PHYSICAL REVIEW E 109, 014214 (2024)

Predicting nonsmooth chaotic dynamics by reservoir computing
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Reservoir computing (RC) has been widely applied to predict the chaotic dynamics in many systems. Yet much
broader areas related to nonsmooth dynamics have seldom been touched by the RC community which have great
theoretical and practical importance. The generalization of RC to this kind of system is reported in this paper.
The numerical work shows that the conventional RC with a hyperbolic tangent activation function is not able
to predict the dynamics of nonsmooth systems very well, especially when reconstructing attractors (long-term
prediction). A nonsmooth activation function with a piecewise nature is proposed. A kind of physics-informed
RC scheme is established based on this activation function. The feasibility of this scheme has been proven by its
successful application to the predictions of the short- and long-term (reconstructing chaotic attractor) dynamics
of four nonsmooth systems with different complexity, including the tent map, piecewise linear map with a gap,
both noninvertible and discontinuous compound circle maps, and Lozi map. The results show that RC with the
new activation function is efficient and easy to run. It can make perfectly both short- and long-term predictions.
The precision of reconstructing attractors depends on their complexity. This work reveals that, to make efficient
predictions, the activation function of an RC approach should match the smooth or nonsmooth nature of the

dynamical systems.
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I. INTRODUCTION

Recently there has been considerable interest in pre-
dicting complex nonlinear dynamics with machine learning
approaches [1-8]. In particular, reservoir computing (RC)
[9,10] has become a paradigm due to its simplicity and high
performance. The basic computational substrate of RC is a
recurrent neural network called a reservoir, which is actually a
high-dimensional nonlinear dynamical system. The reservoir
transforms the input data into high-dimensional spatiotempo-
ral patterns, from which the output signal is read out. The
main characteristic of RC is that the input weights and the
weights of the recurrent connection within the reservoir are
not trained, whereas only the readout weights are trained
through a simple linear regression. RC has been success-
fully applied to a wide variety of tasks, such as predicting
chaotic time series [2,11-13], producing bifurcation diagrams
[8,14], reconstructing chaotic attractors [4,15], forecasting
synchronization [16—-18], inferring unmeasured state variables
[19,20], and so on.

To the best of our knowledge, however, most of the works
related to RC focus only on smooth dynamical systems, and
nearly no attention has been paid to the nonsmooth dynamical
systems. In fact, nonsmooth dynamical systems are ubiquitous
in the real world, which usually exhibit abrupt changes of dy-
namics after gradual and slow integration or evolution. They
are a class of very important systems and appear in a wide
range of physical, electrical, mechanical, biological, and even
economical models, such as relaxation and impact oscillators,
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dry frictions, DC converters and switch circuits, neuronal
bursting, integrate-and-fire models, and many others. Nons-
mooth systems are different from those which are everywhere
smooth and differentiable. Their phase spaces are usually
divided into individual zones of different dynamical features,
and the interfaces between adjacent zones are nondifferen-
tiable. When the dynamical trajectories pass these interfaces,
the dynamics changes from one to another and the nonsmooth
bifurcation happens [21,22]. These new bifurcations are gen-
erally addressed as border-collision bifurcations [23-25]. As a
result, especially when both discontinuity and noninvertibility
appear [26], a rich class of dynamical phenomena with new
characteristics are observed, for example, the coexistence of
attractors [27,28], multiple devil’s staircases [29], intermit-
tency and crises with new features [30—32], and so on [33-35].
Usually the dynamics and the structure of chaotic attractors
in nonsmooth systems are much more complex than those
in smooth systems. Therefore, predicting nonsmooth dynami-
cal systems is a great challenge. Our numerical work shows
that the conventional RC with a hyperbolic tangent activa-
tion function can hardly model and forecast the dynamics of
the simplest piecewise linear system like the tent map. New
schemes are expected to solve this problem.

In the process of the machine learning community’s work
to improve the efficiency and performance of RC, some work
has demonstrated that neural networks should respect the
property of learned systems. For example, it has been reported
that matching the RC symmetry with the symmetry of the
data being processed can considerably improve the RC perfor-
mance [36]. The deep neural network that inherently respects
the scaling and symmetry properties of the original governing
Navier-Stokes equations has been developed to simulate the

©2024 American Physical Society


https://orcid.org/0000-0003-1876-1142
https://orcid.org/0000-0003-1051-6150
https://orcid.org/0000-0002-5907-5483
https://orcid.org/0000-0001-5656-9333
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.014214&domain=pdf&date_stamp=2024-01-12
https://doi.org/10.1103/PhysRevE.109.014214

SHI, WANG, WANG, DU, AND QU

PHYSICAL REVIEW E 109, 014214 (2024)

fluid dynamics more efficiently [37]. In addition, Hamilto-
nian neural networks have also been tailored by embedding
the concepts of energy conservation and volume preservation
arising from an underlying Hamiltonian function into neural
networks [38,39]. Such neural networks are usually known as
physics-informed neural networks [40,41], which are emerg-
ing as very promising machine learning approaches due to
better accuracy, faster training, and improved generalization.
These works show that a well-adapted neural network should
be constrained to respect the symmetry, invariance, or con-
servation principles originating from the physical laws that
govern the observed data.

Actually, still other kinds of dynamical properties should
be considered, especially when one tries to coin a RC scheme
to predict the dynamics of nonsmooth systems. They are the
nonlinearity and the smoothness of the dynamics. It may be a
reasonable requirement for the RC internal dynamics to match
at least the nonsmoothness of the dynamics hidden in the
input. Thus, for the nonsmooth systems involved in the cur-
rent work, our point of penetration is the activation function
since it governs the RC internal dynamics. We are thinking
of employing nonsmooth activation functions to replace the
smooth ones. The good results in forecasting the dynamics
and reconstructing chaotic attractors are obtained by applying
the RC with the nonsmooth activation function to the tent map,
the piecewise linear map with a gap [28,32], the compound
circle maps describing an electric relaxation oscillation [26],
and the two-dimensional nonsmooth Lozi map.

The paper is organized as follows. In Sec. II the archi-
tecture and details of the RC are described. In Sec. III an
activation function with piecewise linear nature is proposed by
analyzing the failure of RC with hyperbolic tangent functions.
The results and discussion appear in Sec. IV, and Sec. V is the
conclusion.

