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We numerically study the anisotropic Turing patterns (TPs) of an activator-inhibitor system described by the
reaction-diffusion (RD) equation of Turing, focusing on anisotropic diffusion using the Finsler geometry (FG)
modeling technique. In FG modeling, the diffusion coefficients are dynamically generated to be direction depen-
dent owing to an internal degree of freedom (IDOF) and its interaction with the activator and inhibitor. Because
of this dynamical diffusion coefficient, FG modeling of the RD equation sharply contrasts with the standard
numerical technique in which direction-dependent coefficients are manually assumed. To find the solution of
the RD equations in FG modeling, we use a hybrid numerical technique combining the Metropolis Monte Carlo
method for IDOF updates and discrete RD equations for steady-state configurations of the activator-inhibitor
variables. We find that the newly introduced IDOF and its interaction are a possible origin of spontaneously
emergent anisotropic patterns of living organisms, such as zebra and fishes. Moreover, the IDOF makes TPs
controllable by external conditions if the IDOF is identified with the direction of cell diffusion accompanied by
thermal fluctuations.

DOI: 10.1103/PhysRevE.109.014213

I. INTRODUCTION

Turing patterns (TPs) are described by the partial differ-
ential equations of Turing [1] for two different variables u
and v, which are scalar functions on a domain in R2. These
u and v variables are usually called the activator and inhibitor,
respectively [2–5], owing to their interaction properties, as
implemented in the reaction and diffusion (RD) terms in the
equations. TPs emerge in the macroscopic [6–8] to micro-
scopic [9,10] scale range.

These patterns emerge because of competition between ac-
tivators and inhibitors, as well as their diffusion and reaction,
and many studies have been conducted to extend the Laplace
operators of the RD equation to the graph Laplacian to find
TPs in random networks [11–15]. Another extension is to
modify the diffusivity to accommodate the non-Gaussian be-
havior of Brownian particles confined between narrow plates
by including fluctuations in the diffusion constants such that

*Corresponding author: koi-hiro@sendai-nct.ac.jp

position-dependent and anisotropic diffusion emerges [16].
Such a non-Gaussian distribution of particle displacements
is considered anomalous diffusion, corresponding to anoma-
lous transport phenomena in crowded biological materials,
such as cellular membranes [17–20]. This anomalous trans-
port is characterized by subdiffusion, which is described
by the power-law behavior of the mean-square displace-
ment ∼tα (0 < α < 1) observed at intermediate timescales.
Superdiffusion characterized by tα (α > 1) is observed in bac-
terial swarming [21,22]. This phenomenon is described by the
Levy walk, which is a model of a random walk with a constant
speed.

Anisotropic TPs, which are steady-state solutions of RD
equation with a periodicity in a spatial direction, are ob-
served on zebra and fish (Fig. 1). The anisotropic TPs are
known to emerge because of the differences in the diffusion
constants between the activator and inhibitor with direction-
dependent diffusion. The difference in the diffusion constants
corresponding to marine angelfish was estimated by Kondo
and Asai in Ref. [23]. In Refs. [24,25], Shoji et al. reported
that anisotropy in the diffusion constants is the origin of
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FIG. 1. Anisotropic TPs on (a) zebra and [(b) and (c)] fishes. The
patterns vary depending on the individual, while the direction of the
patterns depends only on the species.

anisotropic TPs and is effective in determining the direction
of stripe patterns in numerical studies. TPs appear on curved
surfaces [26]. Krause et al. reported that the anisotropy in the
evolution of TPs is sensitive to the curvature of the growing
domains, which are two-dimensional curved surfaces embed-
ded in R3, assuming that the induced metric describes the
Laplace-Beltrami operator in the diffusion terms [27,28].

Pattern anisotropy is numerically producible by assuming
direction-dependent diffusion constants, as described above,
because the underlying reason for these stripe TPs is well
understood to be anisotropic diffusion. However, the ori-
gin of anisotropic diffusion remains unclear. Therefore, the
phenomenological description of anisotropic diffusion is not
always satisfactory.

In this paper, we study the origin of anisotropic diffusion
in TPs. For this purpose, we focus on the mechanism of
dynamic anisotropy, in which the diffusion constants dynam-
ically appear as direction-dependent constants [29,30]. Here
we recall that such a dynamic anisotropy has been success-
fully implemented in the interaction coefficients in several
statistical mechanical models using the Finsler geometry (FG)
modeling technique [31–35]. In these statistical mechanical
models, the dynamically implemented interaction coefficients
can be controlled under external conditions. Therefore, we
expect that the anisotropic diffusion of the RD equation is
also controlled by external conditions, such as mechanical
forces, if FG modeling is applied to the diffusion terms of the
RD equation. Thus, the FG modeling technique allows us to
study the control of the TP direction by external conditions,
and we consider that this new modeling technique has an ad-
vantage over phenomenological modeling in which diffusion
anisotropy is manually implemented.

This paper is organized as follows: In Sec. II, we review
the FitzHugh-Nagumo-type RD equation for the variables
u and v from a numerical point of view and show nu-
merical data, such as snapshots of isotropic and anisotropic
TPs, obtained on a regular square lattice of size N = 1002,
where anisotropic TPs appear owing to the assumed direction-
dependent diffusion coefficients in the RD equations. To
quantify the anisotropic TPs and evaluate the effect of the
direction-dependent diffusion coefficients, we introduce abso-
lute second-order derivatives of u and v as well as the squares
of the first-order derivatives. In Sec. III, we introduce the
FG modeling technique to dynamically implement diffusion
anisotropy in the Laplace operator in the RD equation by
including a new internal degree of freedom (IDOF) on two
types of lattices: fixed-connectivity and dynamically trian-
gulated lattices. A numerical technique, which we call the

FIG. 2. (a) Regular square lattice with PBCs of size N = 102,
which is small compared with the value of N = 1002 assumed
in the simulations in the following subsection, and (b) lattice site
(i, j) and its four nearest-neighbor sites, where 1 � i � nx and 1 �
j � ny. The lattice spacing is assumed to be �x = �y = 1 in the
simulations.

hybrid technique, is introduced to update u, v and the new
IDOF. In Sec. IV, we present the numerical data, including
snapshots obtained on these two lattices. Finally, we discuss
possible techniques for controlling the pattern direction that
emerge because of the dynamical anisotropy. The results and
conclusion are summarized in Sec. V.

II. STANDARD APPROACH TO TURING PATTERNS

In this section, we review TPs described by the FitzHugh-
Nagumo equation on regular square lattices with periodic
boundary conditions (PBCs) [Figs. 2(a) and 2(b)].

A. FitzHugh-Nagumo equation with diffusion anisotropy

Let u(x, y) and v(x, y) be the variables corresponding to
the activator and inhibitor, respectively, which satisfy the
FitzHugh-Nagumo-type RD equation

∂u

∂t
= Du�u + f (u, v), f = u − u3 − v,

∂v

∂t
= Dv �v + γ g(u, v), g = u − αv, (1)

on the two-dimensional plane [24,25]. The first and second
terms on the right-hand side are called the diffusion and reac-
tion terms, respectively, where � = ∂2

∂x2 + ∂2

∂y2 is the Laplace
operator. The symbols Du and Dv are the diffusion coeffi-
cients, and α and γ are constants.

