs in other lattices will
be obtained using the approach presented here. In particular,
DNVMs in body-centered cubic lattice of tungsten were re-
cently studied by molecular dynamics and ab initio methods
[74]. The ultimate goal of these studies is to analyze the role
of DBs in solid state physics.

The data that support the findings of this study are available
on request from the corresponding author, S.V.D.
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APPENDIX

Referring to Fig. 1(a), the following vectors connecting
the six nearest and twelve next-nearest neighbors of the i, j, k
particle are defined:

Ri, j,k,1 = ri+1, j,k − ri, j,k,

Ri, j,k,2 = ri, j+1,k − ri, j,k,

Ri, j,k,3 = ri−1, j,k − ri, j,k,

Ri, j,k,4 = ri, j−1,k − ri, j,k,

Ri, j,k,5 = ri, j,k−1 − ri, j,k,

Ri, j,k,6 = ri, j,k+1 − ri, j,k,

Ri, j,k,7 = ri+1, j−1,k − ri, j,k,

Ri, j,k,8 = ri+1, j+1,k − ri, j,k,

Ri, j,k,9 = ri−1, j+1,k − ri, j,k,

Ri, j,k,10 = ri−1, j−1,k − ri, j,k,

Ri, j,k,11 = ri+1, j,k−1 − ri, j,k,

Ri, j,k,12 = ri+1, j,k+1 − ri, j,k,

Ri, j,k,13 = ri−1, j,k+1 − ri, j,k,

Ri, j,k,14 = ri−1, j,k−1 − ri, j,k,

Ri, j,k,15 = ri, j+1,k−1 − ri, j,k,

Ri, j,k,16 = ri, j+1,k+1 − ri, j,k,

Ri, j,k,17 = ri, j−1,k+1 − ri, j,k,

Ri, j,k,18 = ri, j−1,k−1 − ri, j,k . (A1)

For small displacements of atoms from their positions in
the lattice, |δi, j,k| � h, the equations of motion Eq. (4) can be
linearized as follows:

müi, j,k = cn(ui+1, j,k − 2ui, j,k + ui−1, j,k )

+ cnn

2
(ui+1, j−1,k − 2ui, j,k + ui−1, j+1,k )

− cnn

2
(vi+1, j−1,k − 2vi, j,k + vi−1, j+1,k )

+ cnn

2
(ui+1, j+1,k − 2ui, j,k + ui−1, j−1,k )

+ cnn

2
(vi+1, j+1,k − 2vi, j,k + vi−1, j−1,k )

+ cnn

2
(ui+1, j,k−1 − 2ui, j,k + ui−1, j,k+1)

− cnn

2
(wi+1, j,k−1 − 2wi, j,k + wi−1, j,k+1)

+ cnn

2
(ui+1, j,k+1 − 2ui, j,k + ui−1, j,k−1)

+ cnn

2
(wi+1, j,k+1 − 2wi, j,k + wi−1, j,k−1), (A2)

mv̈i, j,k = cn(vi, j+1,k − 2vi, j,k + vi, j−1,k )

− cnn

2
(ui+1, j−1,k − 2ui, j,k + ui−1, j+1,k )

+ cnn

2
(vi+1, j−1,k − 2vi, j,k + vi−1, j+1,k )
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+ cnn

2
(ui+1, j+1,k − 2ui, j,k + ui−1, j−1,k )

+ cnn

2
(vi+1, j+1,k − 2vi, j,k + vi−1, j−1,k )

+ cnn

2
(vi, j+1,k−1 − 2vi, j,k + vi, j−1,k+1)

− cnn

2
(wi, j+1,k−1 − 2wi, j,k + wi, j−1,k+1)

+ cnn

2
(vi, j+1,k+1 − 2vi, j,k + vi, j−1,k−1)

+ cnn

2
(wi, j+1,k+1 − 2wi, j,k + wi, j−1,k−1), (A3)

mẅi, j,k = cn(wi, j,k+1 − 2wi, j,k + wi, j,k−1)

− cnn

2
(ui+1, j,k−1 − 2ui, j,k + ui−1, j,k+1)

+ cnn

2
(wi+1, j,k−1 − 2wi, j,k + wi−1, j,k+1)

+ cnn

2
(ui+1, j,k+1 − 2ui, j,k + ui−1, j,k−1)

+ cnn

2
(wi+1, j,k+1 − 2wi, j,k + wi−1, j,k−1)

− cnn

2
(vi, j+1,k−1 − 2vi, j,k + vi, j−1,k+1)

+ cnn

2
(wi, j+1,k−1 − 2wi, j,k + wi, j−1,k+1)

+ cnn

2
(vi, j+1,k+1 − 2vi, j,k + vi, j−1,k−1)

+ cnn

2
(wi, j+1,k+1 − 2wi, j,k + wi, j−1,k−1). (A4)

The phonon dispersion relations are derived from the lin-
earized equations of motion Eqs. (A2)–(A4). Solutions are
sought in the form

ui, j,k = U exp[i(qi + s j + pk − ωt )],

vi, j,k = V exp[i(qi + s j + pk − ωt )], (A5)

wi, j,k = W exp[i(qi + s j + pk − ωt )],

where i is imaginary unit; q, s, and p are the components of
the wave vector; ω is frequency; and U , V , and W are the
amplitudes.

Substituting Eq. (A5) into Eqs. (A2)–(A4), one can get

(mω2 + P)U + QV + YW = 0,

QU + (mω2 + Z )V + FW = 0, (A6)

YU + FV + (mω2 + S)W = 0,

where

P = −α − ε − κ − η − ξ,

Z = −ψ − ε − η − θ − λ,

S = −δ − κ − ξ − θ − λ,

Q = −η + ε,

Y = −ξ + κ,

F = −λ + θ, (A7)
and

α = 4cn sin2 q

2
, ψ = 4cn sin2 s

2
, δ = 4cn sin2 p

2
,

ε = 2cnn sin2 q − s

2
, κ = 2cnn sin2 q − p

2
,

η = 2cnn sin2 q + s

2
, ξ = 2cnn sin2 q + p

2
,

θ = 2cnn sin2 s − p

2
, λ = 2cnn sin2 s + p

2
. (A8)

A nonzero solution to the homogeneous system of linear
equations Eq. (A6) in U , V , and W exists if and only if its
determinant is equal to zero. From this condition, a cubic
equation in ω2 is obtained, which defines three branches of
the dispersion relation,

m3ω6 + (P + S + Z )m2ω4

+ (PS + SZ + PZ − F 2 − Y 2 − Q2)mω2

+ 2FQY + PSZ − PF 2 − SQ2 − ZY 2 = 0. (A9)
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