II. THE RESERVOIR MODEL
A. Reservoir computing

In RC framework, the reservoir is actually a sparse neuron
network internally connected with linking matrix A € RP><Dr
[1,2,4]. The nonzero entries of A are drawn from uniformly
distributed random numbers in [0,1], and then scaled so that
the absolute value of the largest eigenvalue of the matrix,
the spectral radius, equals p. In this work the sparsity of A
is adjusted so that the network has an average degree of six
[4]. The internal dynamical state of the network at time step
n is stored in vector r(n) € RP!. Here a proper value of
D; is set to match the dynamical complexity. In conventional
RC, an input vector u(n) of dimension D is coupled to the
D;-dimensional state space of the reservoir through weight
matrix Wi, € RP*Pin whose elements are chosen from the
random numbers distributed uniformly in the interval [— 8, B].
The evolution of the internal dynamics of the reservoir is
governed by

r(n+1) = G[Ar(n) + Winu(n)], (D

where G is the activation function. The D-dimensional output
vector v(n + 1) can be obtained by

v(n+1) = Woyu[r(n+ 1), P], 2

where Wy € RPou maps the D;-dimensional dynamical
states of the reservoir into Dy, -dimensional output states,
and P is the output matrix [2], which contains Dgy X D;
adjustable parameters (or weights) obtained by linearly fitting
Eq. (2) into the target vq(n + 1) during the training process.
In this paper we assume that Wy [r, P] depends linearly on
P: W [r, P] = Pr. For simplicity we set Di, = Dy = D.

In performing RC to predict the dynamics, the input time
series for training the system are actually the dynamical tra-
jectories {u(t),t =0, ..., Nw + Nt}, where u(0) is the initial
state fed into RC, before which 20000 transient states are
eliminated so that it is on chaotic attractors. The dynamical
trajectories are produced by

u(@#) =F@u@ —-1)), fort >0, 3)

where F(-) is formally a time-discrete mapping, i.e., a real
map for a time-discrete system or iteration solutions of time-
continuous systems. The time series is fed into the reservoir
to train the machine, and accordingly a time series {r(¢), t =
1,..., Nw + Nt} of the internal states is produced. The first
Nw steps are the so-called warm-up phase, which are usually
dropped to prevent the influence of arbitrary initial states
of the reservoir. Thus we set n =t — Ny, and u(0) = u(t =

Nw), and then we have input states {u(n),n =0, ..., Ny — 1}
and internal states {r(n),n =1, ..., Ny}. The corresponding
target is {vq¢(n) =u(n),n =1, ..., Nr}. The training is fin-

ished by determining the output matrix P via ridge regression,
which minimizes the following quantity:

Ny

D 1IWoulr(n), Pl — va(m)| > + a|[P|?, €

n=1

where « is a small positive regularization constant used to
avoid overfitting, and || - || is the modulus of a matrix. Once
the mapping W, is obtained, the RC switches into the au-
tonomous prediction phase.

In the forecasting phase, we replace n by n — Nr and get
the starting state v(0) = u(Nt). When we feed this v(0) into
the RC, then the corresponding prediction v(1) is obtained by
Eq. (2). Feeding this new prediction back to the RC, we get the
next prediction v(2). Repeating this process sequentially, the
RC can conduct one-step-ahead predictions autonomously.

B. Criteria for the efficiency of prediction

To explore the capability of the reservoir in forecasting the
chaotic dynamics, we inspect two kinds of predictions. One
is the short-term prediction, and the other is the long-term
prediction. Suppose the predicted time series for an arbitrary

time N are {v(n),n =1,...,N}, and the corresponding true
counterparts produced by the map in Eq. (3) with the same
starting state are {vq(n),n=1,..., N}.

For a short-term prediction, the measure of forecasting
quality is the valid prediction time (VPT) denoted by 7,
which is the longest duration of time, i.e., max(V), after which
the normalized error E(N) of prediction exceeds a threshold
e. It is defined by

max (N)
)\. E —’

m if E(N)<e, 4)
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FIG. 1. Hyperparameter dependence of the mean valid prediction
times for the tent map by RC when b= 1. (a) = 107%; (b) a =
107% (c)a = 1074 (d) & = 1072

where A, is the maximum Lyapunov exponent, and thus T}
is in the unit of Lyapunov time 1/Ap,. We set ¢ = 0.1. The
normalized error is defined by

N) —va(N
IS T) ©
(va)
where the mean square of the targets is given by
|
2\ _ 2
Vi) =+ ; Iva(ml*. (7

A long-term forecasting is obtained if one prolongs the
previous short-term prediction until a large Np steps. The pre-
dicted dynamical trajectories are {v(n),n=1,..., Np>1}.

attractor in the phase space. To intuitively display how
far the predicted dynamical trajectories are from the actual
ones in the long-term prediction, we employ the return map
analysis since most of the systems involved in this work
are one-dimensional maps. The actual return mapping func-
tion is drawn by blue lines for one-dimensional systems.
Accordingly, in the same plot, we mark pairs of succes-
sively predicted trajectories {(v(n — 1), v(n)),n =1, ..., Np}
by red circles, as shown in Figs. 2, 5, 7, 9. Similarly, the
true trajectories and the predicted ones are drawn by blue and
red dots, respectively, as shown in Fig. 10. We can visually
inspect whether those predicted iterative trajectories fall on
the true maps in the phase space domain occupied by the
chaotic attractor. Quantitatively, the measure for the difference
between the predicted mapping points v(n)s and the corre-
sponding theoretical map points F(v(n — 1))s forn = 1 to Np
is introduced, which is defined by the root mean square error
(RMSE)

1
Np — 1

o =

No 1/2
Z[v(n)—F(v(n—l))]z} . ®

n=1

It reveals globally how far the prediction is from the real one
in the long-term forecasting, or the precision in reconstructing
the chaotic attractor.

We have to admit that the return map analysis of the
predicted trajectories ignores some dynamical details of the
chaotic orbit, even though it provides us with an intuitive
way to measure the forecasting quality of RC. To compensate
for this shortcoming, the largest Lyapunov exponent Ar of
the autonomous RC (or the projected attractor) is used to
characterize the dynamical feature and evaluate whether RC
successfully replicates the long-term evolution or the chaotic
attractors of dynamical systems. It is calculated by the algo-
rithm in Ref. [4].