For a suitable range of parameters, the RD equations have
certain steady-state solutions called TPs with periodicity in
spatial directions. When the periodicity appears almost reg-
ularly in one direction, the patterns become anisotropic, as
shown in Figs. 1(a)–1(c). These anisotropic patterns can be re-
produced by using the RD equation with diffusion anisotropy
introduced through the parameters a and b [25]:

�u → �au = a
∂2u

∂x2
+ (2 − a)

∂2u

∂y2
, (0 < a < 2),

�v → �bv = b
∂2v

∂x2
+ (2 − b)

∂2v

∂y2
, (0 < b < 2). (2)

For the ranges 0 < a < 2 and 0 < b < 2, the diffusion con-
stants Du and Dv in Eq. (1) effectively become direction

014213-2



NUMERICAL STUDY OF ANISOTROPIC DIFFUSION IN … PHYSICAL REVIEW E 109, 014213 (2024)

FIG. 3. Snapshots of the standard model on a regular square lattice of size N = 1002 with PBCs. The parameters (a, b) and cu
v in Eq. (4)

are shown in (a)–(g). The pattern is isotropic when a = b, as in (a) and (d), represented by cu
v = 1, while the stripe lies along the x direction

when a > b, as in (b), (f), and (g), represented by cu
v > 1, and it lies along the y direction when a < b, as in (c) and (e), represented by cu

v < 1.

dependent:

Du → (
Dx

u, Dy
u

) = (aDu, (2 − a)Du),

Dv → (
Dx

v, Dy
v

) = (bDv, (2 − b)Dv ). (3)

The direction dependence of Du and Dv is characterized by
the anisotropy

cu
v = cu

cv

= a(2 − b)

b(2 − a)
, where cu = Dx

u

Dy
u

= a

2 − a
,

cv = Dx
v

Dy
v

= b

2 − b
. (4)

Note that the conditions a = b = 1 describing isotropic diffu-
sion are represented by cu

v = 1. The isotropic condition cu
v = 1

is expected for all a = b even when a �= 1, where cu �= 1 and
cv �= 1.

B. Numerical solutions on a regular square lattice
with periodic boundary conditions

The discrete time-evolution equations corresponding to
Eq. (1) are given by

ui j (t + �t ) ← ui j (t ) + �t[Du�aui j (t ) + f (ui j (t ), vi j (t ))],

vi j (t + �t ) ← vi j (t ) + �t[Dv�bvi j (t ) + g(ui j (t ), vi j (t ))],

(5)

where ui j and vi j denote the discrete analogs of u(x, y)
and v(x, y) at lattice site (i, j) (1 � i � nx, 1 � j � ny)
[Fig. 2(a)]. The discrete diffusion terms �aui j and �bvi j are
given by

�aui j = a

(�x)2
(ui+1, j + ui−1, j − 2ui, j )

+ 2 − a

(�y)2
(ui, j+1 + ui, j−1 − 2ui, j ),

�bvi j = b

(�x)2
(vi+1, j + vi−1, j − 2vi, j )

+ 2 − b

(�y)2
(vi, j+1 + vi, j−1 − 2vi, j ), (6)

with lattice spacings �x and �y. The convergent criteria of
the iterations in Eq. (5) are given by

Max{|ui j (t + �t ) − ui j (t )|} < 1 × 10−8,

Max{|vi j (t + �t ) − vi j (t )|} < 1 × 10−8. (7)

Snapshots of the convergent configurations of u on the
lattice of size N = 1002 (⇔ nx = ny = 100) are plotted in
Figs. 3(a)–3(g), where

�t = 1 × 10−3, �x = �y = 1. (8)

The value of u in the snapshots is normalized to [0,1].
We confirm that the patterns are isotropic when a = b in
Fig. 3(a) a = b = 1 and Fig. 3(d) a = b = 1.02, while they
are anisotropic when a > b in Figs. 3(b) and 3(f) and a < b in
Figs. 3(c) and 3(e). This change from isotropy to anisotropy is
enhanced when the anisotropy cu

v is increased from cu
v = 1 in

Fig. 3(a) to cu
v = 1.02/0.98 in Fig. 3(b) and cu

v = (1.02/0.98)2

in Fig. 3(g). We find from Figs. 3(b) and 3(f) [from Figs. 3(c)
and 3(e)] that the increase (↗) in a and the decrease (↘) in
b (the decrease (↘) in a and the increase (↗) in b) cause
the same effect, enforcing the pattern anisotropy along the x
direction (the y direction). These effects are consistent with
the observation that the anisotropy of the pattern in Fig. 3(g)
is stronger than that in Figs. 3(b) and 3(f). These opposite or
competing behaviors of u and v are obtained because of the
direction-dependent diffusion constants in Eq. (3). Therefore,
the direction dependence of diffusion coefficients and the
resulting behaviors of u and v will be used to introduce dy-
namical anisotropy in FG modeling in the following section.
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FIG. 4. |∂2
μu| and |∂2

μv| obtained with (a) a variation under the
conditions a � b(=1) and (b) b variation under (1 =)a � b on the
N = 1002 lattice, where 1 × 10−7 is assumed in Eq. (7). The upper
axes represent the scale of anisotropy cu

v .

To quantify the observed anisotropy in the TPs, we cal-
culate the mean absolute values of the second-order partial
differentials of u and v,∣∣∂2

x u
∣∣ = 1

N

∑
i j

|ui+1, j + ui−1, j − 2ui, j |,

∣∣∂2
y u

∣∣ = 1

N

∑
i j

|ui, j+1 + ui, j−1 − 2ui, j |,

∣∣∂2
x v

∣∣ = 1

N

∑
i j

|vi+1, j + vi−1, j − 2vi, j |,

∣∣∂2
y v

∣∣ = 1

N

∑
i j

|vi, j+1 + vi, j−1 − 2vi, j |. (9)

Figure 4(a) shows |∂2
μu| and |∂2

μv| (μ = x, y) calculated by
varying a under the conditions b = 1 and a � 1. We find that
|∂2

x u| and |∂2
x v| decrease (↘) and that |∂2

y u| and |∂2
y v| increase

(↗) with increasing a (↗). The results plotted in Fig. 4(b)
also show how |∂2

μu| and |∂2
μv| vary when b decreases (↘)

under the conditions a = 1 and b � 1.
This behavior |∂2

x u| < |∂2
y u| is also understood from

the fact that the direction-dependent diffusion constants
(Dx

u, Dy
u) = (aDu, (2 − a)Du) in Eq. (3) obey Dx

u > Dy
u for

a > 1 and b = 1 because a large diffusion constant Dx
u induces

a long-distance spatial correlation of u, implying almost con-
stant u along the x axis, which is reflected in a small |∂2

x u|.
Thus, the observed data |∂2

μu| indicate that the u anisotropy
is consistent with the physical stability condition for energy
minimization. This consistency in the u anisotropy is under-
stood from the fact that the RD equation for u in Eq. (1)
is connected with the Ginzburg-Landau Cahn-Hilliard energy
functional [36].

In contrast, the data |∂2
μv| plotted in Fig. 4(b) have an

opposite response to the diffusion coefficients; v anisotropy
is observed in the x direction, causing |∂2

y v| > |∂2
x v| under the

condition Dx
v < Dy

v for b < 1(=a) for (Dx
v, Dy

v ) = (bDv, (2 −
b)Dv ) in Eq. (3). The anisotropies in the diffusion constants in

FIG. 5. Sμ
u , (μ = x, y) and Sμ

v , (μ = x, y) obtained with (a) a
variation under the conditions a � b(=1) and (b) b variation under
(1 =)a � b on the N = 1002 lattice. The upper axes represent the
scale of anisotropy cu

v . The assumed parameters are the same as those
in Fig. 4.

Eq. (3) can also be reflected in the quantities

Sx
u = 1

4

∑
i j

(ui+1, j − ui−1, j )
2, Sy

u = 1

4

∑
i j

(ui, j+1 − ui, j−1)2,

Sx
v = 1

4

∑
i j

(vi+1, j − vi−1, j )
2, Sy

v = 1

4

∑
i j

(vi, j+1 − vi, j−1)2.

(10)

The plots in Figs. 5(a) and 5(b) are consistent with those
in Figs. 4(a) and 4(b). Moreover, we find that the result
Sx

u,v < Sy
u,v is caused under Dx

u > Dy
u in Fig. 5(a), while Sx

u,v <

Sy
u,v is caused under Dx

v < Dy
v in Fig. 5(b). These opposite

behaviors in Sx,y
u and Sx,y

v in response to Dx
u and Dx

v come
from the competing property of u and v, as emphasized
above.

III. FINSLER GEOMETRY MODELING
OF TURING PATTERNS

A. Finsler geometry modeling of anisotropic diffusion

FG modeling modifies length scales so that interactions of
the variables u and v are direction dependent by using the
IDOF 	τ (∈ S2/2 : half sphere). The new IDOF 	τ (nonpolar
variable) comes from movements of vertices of triangulated
“fixed” and “fluid” lattices (Figs. 18 and 19), and 	τ is used to
define the discrete Laplace operators

�ui = 2

⎛
⎝∑

j(i)

γ u
i ju j − ui

∑
j(i)

γ u
i j

⎞
⎠,

�vi = 2

⎛
⎝∑

j(i)

γ v
i jv j − ui

∑
j(i)

γ v
i j

⎞
⎠, (1 � i � N ). (11)

The sum
∑

j(i) is over vertices j connected to i, and the γ u,v
i j

values depend on the unit Finsler length determined by 	τ
(Appendix B). We use these Laplace operators to define mod-
ified RD equations, which will be introduced in the following
subsection, corresponding to those in Eq. (1) (Appendix C).
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To update 	τ with the Monte Carlo (MC) procedure, we assume the following discrete Hamiltonian (Appendix D):

S(	r; 	τ ) =
{

γ S1 + UV + DuSu + DvSv + λSτ + SF
τ , (γ = 1), (fixed)

γ S1 + UV + UT + DuSu + DvSv + λSτ + SF
τ , (γ = 1), (fluid),

(12)

where S(	r; 	τ ) denotes that the variables 	r and 	τ are not in-
dependent (Appendix A). The tension coefficient γ of S1 is
assumed to be γ = 1 for simplicity. The difference in S be-
tween the fixed and fluid models in Eq. (12) is that a potential
UT is included in S for the fluid model, where the symbol T
denotes a triangulation (Appendix A). The partition functions
are written as

Zfix =
∫ ∏

i

d	ri exp(−S), (fixed model),

Zflu =
∑
T

∫ ∏
i

d	ri exp(−S), (fluid model), (13)

where
∫ ∏N

i=1 d	ri denotes 2N-dimensional multiple integra-
tions on a domain in R2 and

∑
T in Zflu denotes the sum over

all possible triangulations.
The simulation unit is given by kBT = 1, where kB is the

Boltzmann constant and T is the temperature. The Gaussian
bond potential S1 is defined by the squared bond length γ �2

with tension coefficient γ = 1 (Appendices D and E), and
hence, this � can also be expressed by the lattice spacing
denoted by d (Fig. 17 in Appendix A), which corresponds to
�x(=1) and �y(=1) in Eq. (8). From the dependence of S1 on
d , the surface tension σ also depends on d (Appendix E). Note
also that these simulation units, kBT (= 1) for energy and d for
length, are used only in the MC simulations for τ updates.

B. Hybrid numerical technique

We introduce a numerical technique to find steady state
configurations of u and v under the presence of IDOF 	τ on two
types of triangulated lattices: fixed and fluid (Appendix A).
The variables ui and vi are updated as follows:

ui(t + �t ) ← ui(t ) + �t[Du�ui(t ) + f (ui(t ), vi(t ))],

vi(t + �t ) ← vi(t ) + �t[Dv�vi(t ) + g(ui(t ), vi(t ))], (14)

where the diffusion terms are given by Eq. (11). Direction
dependence is not manually introduced into these diffusion
terms, in sharp contrast to those in Eq. (6). Here we should
note that the RD equation in Eq. (14) has no dependence on
the lattice spacing d , because d (Fig. 17) is not included in
the Laplacian in Eq. (11). In other words, the Laplacian in
Eq. (11) is defined to be influenced only by the lattice size N ,
as in the case of the model on the regular square lattice with
�x = 1 and �y = 1.

The hybrid numerical technique is summarized in the fol-
lowing five steps:

(i) The discrete time evolution of Eq. (14) is iterated with
the diffusion terms �ui and �vi in Eq. (11) with coefficients
Du and Dv .

(ii) In each discrete time step t → t + �t , the variables
{	ri} are updated once in MC simulations using S in Eq. (12),
as shown in Fig. 4(c), on a fixed connectivity lattice (fixed

model) or on a dynamically triangulated fluid lattice (fluid
model), which are defined by the partition functions in
Eq. (13). At each update of 	ri, the variable 	τi is also updated
by using �	ri(= 	ri(new) − 	ri(old) [Fig. 18(d)].

(iii) Steps (i) and (ii) are repeated nMC times, where nMC

is suitably large.
(iv) Step (i) is repeated under the final configurations of

{	τi} in (iii) until the convergent criteria are satisfied:

Max{|ui(t + �t ) − ui(t )|} < 1 × 10−8,

Max{|vi(t + �t ) − vi(t )|} < 1 × 10−8, (1 � i � N ),

�t = 0.001, (15)

which are the same as those in Eqs. (7) and (8) for the standard
model.

(v) Steps (i)–(iv) are repeated nitr times to calculate the
mean values of physical quantities using the convergent con-
figurations obtained in step (iv). The initial configurations of
the variables u, v and 	τ are randomly fixed using uniform
random numbers such that u, v ∈ {−0.5, 0.5} and 	τ ∈ S1: unit
circle.

Notably, the configurations of u, v and 	τ obtained in steps
(i) and (ii) are used as the initial configurations of step (iv)
for the RD equations of u and v. This implies that a canonical
ensemble configuration of IDOF 	τ under fluctuating u, v is
assumed for the initial configuration of the RD equation in
step (iv). The u and v during the MC update of 	τ are not
convergent in terms of the criteria in Eq. (15); however, the
patterns are close to those in the convergent steady state.