C. Hyperparameter optimization

The hyperparameter optimization of the RC is performed
by the coarse grid sweep in the parameter regimes of p, §, and
o. Here the increment of p and 8 is 0.1, and « are chosen as

Based on those trajectories, one can reconstruct the chaotic o = 1071, 1078, 1075, 1074, and 1072. As is well known,
1.0 F F -
(a) theory (b) theory (c) theory
0.8 I O prediction| [ O prediction| [ QO prediction
. 06f -
=1
= - L
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n

FIG. 2. Reconstructed attractors of the tent map by RC with tanh(bx). The lines represent the true map, and circles are the predictions.
The pairs of arrows confine the phase-space regions occupied by attractors. (a) b =1, 0 = 0.03, and 7, = 6.15; (b) b = 10, 0 = 0.015, and
T, = 6.83; (¢c) b =100, 0 = 0.00095, and 7;, = 7.51. The insert is the enlarged plot of the map near the peak.
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different random realizations of A and Wj, for a set of given
p and B may seriously affect the prediction of RC, thus the
characteristic quantities are computed using the average over
100 runs with different random realizations of them.

We have to mention that the size of the reservoir D;, the
warm-up time Ny, the training time N, and the long-term
prediction time Np are also adjustable parameters, which are
often empirically determined. In general, a more complex at-
tractor structure requires a larger network size (D;), and more
nodes (D;) may result in higher prediction accuracy. Mean-
while, larger size means more computation time. Therefore,
the choice of D; is usually the result of the tradeoff between
accuracy and computation time. In the literature related to
RC, the size of the reservoir takes a small value for simple
systems (such as D, = 300 or 500), and Nw = 50 or 100. The
basic requirement for the training time Nt is Ny > D; to avoid
underfitting. The value of the long-term prediction time Np
should be large enough to make the trajectories visit most of
the phase space domain occupied by the attractor.

III. THE RESERVOIR COMPUTER
FOR NONSMOOTH DYNAMICS

A. RC failure with smooth activation function

One of the simplest nonsmooth dynamical systems that
displays chaos might be the tent map, which is nonsmooth
but continuous, defined by

FXn, 0<x, <3
Xn+1 = . (9)
r(l —.X,,), g g l

Here r is the control parameter. It is topologically conjugated
to the logistic map and thus shares many common dynamical
features. The remarkable difference is the nondifferentiability
at the peak. The Lyapunov exponent A of the system is defined
through

1 N-1
A= lim {ﬁ Z;ln If/(xn)l}, (10)

where f'(-) is the derivative of the mapping function. Clearly,
| f'(x,)| = r for all x,,.. Hence, the analytical expression for the
Lyapunov exponent reads A = Inr. In this work we set r =
1.98, A = 0.683, and the system is in the chaotic state.

In the conventional RC to predict the chaotic dynamics
of smooth systems, the hyperbolic tangent function is often
employed as an activation function [2,3,5-7]. In Ref. [42] the
argument of the hyperbolic tangent function is rescaled by a
factor b,

G(x) = tanh(bx). an

The factor b influences the nonlinearity of the function and
thus may affect the quality of prediction. Rescaling the ar-
gument is equivalent to adjusting hyperparameters p and
simultaneously. Now we simply apply the RC with this ac-
tivation function to predict the dynamics and reconstruct the
chaotic attractor of the tent map in Eq. (9). Three different val-
ues of b are chosen: b = 1, 10, and 100. The parameters of the
reservoir are D, = 300, Ny = 50, Ny = 450, and Np = 1000.
The results are described in the following.

The mean valid prediction times when b = 1 at all swept
parameters are summarized in Fig. 1. Obviously, the quality
of short-term prediction is not too bad where the mean VPT
denoted by (7}) is around five Lyapunov times. Comparing
all the plots, the best result appears in the parameter set in
Fig. 1(c). The hyperparameters are p = 0.2, § = 3.3, and
a = 107, respectively. For the best random network realiza-
tion at this set of hyperparameters, the VPT is 6.15 Lyapunov
times and the RMSE for reconstructing chaotic attractor in
the long-term prediction keeps a large value, o = 3.0 x 1072,
The corresponding reconstructed trajectories of the chaotic
attractor are drawn by the red circles in Fig. 2(a). One can
see that at the middle portion of the left and right halves of
the map, the predicted results agree very well with the theory.
Inside the chaotic attractor, there are still two pretty large re-
gions near the two arrows in the figure, having not been visited
by the predicted trajectory. Near the peak of the map, however,
not only do the prediction results severely deviate from the
theory, but also the map segment coined by the trajectories
of the reconstructed attractor (or reconstructed map) exhibits
smooth variation near the peak rather than a nonsmooth tip as
in the original map. The reconstructed map shows a smooth
peak. The failure of the RC in the long-term prediction can
also be verified by the rather large difference between the
largest Lyapunov exponent Ag = 0.49 of the autonomous RC
and A = 0.683 of the target attractor. The relative error is up to
28%. Thus the hyperbolic tangent function when b = 1 is not
a good choice of the activation function for RC when predict-
ing the nonsmooth dynamics, and especially when replicating
chaotic attractor.

When the scaling factor increases to b = 10, the optimized
hyperparameters are p = 0.1, 8 = 1.5, and @ = 107%, respec-
tively. The longest VPT for a special network realization is
6.83 Lyapunov times. The long-term trajectories are the cir-
cles plotted in Fig. 2(b) to replicate the map inside the chaotic
attractor, where the RMSE reduces to o = 1.5 x 1072, The
similar results are obtained. The improvement on the results is
observed, e.g., the deviation of predicted trajectories near the
peak from the theoretical counterparts is decreased, and the
curvature becomes larger than that in Fig. 2(a). In addition, the
improvement is reflected by the fact that the largest Lyapunov
exponent of the reservoir system in the prediction phase is
Ar = 0.53, and the relative error with respect to that of the
system is reduced to 22%.

As the scaling factor goes to b = 100, the optimized
hyperparameters are p = 0.3, 8 =0.3, and o = 1071, re-
spectively. The longest VPT for a special network realization
is 7.51 Lyapunov times. The long-term trajectories are repre-
sented by red circles plotted in Fig. 2(c) to replicate the map
inside the attractor, and the RMSE drastically is reduced to
o = 9.5 x 107*. The trajectories visit nearly the whole region
of the attractor and fall nicely on the map function. The devi-
ation from the theoretical counterparts becomes much smaller
than those in Figs. 2(a) and 2(b). The predicted map near the
peak becomes much sharper than in the previous two cases,
so that one cannot even witness the smoothness of it without
carefully inspecting the inserted plot in Fig. 2(c). Another
piece of evidence for the better prediction corresponding to
Fig. 2(c) is that the largest Lyapunov exponent Ag = 0.66,
which is pretty close to that of the target attractor, where the
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relative error significantly is reduced to 3.4%. Yet the RC can-
not replicate the nonsmooth peak even though the prediction
in other regions of the attractor becomes much better.