IV. RESULTS

As described in the final part of the preceding Sec. III A,
the Gaussian bond potential S1 depends on the lattice spacing
d (Fig. 17) in the MC process for 	τ . For this reason, to check
whether the results are influenced by σ , we use two different
values of d:

d = 0.525
(⇔〈�2〉 
 1

2 ⇔ σ > 0
)
,

d = 0.41
(⇔〈�2〉 
 1

3 ⇔ σ 
 0
)
. (16)

The mean-squared bond lengths 〈�2〉 inside the parenthesis
are numerically obtained under the assumed d . The expres-
sion of σ is given by σ = (3N/A)(〈�2〉 − 1

3 ) in Eq. (E5)
(Appendix E), where the surface area A = LxLy = (nx −
1)(ny − 1)d2 depends on nx, ny, and d [Fig. 2(a)]. In the
hybrid simulations, to see the effect of d on σ , we vary d as
in Eq. (16) with fixed nx and ny.

A. Snapshots

Steps (i) to (iv) described in Sec. III B are iterated once to
obtain snapshots in this subsection. Figures 6(a)–6(d) show
snapshots of the variable u without (upper row) and with 	τ

014213-5
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FIG. 6. Snapshots of TPs for u obtained on a fixed lattice of size N = 10 000 with lattice spacing d = 0.525. The assumed parameters are
shown in the figure. The upper rows show the normalized u(∈ [0, 1]) indicated by the color code without the IDOF 	τ , and the lower row shows
enlarged views with 	τ of the central region enclosed by the dashed rectangles, in which 	τ variables are represented by small cones.

(lower row) the IDOF of the fixed model on the N = 10 000
lattice for the lattice spacing d = 0.525. The values of u
are normalized in the range [0,1], as shown in the color
code. These snapshots are obtained by varying λ and 	F . The
other parameters are fixed to (α, γ ) = (1, 8) and (Du, Dv ) =
(0.4, 5). The χ0 in Eq. (B2) is assumed to be χ0 = 0.5.

When λ = 0 and 	F = (0, 0), the fluctuation direction of 	r
is expected to be random, causing a random IDOF 	τ . In this
case, an isotropic pattern is confirmed in Fig. 6(a), where the 	τ
variables in the snapshots of the central region are plotted with
small cones. When 	F is increased to 	F = (1, 0) [Fig. 6(b)], 	τ
is slightly aligned along the x direction, which becomes clear
for λ = 0.5 [Fig. 6(c)]. The pattern is also forced to be more
anisotropic by enlarging 	F = (0, 0) to 	F = (0, 2), where the
direction is changed to along the y axis. From these snapshots,
we find that the isotropy and anisotropy in the patterns is
determined by the fluctuation direction 	τ of the vertices. This
finding indicates that the FG modeling effectively modifies
the diffusion constants Du and Dv to be anisotropic. These
effective diffusion constants are numerically extracted in the
following subsection. Notably, the patterns of v are almost the
same as those of u plotted in Fig. 6. The patterns obtained with
d = 0.41 corresponding to σ 
 0 in Eq. (16) are almost the
same as those in Fig. 6, and we therefore find that the patterns
are not influenced by isotropic σ , as expected. The influence
of σ on TPs is expected in the case of anisotropic or uniaxial
σ . This expectation is discussed in the following subsection.
Snapshots of u obtained on the fluid lattice are shown in
Figs. 7(a)–7(d), where the parameters are the same as those
for the fixed model in Fig. 6 except for Dv = 10, which is
twice as large as that in Fig. 6. If Dv = 5 is used for the
fluid model, then some of the patterns in Fig. 7 do not appear.
This difference is considered to come from a difference in the
lattice structure between fixed and fluid lattices. The vertex
positions 	r on fluid lattices are expected to be more influenced

by the external force 	F and their nearest neighbors via the cor-
relation energy Sτ due to the free diffusion of vertices shown
in Fig. 19(c). To see such a difference in the lattice structure,
we calculate the direction-dependent diffusion constants in the
following subsection (Appendix F) and the distribution h(�) of
the bond length � in Appendix G.

B. Direction-dependent diffusion constants and surface tension

In Figs. 8(a) and 8(b), we plot direction-dependent diffu-
sion constants (Appendix F)

Dx
u = 1

NB

∑
i j

γ u
i j cos2 θi j, Dy

u = 1

NB

∑
i j

γ u
i j sin2 θi j,

Dx
v = 1

NB

∑
i j

γ v
i j cos2 θi j, Dy

v = 1

NB

∑
i j

γ v
i j sin2 θi j, (17)

and the corresponding direction-dependent energies

Sx
u =

∑
i j γ

u
i j cos2 θi j (ui − u j )2

(1/NB)
∑

i j γ
u
i j cos2 θi j

,

Sy
u =

∑
i j γ

u
i j sin2 θi j (ui − u j )2

(1/NB)
∑

i j γ
u
i j sin2 θi j

,

Sx
v =

∑
i j γ

v
i j cos2 θi j (vi − v j )2

(1/NB)
∑

i j γ
v
i j cos2 θi j

,

Sy
v =

∑
i j γ

v
i j sin2 θi j (vi − v j )2

(1/NB)
∑

i j γ
v
i j sin2 θi j

, (18)

where NB(=3N ) is the total number of bonds and θi j is the
angle between 	ei j and the x axis (Fig. 21). We calculate these
quantities using the final configurations obtained in step (iv)
described in Sec. III B. The final configurations of u, v, and
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FIG. 7. Snapshots of TPs for u obtained on the fluid lattice of size N = 10 000 with lattice spacing d = 0.525. The assumed parameters
are shown in the figure. These are the same as those assumed in Fig. 6 except for Dv = 10.

	τ depend on their initial configurations, and for this reason,
we obtain their mean final values by repeating steps (i) to (iv)
nitr times with random initial configurations as described in
step (v). This mean value corresponds to the ensemble average
in the statistical mechanical sense. nitr , the total number of
iterations nMC of steps (i) and (ii), and the lattice size N for the
simulations in this subsection are assumed to be as follows:

nitr = 50, nMC = 5 × 105, N = 6400. (19)

Open and solid symbols plotted in Fig. 8(a) correspond to
the data obtained on the lattices of lattice spacings d = 0.525
and d = 0.41, respectively, and the data are almost indepen-
dent of d . This independence of d , observed in D μ

u,v , implies
that anisotropic TPs are not influenced by the difference of
σ (∝d−2) originated in d . We also find that Dx

u (Dy
u) increases

(decreases) with increasing F . Note that the IDOF 	τ is al-
most random as F → 0 and aligns along the x axis when F
increases. This behavior of Dx

u and Dy
u is consistent with that of

Dx
u = aDu and Dy

u = (2 − a)Du expected when a in Eq. (3) in
the preceding section increases from a = 1. Moreover, we find
that Sx

u/NB (Sy
u/NB) decreases (increases) with increasing F .

FIG. 8. (a) Dμ
u and Sμ

u vs F [ 	F = (F, 0)], and (b) Dμ
v and Sμ

v vs
F for the fixed model on a lattice of size N = 6400.