B. Nonsmooth activation function and modified RC

The above results suggest that RC with smooth activa-
tion functions performs well in the short-term prediction of
chaotic dynamics in the tent map. However, in the long-term
prediction, it cannot capture the nonsmooth nature of the
map even though the improvement on the precision is more
significant than the short-term counterpart when the scaling
factor b increases. The smoothness of the reconstructed map
decreases as b increases. How can we understand these con-
flicted results? The pretty good performance of the short-time
prediction can be explained by the fact that one cannot observe
the difference between the nonsmooth from smooth dynamics
when the trajectories are far from the nonsmooth border or the
control parameter does not approach its critical value of the
border-collision bifurcation at which the dynamical behavior
undergoes an abrupt transition. The data used to train the
reservoir computer are produced by the tent map, which is
a piecewise linear map and is nondifferentiable at the peak.
What is the origin of the smoothness and nonlinearity in the
reconstructed map near the peak?

To answer the question, we go back to the working prin-
ciple of RC, where the time series fed into the reservoir
are transformed to spatiotemporal patterns in the high-
dimensional state space, i.e., making a high-dimensional
duplication of the input data. It has been proven that the
artificial neural network is a universal function approximator
[43,44]. However, this does not necessarily mean that the
reservoirs with all activation functions will perform equally
well. That is to say, the degree of approximation depends on
the property of the activation function. In the RC here, both
the input and output functions are linear, thus the activation
function is the only source of nonlinearity in the system,
which might contribute to the smoothness of the reconstructed
attractor near the peak.

Moreover, it is necessary to inspect the hyperbolic tangent
functions in Fig. 3. The function tends to £1 asymptotically
as x goes to £oo, and the slope at x =0 is b[l —
tanh?(bx)]|,—o = b. As an example, we consider the case of
b =1 (the solid black line in the figure) first. The domain of
the argument can be roughly divided into five pieces under
certain precision, i.e., the linear zone with slope b, two sat-
uration zones, and two curved zones between the linear and
saturation zones. The nonlinearity and smoothness of the acti-
vation function mainly are attributed to the two curved zones
that bend outward. As b increases, their curvatures increase
and the curved zones become sharper, which is very similar to
the behavior of the reconstructed map near the peak. Hence,
the two curved regions may most probably be the origin
of the nonlinearity and smoothness of the duplicated map
near the peak. Considering the nonsmooth nature of the tent
map, however, the nonsmoothness should be introduced into
the activation function. To do so, let the tangent of tanh(bx)
intersects with two asymptotical saturation lines at the loca-
tions marked by two arrows in Fig. 3, and then link it with
the saturate lines at the intersections, then we immediately

1.0 4 T T T T T T T T T T
tanh(x) *
1 tanh(10x)
tanh(100x)
0.5
=
~ 0.0 {
O
-0.5
-1.0 4
——7——— 71—
-3 -2 -1 0 1 2 3
X

FIG. 3. Activation functions with different scaling factors. The
dashed line is the tangent of tanh(x).

get a piecewise linear activation function, which is generally
defined by

-1, x<-1/b
Gx)y={bx, |x|<1/b. (12)
1, x>1/b

Although it has the piecewise linear nature, this function
satisfies the requirement on the continuous sigmoidal function
and thus can be used to approximate any function in echo-state
network realizations [43,44]. Therefore, we choose it as the
activation function and build a modified RC in the current
work. Without loss of generality, we set b = 1. We have to
emphasize that the new activation function does not change
the echo-state property or stability of the RC significantly,
and the detailed analysis is in the Appendix. There already
has been a simpler nonsmooth activation function, which is
the so-called rectified linear activation function, ReLU(x) =
max(0, x). It is usually designed to solve the problem of
vanishing gradient in deep learning. We established a RC with
this ReLu to predict the tent map but often got trajectories
beyond the domain of the map function, and thus cannot
replicate the map. The reason may be that there is no upper
bound for this function. Then we turned to the above men-
tioned procedure to look for one as a substitute. We want to
emphasize that the nonsmoothness of RC with this activation
function defined in Eq. (12) may match the same nature of
the nonsmooth dynamical systems. This can be addressed as
a kind of physics-informed neural network. The results of its
applications are described in the next section.

IV. PREDICTING CHAOTIC DYNAMICS OF NONSMOOTH
SYSTEMS WITH THE MODIFIED RC

A. Tent map

The first application is to the tent map with the nons-
mooth but continuous natures, which has the simplest attractor
structure. Here the parameters of the reservoir are D, = 300,
Nw = 50, Ny = 450, and Np = 1000. To compare with those
in Fig. 1, drawn in Fig. 4 are the mean valid prediction
times obtained by the same sweep procedure described in
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FIG. 4. Hyperparameter dependence of the mean valid predic-
tion times for the tent map by RC with piecewise linear activation
function. (a) o = 1071% (b) « = 107%; (c) @« = 107%; (d) @ = 1074,

the last section. The significant increase in the mean VPTs
is observed, where the longest VPT is beyond 10 Lyapunov
time, and even the worst is larger than that in Fig. 1. One
may also find that the VPTs become sensitive to parameter
p and behave in a bit of regular dependence on p, which
may stem from the piecewise-linear feature of the activation
function. Furthermore, the VPTs are very close to 0 as p and
B are small, because the distribution of the argument of the
activation function produced in the iteration of the reservoir
is confined in a very narrow region, and the RC cannot grasp
the dynamical nature of the tent map. As f§ increases to the
vicinity of 1.9, the VPTs increase significantly, where the
distribution is extended to much broader regions, even cov-
ering the nonsmooth intersections of the activation function,
which is essential for the RC to model nonsmooth dynamical
systems.

The optimized hyperparameters by comparing the results
shown in Fig. 4 are p = 0.1, 8 = 2.1, and @ = 107'°, respec-
tively. For the best random network realization, the VPT is
13.0 Lyapunov times, and the RMSE for reconstructing the
map in the long-term prediction is o = 1.0 x 107>, which is
smaller than that in the last section by an order of 2. The cor-
responding reconstructed trajectories of the chaotic attractor
are shown by the circles in Fig. 5. One clearly sees that the
prediction fits the theory very well, and all the trajectories
fall in the map exactly. Very important is that the replicated
map near the peak exhibits nonsmoothness, as shown by the
insertion. Furthermore, the largest Lyapunov exponent of the
RCis Ag = 0.68, which is very close to the actual value 0.683
of the target attractor, and the relative error is only 0.44%.
These facts also confirm the success of the RC in replicating
the long-term dynamics. Therefore, we may conclude that the
RC with the proposed activation function has extracted the
nonsmooth but continuous natures of the map, and then

1.0 7 theory
J O prediction
0.8
_ 06
+
=5
0.4 o9 1
T 0.97+ B
0.2
| 0.95 8
048 050 052
0.0 T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X
n

FIG. 5. Reconstruction of the tent map by RC with piecewise
linear activation function. The line represents the tent map, and the
circles are the predicted counterparts.

the RC can precisely predict its dynamics and perfectly re-
construct the attractor.

On the other hand, one may ask whether RC equipped with
the proposed nonsmooth activation function also performs
better in predicting smooth dynamics. To answer this ques-
tion, we employ the logistic map as an illustration of a smooth
system and predict its dynamics via RC with nonsmooth and
smooth activation functions, respectively. The control param-
eter of the map is 3.98 where the system is in the chaotic state,
and the Lyapunov exponent is A = 0.616. The nonsmooth
activation function is the piecewise linear function proposed
in this work, and the smooth counterpart is the conventional
hyperbolic tangent function. For the short-term forecasting,
the mean VPTs, (Ty), and best VPTs are calculated. For the
long-term forecasting, the RMSEs, o, and largest Lyapunov
exponents are also calculated. All results are listed in Table I
for comparison. Obviously, the RC with the conventional
hyperbolic tangent activation function performs much better
than the one equipped with the nonsmooth activation function
in predicting the dynamics of the smooth logistic map. This
implies it is important that the smoothness of the activation
function should match that of the systems in forecasting their
dynamics, which coincides with the spirit of physics-informed
neural networks.

B. Piecewise linear map with a gap

The second nonsmooth dynamical system is a piecewise
linear discontinuous map, defined by

Xni1 = fi(xp) = kix, + b, i=1,2,3,4 (13)

TABLE I. Comparison of measures for short- and long-term pre-
dictions of logistic system by RC with different activation functions.

G (T,)  BestT, o AR 1= Ar/A|
Nonsmooth 5 6.78 3x 1073 059 42%
Smooth 9 12.3 1.3x 107 061 097%
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FIG. 6. Bifurcation diagram of the piecewise linear map.

with
w
ki =— , by = ya, X € [xa, xp];
Xp — XA
ye—bi+pn
ky =————, by=y,—kaxp, x€[xp,%];
Xg — Xp
k3 = const, bz = const, X € [xg, xF1;
k4 = const, by = const, X € [xp, xgl,

where p is the control parameter. The other param-
eters are ys = 0.203921, yc = 0.460000, yg = ya, x4 =
0, x, =0.107663, x, =0.350000, xr = 0.497121, xg =
1, k3 = 3.07055, b3 = —0.530165, k4 = 0.405507, and by =
—0.201586. It has a discontinuity at x, and a noninvertible
zone in [ f(xy), yal, which is the main difference from the tent
map. The interplay between the discontinuity and noninvert-
ibility may result in new kinds of bifurcations, such as the
coexistence of periodic attractors [28], and evidence for the
hole-induced crisis [32], shown by the bifurcation diagram in
Fig. 6. Here we are interested in the band-6 chaos, which is
due to the merging of band-12 chaos induced by the discontin-
uous bifurcation from a period-6 orbit. The attractor structure
is more complex than that of the tent map. One can see that
there are forbidden regions where the trajectory cannot visit.
The borders of the chaotic attractor are determined by the
minimum (xp, y,) and its forward iterations, shown by the
green dashed lines in Fig. 7.

To forecast the chaotic dynamics by learning the time
series produced by the above map when the band-6 chaos
appears, we set i = 0.055. The Lyapunov exponent is A =
0.085. The RC parameters are D, = 300, Ny = 50, Ny =
950, and Np = 1000. The hyperparameters are set to p = 0.5,
B=29, and o = 10~8. The mean VPT can reach almost
seven Lyapunov times, and the longest is 11.2 Lyapunov times
in the short-term prediction. The reconstructed map within the
basin of the chaotic attractor (or the reconstructed attractor)
is represented by the red circles in Fig. 7. Obviously, the
trajectories fit the actual map very well with the precision
o = 1.3 x 1072, Moreover, the boundary of the reconstructed
attractor coincides with the actual boundary, and the largest

theory
B O prediction

FIG. 7. Reconstructed map (chaotic attractor) of the piecewise
linear map with a gap. Boundaries of the chaos bands are marked by
the dashed lines that are the forward iterations of the minimum.

Lyapunov exponent Ag = 0.082 of the autonomous reservoir
is very close to that of the target attractor, where the relative
error is 3.5%. These results imply that the RC has successfully
learned the nonsmooth and discontinuous natures of the piece-
wise linear map with a gap, and made a perfect reconstruction
of the band-6 chaotic attractor.

C. Both noninvertible and discontinuous compound circle maps

Illustrated in this section is the application to the com-
pound circle maps, which describe an electric relaxation
oscillation between the sine-modulated up- and the constant
down-threshold in a thyratron circuit [26]. It has an implicit
iteration function form,

[F2(Xnt1) — Fi(x,)], mod 1=0 (14)

with
F(x)=x+A; +B;In[C; +sin(2nx)], i =1, 2, (15)

where x, and x,;; are the phases of modulation signal,
at which two adjacent relaxation oscillations reach
the up-threshold, respectively. Other quantities are
Ay = wRC In{vy/[Umin — (R/R1)E]}/2w, By = wRC/2m,
Ci = [Umax — (R/RE]/ Uy, Ay = oR CIn[Uy/(E —
Unin)l/27, By = wR\C/2r, Cy = (E — Unx)/Up, and
R =R|R,/(R; + R»), where w and Uy are circular frequency
and amplitude of the modulation signal, respectively. U
is selected as the control parameter, and the others are
the parameters of the electronic circuit. Here we set
w=900Hz, E=990V, R, =200k2, R, =170k,
C=1.65x10"8F, Upay = 64 V, and Upjp, = 51.2 V.