Here we note that Sμ
u /NB and Dμ

u have no relationship between
the input and output, but both Sμ

u /NB and Dμ
u are outputs to

the input F . To compare the results plotted in Figs. 8(a) and
8(b) with those in Figs. 4(a) and 4(b), we consider the results
in Figs. 8(a) and 8(b) as the “responses” Sμ

u and Sμ
v to the

“inputs” Dμ
u and Dμ

v as follows:

Fig. 8(a): Sx
u ↘ (

if Dx
u ↗ )

, Sy
u ↗ (

if Dy
u ↘ )

, (20)

Fig. 8(b): Sx
v ↘ (

if Dx
v ↘ )

, Sy
v ↗ (

if Dy
v ↗ )

. (21)

Thus, we find that the results in Eqs. (20) and (21) are con-
sistent with the behaviors of |∂2

μu| and |∂2
μv| vs a and b in

Figs. 4(a) and 4(b). Notably, the relation in terms of increases
or decreases between Sμ

v and Dμ
v is opposite to that between

Sμ
u and Dμ

u . This consistency of Eqs. (20) and (21) and Fig. 5
with Eq. (3) implies that the FG modeling with the IDOF 	τ
suitably implements the diffusion anisotropy in TPs. The same
consistency is obtained with the results on the fluid lattice
plotted in Figs. 9(a) and 9(b).

Next, we show the surface tension σ in Eq. (E5) for the
lattice spacings d = 0.525 and d = 0.41 in Figs. 10(a) and

FIG. 9. (a) Dμ
u and Sμ

u vs F [ 	F = (F, 0)] and (b) Dμ
v and Sμ

v vs F
for the fluid model on a lattice of size N = 6400.
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FIG. 10. Surface tension σ vs F [ 	F = (F, 0)] on the (a) fixed
lattice, with (b)–(e) snapshots of u at F = 0 and F = 2.8, and
on the (f) fluid lattice, with (g)–(j) snapshots of u at F = 0 and
F = 2.8, where the lattice spacing is assumed to be d = 0.525 and
d = 0.41. The lattice size (N = 6400) and the parameters are the
same as those assumed in Figs. 8 and 9. We find that σ (d =
0.525) > 0 and σ (d = 0.41) 
 0, and both of them decrease with
increasing F .

10(b). We have checked that the patterns are not influenced
by the difference in σ (∝ d−2) in Figs. 8 and 9; however,
observing the interaction between σ and IDOF 	τ , which is
controlled by the external force 	F , is still interesting. We
find from Figs. 10(a) and 10(b) that σ (d = 0.525) > 0 and
σ (d = 0.41) 
 0 as expected, and moreover, σ slightly de-
creases as F increases in both the fixed and fluid lattices. This
dependence of σ on F implies that σ depends on IDOF 	τ
because F directly influences 	τ , and therefore we consider
that 	τ interacts with σ . This interaction between 	τ and σ

allows us to control 	τ with σ through an anisotropic frame
or boundary condition. This prediction is confirmed in the
following subsection.

C. Control of the pattern direction

First, we show that the pattern direction can be arbitrarily
and spontaneously determined. The snapshots in Fig. 11(a)
denoted by “forced” are obtained with 	F = (3, 3) and λ = 0.
In this case, the direction of IDOF 	τ is controlled by 	F , and
consequently, patterns align along 	τ . In contrast, the snapshots
in Fig. 11(b) denoted by “spontaneous” are obtained under
	F = (0, 0) and λ = 3. In this case, IDOF 	τ aligns along
a spontaneously determined direction due to the relatively
large λ(=3); the pattern direction depends on random num-
bers for initial random configurations of 	τ . The snapshots
in Fig. 11(c) are obtained by “forcing” with 	F = (3, 3), the
same as in Fig. 11(a); however, the pattern direction is almost
perpendicular to that in Fig. 11(a). The reason is that χu

i j
in Eq. (B2) is replaced by χv

i j such that χv
i j = |	τi · 	ei j | + χ0

and χu
i j = √

1 − |	τi · 	ei j |2 + χ0 (Appendix B). These proper-
ties of the pattern direction, forced, spontaneous, and χu,v

i j
dependent, are specific to FG models. Now we deform the

FIG. 11. Snapshots of TPs for u, the direction of which is
(a) “forced” by external 	F and (b) spontaneously determined without
	F . The central domains are plotted with small cones represent-
ing IDOF 	τ in the lower part. (c) “Forcing” with the replacement
of χ u

i j ↔ χ v
i j in Eq. (B2), where the pattern direction is vertical

to IDOF 	τ .

side lengths Lx and Ly(=Lx ) of the lattice using the param-
eter RXY such that L′

x = Lx/
√

RXY and L′
y = √

RXY Ly, where
RXY = L′

y/L′
x, without changing the area [L′

x,y are written as
Lx,y in Figs. 12(a)–12(c)].

Snapshots of lattices deformed within the range 0.6 �
RXY � 1.4 of the fixed model are shown in Figs. 13(a)–13(h).
The TP direction aligns along the longer direction when the
ratio RXY deviates from RXY = 1 to a certain extent. The
parameters are shown in the figure. We find that IDOF 	τ aligns
along the longer direction, along which bond lengths are
longer than those along the shorter direction, as observed in
Figs. 12(a) and 12(c). This observation indicates that vertices
fluctuate along the longer direction relatively easily compared
to the vertical direction. This is the alignment mechanism of
anisotropic TPs due to the boundary condition. We note that
the lattice deformation is caused by uniaxial tensile strain
or compression, and therefore, we consider that mechani-
cal anisotropic strain applied on the boundary imparts TP
anisotropy.

On fluid lattices, this mechanism does not work because
vertices freely move due to their fluid nature. Nevertheless,
even on fluid lattices, a fixed boundary condition can be
assumed to prohibit vertices from undergoing free diffusion
in the perpendicular direction. In this case, the direction of
TPs is also expected to be determined by this fixed boundary
condition [Figs. 14(a) and 14(b)]. We find from Figs. 15(a)
and 15(b) that TPs align along the fixed-boundary direction
on the fluid lattices.

Finally, we calculate the mean values of Dμ
u (μ = x, y) cor-

responding to the snapshots in Figs. 13 and 15 using nitr = 50
convergent configurations, which is the same number as in
Eq. (19). We find from Fig. 16(a) that Dy

u (Dx
u) of the fixed

model increases (decreases) with increasing RXY , while Dx
u

and Dy
u of the fluid model are independent of RXY . The ob-

tained data Dμ
u (μ = x, y) vs RXY are consistent with those
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FIG. 12. Initial configurations of deformed and original lattices. The ratio of side lengths is (a) RXY = 0.7, (b) RXY = 1, and (c) RXY = 1.3
The area LxLy remains unchanged under deformation. A small lattice of size N = 100 is used for visualization of the lattice structure.

plotted in Figs. 8 and 9 corresponding to anisotropic TPs
caused by external force 	F ( �= (0, 0)). The “x-dir bnd” (“y-dir
bnd”) symbols in Fig. 16(b) denote the fixed boundary in the
x (y) direction shown in Figs. 14 and 15. The results that
Dx

u > Dy
u for “x-dir bnd” and Dx

u < Dy
u for “y-dir bnd” within

the range 1 � λ � 4 are also consistent with the expectation
from the pattern directions at λ = 3 in Figs. 15(a) and 15(b),
respectively. No clear difference is observed between Dx

v and
Dy

v (which are not plotted) compared to the cases for Dμ
u (μ =

x, y), although Dμ
v (μ = x, y) exhibits the opposite behavior

to Dμ
u (μ = x, y) when RXY � 1.5 or RXY � 0.6 in the fixed

model and λ � 4 in the fluid model.
Note that the lattice shape deformation (Fig. 13) causes

direction-dependent anisotropic diffusion due to γ u,v
i j in the

modified Laplacian in Eq. (11). This direction dependence
of γ u,v

i j is caused by 	τ alignment along the expanded lattice
direction in the fixed model and/or along the fixed boundary
direction in the fluid model. Moreover, the alignment of 	τ is

closely connected to vertex movement owing to the effects of
the Gaussian bond potential S1 in Eq. (D2) in our modeling.
Indeed, S1 can influence vertex movement on anisotropically
deformed lattices because S1 is introduced to make the sur-
face isotropic in-plane mechanically. Thus, the 	τ alignment
implies that the microscopic and direction-dependent fluctua-
tion of lipid molecules in membranes is a possible origin of
anisotropic TPs (Fig. 1).

V. CONCLUDING REMARKS

In this paper, we have shown that the FG modeling tech-
nique is applicable to a differential equation model called
the RD equation of FitzHugh-Nagumo for TPs. This FG
modeling scheme dynamically implements anisotropy in the
diffusion coefficients via an IDOF, which corresponds to
direction-dependent fluctuations of lattice vertices, preserving
the competing nature between the activator and inhibitor. The

FIG. 13. Alignment of anisotropic TPs of u along the longer direction of lattices deformed with the ratio RXY = Ly/Lx ranging from (a)
RXY = 0.6 to (h) RXY = 1.4. These alignments are caused by strains applied on the boundary frame of lattices.
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FIG. 14. A PBC or the fluid model is assumed in (a) the x
direction for vertices in red (•) and blue (•), denoted by “Fixed
boundary for one-dim moves” along the boundary. The vertices (•)
outside the fixed boundaries are “virtual points” used to to define
γ u,v

i j in Eq. (D2) on the boundaries. (b) A PBC is assumed in the y
direction. The lattice size is N = 100, in which the virtual points are
not included.

FIG. 15. Snapshots of u obtained on fluid lattices, in which a pair
of fixed boundaries is assumed in (a) the x direction and (b) the
y direction. The lattice size is N = 10 000, and the parameters are
shown in the figure. The alignment of TPs and their directions are
determined by the boundary conditions.

FIG. 16. (a) Dμ
u , (μ = x, y) vs RXY of fixed and fluid models,

and (b) Dμ
u , (μ = x, y) vs λ of the fluid model with fixed boundary

conditions denoted by “x-dir bnd” and “y-dir bnd.” The error bars
denote the standard deviation. The behavior of Dμ

u is consistent with
the anisotropic TPs shown in the snapshots in Figs. 13 and 15.

IDOF on fixed-connectivity lattices is controlled by uniaxial
strains corresponding to frame or surface tensions, which are
anisotropically imposed by boundary conditions.

The lattice vertices are biologically interpreted as cells or
lumps of cells, and animal cells are activated by molecular
motors and strongly influenced by thermal fluctuations of lipid
molecules. For these reasons, considering that cell movements
accompany fluctuations is natural. Therefore, the FG mod-
eling indicates that one possible origin of anisotropic TPs is
direction-dependent fluctuations of cells.

We confirm that the TP direction is controlled by the
surface boundary conditions such that the direction aligns
along the tensile or compressive strain direction on fixed-
connectivity lattices. On fluid lattices with a pair of fixed
boundaries, we confirm that TPs can also be controlled to
anisotropically emerge along the direction of the fixed bound-
aries.
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APPENDIX A: INTERNAL DEGREE OF FREEDOM ON
THE TRIANGULATED LATTICE AND THE MONTE

CARLO UPDATE

First, we present detailed information on triangulated lat-
tices in which the vertex position plays a role in the IDOF
for anisotropic diffusion. This new IDOF is governed by the
Hamiltonian S in Eq. (12). A triangulated lattice is illus-
trated in Fig. 17, where PBCs are assumed for all vertex
positions. In the initial configuration shown in Fig. 17, the
vertices enclosed by the solid rectangles are identified with
those enclosed by the same-sized oblong dashed rectangles,
which are plotted at positions nμd, (μ = x, y) distant from the
original positions, where nμ and d represent the total number
of vertices on the lattice edges and the lattice spacing, re-
spectively. The dashed square represents a frame implemented
by PBCs, in which the vertex position 	r is identified with
	r ± (nxd, nyd ) such that 	r ≡ 	r ± (nxd, nyd ). Consequently,
the frame area is fixed to A = LxLy, where Lμ(μ = x, y) is the
edge length given by Lμ = (nμ − 1)d . Vertices on and inside
the dashed frame in Fig. 17 representing the initial configu-
ration are linked with the Voronoi tessellation technique [37].
Next, to introduce an IDOF, we briefly explain the MC update
[38,39] of the vertex position 	r(∈ R2), which is illustrated in
Fig. 18(a). The new position 	r ′ is accepted with a probabil-
ity Min[1, exp(−δS)], where δS = S(	r ′) − S(	r) is the energy
change after the vertex movement 	r → 	r ′. The new position
	r ′ is randomly fixed in a small circle of radius R centered
at 	r, where the radius R is fixed such that the acceptance
rate is approximately equal to 60–90% under the constraint
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FIG. 17. Triangulated square lattice of size N = 100, which is
the total number of vertices given by N = nxny, where the total
number of boundary vertices is nμ = 10(μ = x, y). The edge length
Lμ(μ = x, y) is given by Lμ = (nμ − 1)d , where d is the lattice
spacing. PBCs are assumed at the boundary vertices. The dashed
square is the boundary frame of area A = LxLy implemented by the
PBCs.

that the triangles are not folded at any bond [nonfolding and
folding triangles are illustrated in Fig. 18(c)]. This MC pro-
cess for the update of vertex positions is the same as that
in MC studies for polymerized membranes [40–42], which
is a two-dimensional extension of the linear chain model for
polymers [43]. Another MC process is the bond flip procedure
shown in Fig. 18(b) [44]. In this process, bond i j connecting
vertices i and j is removed, and vertices k and l are connected
by a bond. This bond flip is also accepted with probability
Min[1, exp(−δS)] with energy change δS under the constraint
of nonfolding triangles. The IDOF 	τ is defined by

	τ = �	r
‖�	r‖ (∈ S1/2) (A1)

FIG. 18. Illustrations of MC updates for (a) the vertex posi-
tion and (b) bond flip under the constraint of nonfolding triangles.
Lattices in which only the vertex position is updated are called fixed-
connectivity lattices, and those in which both the vertex position
and bond flip are updated are called fluid lattices. (c) Triangles
are allowed to deform in non-folding configurations (©) and are
prohibited from folding (×). (d) The IDOF 	τ (∈ S1/2) at 	r is de-
fined by 	τ = �	r/‖�	r‖ using the deformation vector �	r = 	r′ − 	r.
(e) Illustrations of vertex fluctuations corresponding to isotropic and
anisotropic configurations of 	τ .

FIG. 19. Snapshots of vertex configurations updated by the
Metropolis MC procedure with lattice size N = 400: (a) initial
configuration without the MC update, (b) fixed connectivity lattice
obtained after 1 × 105 MC sweeps (MCSs) for the vertex updates,
and (c) fluid lattice obtained after 1 × 105 MCSs for the vertex and
bond flip updates. The vertices on the boundaries of the fixed lattice
in (b) fluctuate only locally, whereas those of the fluid lattice in
(c) diffuse over the lattice. The total number of bonds NB and total
number of triangles NT are given by NB = 3N and NT = 2N on
triangulated lattices with PBCs satisfying zero Euler characteristics
N − NB + NT = 0.