In this work the map is tuned to its both noninvertible
and discontinuous regime, where it is actually a piecewise
nonlinear map with nonsmoothness and discontinuity. Plot-
ted in Fig. 8 is the bifurcation diagram. There is a band-3
chaotic attractor near Uy = 12.57842, at which the Lyapunov
exponent is A = 0.056. The boundaries of the band-3 chaotic
attractor are the forward iterations through the minimum of
the map function, denoted by the dot-dashed lines, and the
(g, f (xg )) (up border of the gap) and its forward iterations,
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FIG. 8. Bifurcation diagram of the compound circle maps.

denoted by the dashed lines in Fig. 9(a). The attractor stems
from a route of a series of periodic doubling cascades via the
period-16 orbit, merging of chaotic attractors, and intermitten-
cies. When the control parameter is beyond the critical value,
Uo. = 12.57851, the chaotic attractor suddenly expands into
five pieces, which is a kind of crisis with striking characteris-
tics. It is induced by the collision between the chaotic attractor
and the leaking hole in the high-order map originating from
the interaction between discontinuity and noninvertibility, and
thus addressed as hole-induced crisis [31,32]. Then a band-5
chaotic attractor is observed at Uy = 12.57950 after the crisis,
and its Lyapunov exponent is A = 0.078. The borders of the
band-5 chaotic attractor are the forward iterations of the min-
imum of the map function, denoted by the dot-dashed lines,
and the (x,, f (x; )) (up border of the gap) and (xg, f (xg ))
(down border of the gap) and their forward iterations, denoted
by the dashed lines and the dotted lines in Fig. 9(b), respec-
tively. In both cases the chaotic attractors are multiple bands
divided by the forbidden regions in the phase space, which
contributes to the complexity of the attractors. The structures
of the attractors are much more complicated than that in the
last subsection.

To simulate the dynamics in the band-3 chaotic state, the
dimension of the reservoir is set to D, = 1500, the number
of the time steps for the warmup phase is Ny = 100, the
number of data for training is Nt = 1900, and the number
of the steps in the long-term prediction is Np = 2000. The
hyperparameters are p = 0.1, 8 = 3.9, and o = 1078, In the
short-term prediction, the mean VPT is 6.05 Lyapunov times
and the longest VPT is 9.72 Lyapunov times. After the crisis,
we set D, = 3500, Nw = 100, Nt = 4500, and Np = 1900.
The hyperparameters are p = 0.1, 8 = 4.1, and o = 1074,
the mean VPT is 4.9, and the longest VPT is 7.21 Lyapunov
times. In Figs. 9(a) and 9(b) the reconstructed maps inside the
chaotic attractors before and after the crisis are represented
by red circles, respectively. Obviously, the reconstructed at-
tractors (or the map inside attractors) fit the actual ones very
well: the precisions are 0 = 5.6 x 105 and o = 2.0 x 1073,
respectively. Moreover, the largest Lyapunov exponents of the
autonomous reservoir for the cases are Ag = 0.058 and Az =

(@)
theory

0.8 O prediction

n+1

(b)
theory

O prediction

n+1

FIG. 9. Reconstructed maps (chaotic attractor) of the both nonin-
vertible and discontinuous compound circle maps. Boundaries of the
chaos bands are marked by the forward iterations of the minimum
(dot-dash lines), the up border of the gap and its forward iterations
(dash lines), and the down border of the gap and its forward iterations
(dot lines). (a) Uy = 12.57842; (b) Uy = 12.57950.

0.073, respectively, and the corresponding relative errors are
3.6% and 6.4%.

The above results imply that this RC has successfully
learned the nonsmooth and discontinuous natures of the com-
pound circle maps, and made pretty good reconstruction of
the band-3 and band-5 chaotic attractors before and after the
crisis, respectively. However, we have to point out that a
much larger reservoir and longer training time are used in the
predictions here. Nevertheless, both the mean VPT and the
precision of replication are less than those in the piecewise
linear discontinuous map. It can be explained by the much
more complicated attractor structures. In addition, the map
is nonlinear, but the activation function is piecewise linear,
which also requires more network resources and data to ap-
proach the dynamics.

D. Lozi map

The final example is a two-dimensional nonsmooth dynam-
ical system, the Lozi map, which reads

Xpgr1 = 1 —alx,| + yu,

Y1 = bxn- (16)
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FIG. 10. Reconstructed Lozi attractor. The blue dots represent
the trajectories of the actual map, and the red dots are the predictions.

This map is an area-preserving map when |b| = 1. Here we
choose a = 1.7 and b = 0.5, and the maximum Lyapunov
exponent is A, = 0.47 where the system is in the chaotic state.
In the forecasting, the reservoir parameters are D, = 500,
Nt = 1900, and Ny = 100. The optimized hyperparameters
arep =0.1, =43,ando = 10719, The numeric simulation
shows that the mean valid prediction time is (7;) = 6.11, and
the longest VPT is 8.46 Lyapunov times. These data imply
that the RC performs very well in the short-term prediction. A
long-term prediction with Np = 10000 is plotted in Fig. 10,
where the prediction precision is o = 3.8 x 1073, One can
see that the trajectories (red dots) fall very closely on the
actual attractor (blue dots). The largest Lyapunov exponent of
the autonomous reservoir is Ag = 0.45, which approximates
well that of the target attractor, and the relative error is 4.3%.
These results reveal that the RC with the nonsmooth activation
function also performs well in predicting the two-dimensional
nonsmooth dynamics.

1.0

V. CONCLUSION

This work shows that reservoir computing with smooth
activation functions does not perform well in predicting the
dynamics of nonsmooth systems, especially in replicating the
long-term dynamics. The reason is that the smooth hyperbolic
tangent activation function cannot match the nonsmoothness
of this kind of systems, and thus RC cannot capture their
dynamical nature. To solve the problem, a piecewise linear
activation function is proposed by linearizing the hyperbolic
tangent function, which makes the activation function a con-
tinuous sigmoidal function and has nonsmooth characteristics
as well. The modified RC with this activation function is a
kind of promising physics-informed model for the nonsmooth
dynamics. Its feasibility has been proven by the successful
applications to forecast the dynamics of four nonsmooth sys-
tems with different complexity in one or two dimensions:
the tent map, piecewise linear map with a gap, implicit map
composed of circle maps, and Lozi map. The machine per-
forms extremely well in the short-term prediction, producing
pretty longer valid prediction times in these systems. In the
long-term prediction, the perfect reconstruction of chaotic
attractors is observed with higher precision. The magnitude
of the precision for reconstructing chaotic attractors depends
on their complexity. Larger network size and longer training
time are required in replicating chaotic attractors with more
complicated structures. The machine learning model here is
efficient and easy to run. This work provides a primary ex-
ample of research for precisely and efficiently forecasting the
chaotic dynamics of nonsmooth systems.