[Fig. 18(d)], which has values on the half circle S1/2 due to
the nonpolar nature assumed for the variable. Figure 18(e)
shows the isotropic and anisotropic configurations of 	τ .
Finally, in this Appendix, we present snapshots of vertex con-
figurations updated by the MC process, including the initial
configuration [Fig. 19(a)]. To clearly show the vertices, we
use a small lattice of size N = 400. A snapshot denoted by
“fixed” in Fig. 19(b) is obtained after 1 × 105 MC sweeps
(MCSs) for the update of vertex position 	ri only, where 1
MCS represents N consecutive updates of 	ri, (i = 1, . . . , N ).
Vertices outside the dashed square shown in Fig. 19(a) are
plotted on the opposite side due to the PBC. We find that
the vertices fluctuate only locally on the fixed connectivity
lattice. In contrast, the vertices diffuse almost freely over
the lattice denoted by “fluid” in Fig. 19(c) [44,45]; we find
that the boundary vertices are randomly mixed on the fluid
lattice, where 1 MCS represents N consecutive updates of
vertex positions followed by N random updates of bond
flips.

We emphasize that these two different types of triangulated
lattices are not simply different in polygon shape from the
regular square lattice in Sec. II but rather have extra dynamic
degrees of freedom, such as the vertex position. To suitably
treat this new IDOF, we introduce the Gaussian bond poten-
tial, which is usually assumed for a cell membrane model
[45–47], in the Hamiltonian S of Eq. (12).
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FIG. 20. (a) Local coordinate system (x1, x2) with the origin at
vertex i on a triangle �i jk , (b) unit Finsler length χ u

i j for the diffusion
anisotropy of u on the curve C(x1) along the x1 axis, (c) unit Finsler
length χ v

i j corresponding to the variable v, and (d) intuitive illustra-
tions of Euclidean length � and Finsler length su,v between O and P
along the x1 and C(x1) axes, respectively. The direction-dependent
Finsler metrics gu and gv along the x1 axis, which is assumed to
be parallel to the x axis, from i to j are obtained by using Finsler
functions Lu and Lv such that gu = 1/(χ u

i j )
2 and gv = 1/(χ v

i j )
2.

Arrows with x and y in (b), (c), and (d) represent the canonical
coordinate axes of R2.

APPENDIX B: FINSLER FUNCTION
AND FINSLER LENGTH

In this Appendix, we introduce technical details of Finsler
metrics for diffusion anisotropy. The Finsler length can be
introduced in a local coordinate system (x1, x2) on triangu-
lated lattices in a discrete manner [Fig. 20(a)]. The origin of
the local coordinate is the vertex position i of the triangle
�i jk . The x1 axis is considered a curve C(x1), on which a
Finsler function L is introduced using a coordinate function
Eu(	r) = Eu(x1) and its first derivative E ′

u(x1) = dEu
dx1 :

Lu(Eu, E ′
u) =

√
E ′ 2

u

|χu| ,

Eu =
∫ x1

0

(
∂u

∂x1

)2

dx1, E ′
u = dEu

dx1
. (B1)

Here we use the expression ( ∂u
∂x1 )2 = (∇u)2 along C(x1).

Eu(x1) is an energy function that is positive, increases with in-
creasing (∇u)2 along the x1 axis, and monotonically increases
with respect to x1; hence, Eu(x1) can be used to define the
Finsler length along C(x1). Note that this coordinate func-
tion Eu(	r) = Eu(x1) differs from that in Ref. [27], where an
induced metric is used, and hence, the coordinate functions
are defined on the tangential lines of the Euclidean length on
curved surfaces. From the general prescription, we obtain the
Finsler length s by time integration of the Finsler function
L along C(x1) from t = 0 to t = T : s = ∫ T

0 L (Eu, E ′
u)dt .

Equivalently, we obtain the corresponding Finsler metric

element gu along the x1 axis, gu = (1/2)∂2L 2
u /∂E ′ 2

u =
1/(χu

i j )
2, which is suitable for our purpose. Another Finsler

metric for the anisotropic diffusion of variable v along
C(x1) can also be obtained using gv = (1/2)∂2L 2

v /∂E ′ 2
v =

1/(χv
i j )

2. Here we assume that χu
i j and χv

i j are given by

χu
i j = |	τi · 	ei j | + χ0, χv

i j =
√

1 − |	τi · 	ei j |2 + χ0, (B2)

where 	τi denotes the IDOF at vertex i, 	ei j denotes the
unit tangential vector from vertices i to j, and χ0 denotes
a small positive number. These parameters χu

i j and χv
i j on

C(x1) are visualized by the dashed lines in Figs. 20(b)
and 20(c).

Here we note that the relation of the Euclidean length dx1

between i and j with the Finsler length dsu from i to j is
given by using the Finsler metric gu: (dsu)2 = gu(dx1)2 =
(dx1)2/(χu

i j )
2. Thus, we have that dsu = dx1/χu

i j , and there-
fore, dsu = 1 for dx1 = χu

i j . Therefore, we call χu
i j the unit

Finsler length from i to j. We sometimes call χu
i j a “velocity,”

as χu
i j physically has units of velocity because the Finsler

length dsu is a time length. Along the x2 axis from vertices
i to k in Fig. 20(a), the unit Finsler lengths χu

ik and χv
ik can be

defined by replacing 	ei j with 	eik in Eq. (B2). Thus, we obtain
the two-dimensional Finsler metrics gu and gv with respect to
the local coordinate (x1, x2):

gu =
[

1/
(
χu

i j

)2
0

0 1/
(
χu

ik

)2

]
, gv =

[
1/

(
χv

i j

)2
0

0 1/
(
χv

ik

)2

]
.

(B3)

APPENDIX C: DISCRETE HAMILTONIAN
FOR THE MODIFIED LAPLACIAN

Using gu in Eq. (B3), we show the outline of discretization
of Su in S of Eq. (12) from the continuous Hamiltonian

Su = 1

2

∫ √
gud2xgab

u

∂u

∂xa

∂u

∂xb
. (C1)

The integral is replaced by the sum of the triangles with the
determinant g = det(gu), i.e.,

∫ √
gud2x → ∑

� 1/(χu
i jχ

u
ik ),

and the differentials are replaced by differences with the
inverse metric gab

u = (gu)−1, i.e., gab
u

∂u
∂xa

∂u
∂xb = g11

u ( ∂u
∂x1 )2 +

g22
u ( ∂u

∂x2 )2 → (χu
i j )

2
(u j − ui )2 + (χu

ik )2(uk − ui )2. Thus, we

have Su = 1
2

∫ √
gud2xgab

u
∂u
∂xa

∂u
∂xb → 1

2

∑
�[

χu
i j

χu
ik

(u j − ui )2 +
χu

ik
χu

i j
(uk − ui )2]. Here we note that there are two different ori-

gins of the local coordinates at vertices j and k other than
that at i on triangle �i jk [Fig. 20(a)]. The discrete expressions
of Su corresponding to these local coordinates on �i jk are
obtained by replacing the indices i jk → jki and jki → ki j
and summing over three different expressions with a factor
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1/3, and we obtain

Su = 1

6

∑
�i jk

[
χu

i j

χu
ik

(u j − ui )
2 + χu

ik

χu
i j

(uk − ui )
2 + χu

jk

χu
ji

(uk − u j )
2 + χu

ji

χu
jk

(ui − u j )
2 + χu

ki

χu
k j

(ui − uk )2 + χu
k j

χu
ki

(u j − uk )2

]

=
∑
�i jk

[
γ̄ u

i j (ui − u j )
2 + γ̄ u

jk (u j − uk )2 + γ̄ u
ki(uk − ui )

2
]
,

γ̄ u
i j = 1

6

(
χu

i j

χu
ik

+ χu
ji

χu
jk

)
, γ̄ u

jk = 1

6

(
χu

jk

χu
ji

+ χu
k j

χu
ki

)
, γ̄ u

ki = 1

6

(
χu

ki

χu
k j

+ χu
ik

χu
i j

)
, (C2)

where the sum of the triangles is explicitly denoted by
∑

�i jk
.