Here we have to emphasize that the bifurcation embed-
ment has been a hot topic in the RC community recently,
and algorithms for RC with an additional channel have been
proposed [45-49]. The related works are only for smooth
systems. There immediately arises a question of predicting
the bifurcation of nonsmooth systems. A typical characteristic
of the nonsmooth systems is the border-collision bifurcation
[23-25], which may result in nonsmoothness or discontinuity
in the dynamics, which may be treated by introducing the
piecewise linear activation function to the RC. It seems that
forecasting this kind of bifurcations is straightforward by the

0.8

0.6

=

0.4

0.2

0.0 ‘

1.0 1.2

FIG. 11. Bifurcation diagram of the tent map. (a) Actual bifurcation diagram. (b) Prediction by the RC with the piecewise linear activation
function proposed in this work. (c) Prediction by the RC with the hyperbolic tangent activation function.
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RC with the proposed piecewise linear activation function
and an additional channel for the control parameters. Indeed,
our primary investigation along this route has successfully
duplicated the bifurcation diagram of the tent map, as shown
in Fig. 11. Obviously, the RC with the nonsmooth activation
function produces a much better reconstruction of the bifur-
cation diagram, compared with its smooth counterpart. As
for more complex nonsmooth systems, such as the piecewise
linear map and compound circle maps in this work, there are
complicated bifurcation structures, as shown in Figs. 6 and 8,
where the coexistence of attractors frequently appears. Here
the coexistence is induced by the interaction between discon-
tinuity and noninvertibility, which is different from smooth
systems. Thus, it is a bit of challenge to deal with. We have
been working on this issue, which will be reported in a sepa-
rate paper.
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APPENDIX: STABILITY ANALYSIS
OF THE RESERVOIR

As adriven dynamical system, the reservoir neural network
requires that the reservoir driven by the same input signals
asymptotically converges to the same state when starting from
different initial states ro and ¥y. This means that the reservoir
is stable, and thus the evolution of the internal dynamics
should depend only on the input signals, but not on the initial
states. This condition for the reservoir is also referred to
the so-called echo-state property, which is often considered
a necessary criterion for the ability of a reservoir [9,50].
The conditional Lyapunov exponents can be used to deter-
mine whether the reservoir satisfies this requirement [50]. The
conventional reservoir with a hyperbolic tangent activation
function can guarantee the echo-state property. In our current
work, however, the activation function is piecewise linear. The

p

FIG. 12. p dependence of the largest conditional Lyapunov ex-
ponent X.. (a) For RC with hyperbolic tangent activation function
tanh(x); (b) for RC with the nonsmooth activation function.

echo-state property of a reservoir with this activation function
and the role of hyperparameters (such as input weight scaling
B and spectral radius p) should be examined. Thus, the largest
conditional Laypunov exponents A, of RCs with this kind of
activation function should be calculated. The A. are obtained
by the QR decomposition algorithm when the reservoirs are
driven by uniformly distributed white noise signals in the
interval [—1, 1]. The results are shown in Fig. 12.

Figures 12(a) and 12(b) show the p dependence of the
largest conditional Lyapunov exponents for RC with the
hyperbolic tangent activation function and the proposed
nonsmooth activation function for different 8, respectively.
Obviously, there are no significant differences between the
largest conditional Lyapunov exponents of RC with two types
of activation functions. In both cases, the largest conditional
Lyapunov exponent A. increases to a maximum value first and
then decreases with the increase of p. The largest Lyapunov
exponent A. is negative in most parameter regimes of p and
B. It is positive only when g is very small and p is around
1. These results suggest that our activation function does not
significantly change the echo-state property of the reservoir.
The roles of the hyperparameters are nearly the same. In this
work all parameters are away from the regime of positive A,
which may guarantee the echo-state property of the reservoir.
Therefore, the reservoir with the nonsmooth activation func-
tion can efficiently forecast the dynamics of the nonsmooth
systems.

[1] H. Jaeger and H. Hass, Science 304, 78 (2004).

[2] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Phys. Rev.
Lett. 120, 024102 (2018).

[3] J. Pathak, A. Wikner, R. Fussell, S. Chandra, B. R. Hunt, M.
Girvan, and E. Ott, Chaos 28, 041101 (2018).

[4] J. Pathak, Z. Lu, B. R. Hunt, M. Girvan, and E. Ott, Chaos 27,
121102 (2017).

[5] K. Srinivasan, N. Coble, J. Hamlin, T. Antonsen, E. Ott, and M.
Girvan, Phys. Rev. Lett. 128, 164101 (2022).

[6] J. Jiang and Y.-C. Lai, Phys. Rev. Res. 1, 033056 (2019).

[7] M. Rafayelyan, J. Dong, Y. Tan, F. Krzakala, and S. Gigan,
Phys. Rev. X 10, 041037 (2020).

[8] L.-W. Kong, Y. Weng, B. Glaz, M. H. Haile, and Y.-C. Lai,
Chaos 33, 033111 (2023).

[9] H. Jaeger, “echo state” approach to analysing and training re-
current neural networks, GMD Report 148 (German National
Research Center for Information Technology, 2001).

[10] W. Maass, T. Natschldger, and H. Markram, Neural Comput.
14, 2531 (2002).

[11] B. Penkovsky, X. Porte, M. Jacquot, L. Larger, and D. Brunner,
Phys. Rev. Lett. 123, 054101 (2019).

[12] D. Canaday, A. Griffith, and D. J. Gauthier, Chaos 28, 123119
(2018).

[13] H. Fan, J. Jiang, C. Zhang, X. Wang, and Y.-C. Lai, Phys. Rev.
Res. 2, 012080(R) (2020).

[14] M. Roy, S. Mandal, C. Hens, A. Prasad, N. V. Kuznetsov, and
M. D. Shrimali, Chaos 32, 101104 (2022).

[15] Z. Lu, B. R. Hunt, and E. Ott, Chaos 28, 061104 (2018).

014214-10


https://doi.org/10.1126/science.1091277
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1063/1.5028373
https://doi.org/10.1063/1.5010300
https://doi.org/10.1103/PhysRevLett.128.164101
https://doi.org/10.1103/PhysRevResearch.1.033056
https://doi.org/10.1103/PhysRevX.10.041037
https://doi.org/10.1063/5.0138661
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1103/PhysRevLett.123.054101
https://doi.org/10.1063/1.5048199
https://doi.org/10.1103/PhysRevResearch.2.012080
https://doi.org/10.1063/5.0119963
https://doi.org/10.1063/1.5039508

PREDICTING NONSMOOTH CHAOTIC DYNAMICS BY ...

PHYSICAL REVIEW E 109, 014214 (2024)

[16] J. A. Platt, A. Wong, S. G. Clark, Randall ans Penny, and
H. D. 1. Abarbanel, Chaos 31, 123118 (2021).

[17] C. Zhang, S.-X. Qu, and Y.-C. Lai, Chaos 30, 083114 (2020).

[18] T. Weng, H. Yang, C. Gu, J. Zhang, and M. Small, Phys. Rev. E
99, 042203 (2019).

[19] Z. Lu, J. Pathak, B. Hunt, M. Girvan, R. Brockett, and E. Ott,
Chaos 27, 041102 (2017).

[20] R. S. Zimmermann and U. Parlitz, Chaos 28, 043118 (2018).

[21] M. di Bernardo, C. J. Budd, A. R. Champneys, P. Kowalczyk,
A. B. Nordmarkk, G. O. Tost, and P. T. Piiroinen, SIAM Rev.
50, 629 (2008).

[22] D.J. W. Simpson, STAM Rev. 58, 177 (2016).

[23] H. E. Nusse and J. A. Yorke, Physica D 57, 39 (1992).

[24] H. E. Nusse, E. Ott, and J. A. Yorke, Phys. Rev. E 49, 1073
(1994).

[25] M. di Bernardo, C. J. Budd, and A. R. Champneys, Phys. Rev.
Lett. 86, 2553 (2001).

[26] D.-R. He, B.-H. Wang, M. Bauer, S. Habip, U. Krueger,
W. Martienssen, and B. Christiansen, Physica D 79, 335
(1994).

[27] B. Christiansen, D.-R. He, S. Habip, M. Bauer, U. Krueger, and
W. Martienssen, Phys. Rev. A 45, 8450 (1992).

[28] S.-X. Qu, Y.-Z. Lu, L. Zhang, and D.-R. He, Chin. Phys. B 17,
4418 (2008).

[29] S.-X. Qu, S. Wu, and D.-R. He, Phys. Rev. E 57, 402 (1998).

[30] M. Bauer, S. Habip, D. R. He, and W. Martienssen, Phys. Rev.
Lett. 68, 1625 (1992).

[31] Y. He, Y.-M. Jiang, Y. Shen, and D.-R. He, Phys. Rev. E 70,
056213 (2004).

[32] S.-X. Qu, B. Christiansen, and D.-R. He, Phys. Lett. A 201, 413
(1995).

[33] M. Dutta, H. E. Nusse, E. Ott, J. A. Yorke, and G. Yuan, Phys.
Rev. Lett. 83, 4281 (1999).

[34] M. A. Hassouneh, E. H. Abed, and H. E. Nusse, Phys. Rev. Lett.
92, 070201 (2004).

[35] Y.-C. Lai, D.-R. He, and Y.-M. Jiang, Phys. Rev. E 72,
025201(R) (2005).

[36] W. A. S. Barbosa, A. Griffith, G. E. Rowlands, L. C. G. Govia,
G. J. Ribeill, M.-H. Nguyen, T. A. Ohki, and D. J. Gauthier,
Phys. Rev. E 104, 045307 (2021).

[37] D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner,
and S. Hoyer, Proc. Natl. Acad. Sci. USA 118, €2101784118
(2021).

[38] A. Choudhary, J. F. Lindner, E. G. Holliday, S. T. Miller, S.
Sinha, and W. L. Ditto, Phys. Rev. E 101, 062207 (2020).

[39] C.-D. Han, B. Glaz, M. Haile, and Y.-C. Lai, Phys. Rev. Res. 3,
023156 (2021).

[40] M. Raissi, P. Perdikaris, and G. Karniadakis, J. Comput. Phys.
378, 686 (2019).

[41] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S.
Wang, and L. Yang, Nat. Rev. Phys. 3, 422 (2021).

[42] A. Haluszczynski, J. Aumeier, J. Herteux, and C. Rith, Chaos
30, 063136 (2020).

[43] L. Grigoryeva and J.-P. Ortega, Neural Netw. 108, 495 (2018).

[44] G. Cybenko, Math. Control Signals Syst. 2, 303 (1989).

[45] J.Z. Kim, Z. Lu, E. Nozari, G. J. Pappas, and D. S. Bassett, Nat.
Mach. Intell. 3, 316 (2021).

[46] L.-W. Kong, H.-W. Fan, C. Grebogi, and Y.-C. Lai, Phys. Rev.
Res. 3, 013090 (2021).

[47] D. Patel, D. Canaday, M. Girvan, A. Pomerance, and E. Ott,
Chaos 31, 033149 (2021).

[48] C. Klos, Y. F. Kalle Kossio, S. Goedeke, A. Gilra, and R.-M.
Memmesheimer, Phys. Rev. Lett. 125, 088103 (2020).

[49] L. Shi, Y. Yan, H. Wang, S. Wang, and S.-X. Qu, Phys. Rev. E
107, 054209 (2023).

[50] M. Inubushi and K. Yoshimura, Sci. Rep. 7, 10199 (2017).

014214-11


https://doi.org/10.1063/5.0066013
https://doi.org/10.1063/5.0006304
https://doi.org/10.1103/PhysRevE.99.042203
https://doi.org/10.1063/1.4979665
https://doi.org/10.1063/1.5022276
https://doi.org/10.1137/050625060
https://doi.org/10.1137/15M1006982
https://doi.org/10.1016/0167-2789(92)90087-4
https://doi.org/10.1103/PhysRevE.49.1073
https://doi.org/10.1103/PhysRevLett.86.2553
https://doi.org/10.1016/S0167-2789(05)80013-2
https://doi.org/10.1103/PhysRevA.45.8450
https://doi.org/10.1088/1674-1056/17/12/014
https://doi.org/10.1103/PhysRevE.57.402
https://doi.org/10.1103/PhysRevLett.68.1625
https://doi.org/10.1103/PhysRevE.70.056213
https://doi.org/10.1016/0375-9601(95)00262-2
https://doi.org/10.1103/PhysRevLett.83.4281
https://doi.org/10.1103/PhysRevLett.92.070201
https://doi.org/10.1103/PhysRevE.72.025201
https://doi.org/10.1103/PhysRevE.104.045307
https://doi.org/10.1073/pnas.2101784118
https://doi.org/10.1103/PhysRevE.101.062207
https://doi.org/10.1103/PhysRevResearch.3.023156
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1063/5.0006869
https://doi.org/10.1016/j.neunet.2018.08.025
https://doi.org/10.1007/BF02551274
https://doi.org/10.1038/s42256-021-00321-2
https://doi.org/10.1103/PhysRevResearch.3.013090
https://doi.org/10.1063/5.0042598
https://doi.org/10.1103/PhysRevLett.125.088103
https://doi.org/10.1103/PhysRevE.107.054209
https://doi.org/10.1038/s41598-017-10257-6