The summation convention can also be changed from a sum
over triangles to a sum over bonds

∑
i j . Recalling that bond i j

is shared by two triangles �i jk and � jil [Fig. 20(a)], we have

to include terms 1
6 (

χu
i j

χu
ik

+ χu
ji

χu
jk

)(ui − u j )2 from �i jk and 1
6 (

χu
ji

χu
jl

+
χu

i j

χu
il

)(u j − ui )2 from � jil in the sum over bonds
∑

i j . Thus, we
have

Su =
∑

i j

γ u
i j (ui − u j )

2,

γ u
i j = 1

6

(
χu

i j

χu
ik

+ χu
ji

χu
jk

+ χu
i j

χu
il

+ χu
ji

χu
jl

)
, γ u

i j = γ u
ji. (C3)

Now, we describe the outline of the discretization of the
Laplace-Beltrami operator

� = 1√
g

∂

∂xa

(√
ggab ∂

∂xb

)
(C4)

on triangulated lattices. Since this operator includes second-
order differentials, we adopt an indirect discretization scheme
based on the discrete Hamiltonian Su in Eq. (C3). The con-
tinuous expression of �u can be obtained by the variational
technique δSu = 0 for the continuous Su in Eq. (C1):

Su = 1

2

∫ √
gud2xgab

u

∂u

∂xa

∂u

∂xb
−→

�u = 1√
gu

∂

∂xa

(√
gugab

u

∂u

∂xb

)
. (C5)

Therefore, we obtain the discrete expression �ui from Su in
Eq. (C3) using the discrete variational technique δSu = 0:

Su =
∑

i j

γ u
i j (ui − u j )

2 −→

�ui = − ∂

∂ui

∑
jk

γ u
jk (u j − uk )2, (C6)

such that

�ui = 2

⎛
⎝∑

j(i)

γ u
i ju j − ui

∑
j(i)

γ u
i j

⎞
⎠ =

∑
j(i)

2γ u
i j (u j − ui ),

(C7)

where
∑

j(i) denotes the sum over vertices j connected to
vertex i by bonds i j [Fig. 21(a)]. To perform this summa-
tion, we replace sum

∑
jk over bonds jk in Eq. (C6) with

1
2

∑
j

∑
k( j)(=

∑
jk ), where

∑
j and

∑
k( j) are the sum over

vertices j and the sum over vertices k, which are connected to
j with bonds jk, respectively. The 1/2 factor appears because
of the duplicated sums in

∑
j

∑
k( j); the term with index jk =

12(⇔ j = 1, k = 2) appears twice in
∑

j

∑
k( j), for example.

Notably,
∑

j

∑
k( j) = ∑

k

∑
j(k) because

∑
jk = ∑

k j . Thus,
we have

∂

∂ui

∑
jk

γ u
jk (u j − uk )2 = ∂

∂ui

∑
jk

γ u
jk

(
u2

j + u2
k − 2u juk

)

= 1

2

∑
j

∑
k( j)

γ u
jk2(u jδ ji + ukδki − δi juk − u jδik )

=
∑

j

∑
k( j)

γ u
jku jδ ji +

∑
j

∑
k( j)

γ u
jkukδki −

∑
j

∑
k( j)

γ u
jkδi juk

−
∑

j

∑
k( j)

γ u
jku jδik, (C8)

where δi j is the Kronecker delta. In this final expression, the
first term is

∑
j

∑
k( j) γ

u
jku jδ ji = ∑

k(i) γ
u
ikui = ui

∑
k(i) γ

u
ik ,

and the second term can be written as
∑

j

∑
k( j) γ

u
jkukδki =∑

k

∑
j(k) γ

u
jkukδki = ∑

j(i) γ
u
jiui = ui

∑
j(i) γ

u
ji, which

is identical to the first term. The third term is
−∑

j

∑
k( j) γ

u
jkδi juk = −∑

k(i) γ
u
ikuk , which is identical to the

fourth term −∑
j

∑
k( j) γ

u
jku jδik = −∑

k

∑
j(k) γ

u
jku jδik =

−∑
j(i) γ

u
jiu j = −∑

j(i) γ
u
i ju j . This proves Eq. (C7).

Here we comment on the relation between � in Eq. (C7)
and the network Laplacian

∑N
j=1 Li ju j = ∑N

j=1 Ai j (u j − ui ),

FIG. 21. (a) Vertices j(i) connected to vertex i and (b) unit tan-
gential vector 	ei j from vertex i to vertices j(i) and its decomposition
	ei j = 	e x

i j + 	e y
i j into the canonical coordinate axis components.
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where N is the total number of nodes (or vertices) and Li j =
Ai j − kiδi j , with ki = ∑N

j=1 Ai j . The adjacency (or connectiv-
ity) matrix Ai j is defined as Ai j = 1 if i and j are connected
and Ai j = 0 otherwise. Rewriting �ui in Eq. (C7) as

�ui =
∑

i j

2γ u
i j (Ai j − kiδi j ), (C9)

we find that �ui is a weighted network Laplacian with
weight 2γ u

i j . Note that γ u
i j is well defined for networks on

two-dimensional surfaces, as shown in Fig. 19. In the isotropic
case, χ0 → ∞ in Eq. (B2), we have χu

i j/χ
u
kl → 1 and γi j →

2/3 from Eq. (C3), and therefore, 2γ u
i j → 4/3. Thus, using

a suitable normalization factor in the definition of γ u
i j in

Eq. (C3), we can write �ui in Eq. (C9) as the standard network
Laplacian �ui → ∑

i j (Ai j − kiδi j ).

APPENDIX D: DISCRETE HAMILTONIAN FOR
THE MONTE CARLO UPDATE OF IDOF �τ

The Hamiltonian S in Eq. (12) is as follows:

S(	r; 	τ ) =
{

γ S1 + UV + DuSu + DvSv + λSτ + SF
τ , (γ = 1), (fixed)

γ S1 + UV + UT + DuSu + DvSv + λSτ + SF
τ , (γ = 1), (fluid),

(D1)

and the terms on the right-hand side are

S1 =
∑

i j

�2
i j, �2

i j = (	ri − 	r j )
2,

UV =
∑

i j

Ui j, Ui j =
{

0 (�min � �i j � �max)
∞ (otherwise) ,

(�min = 0.01d �max = 3d, d : latt. sp.),

UT =
∑

i

Ui, Ui =
{

0 (4 � qi � 9)

∞ (otherwise)
,

Su =
∑

i j

γ u
i j (u j − ui )

2, γ u
i j = 1

6

(
χu

i j

χu
ik

+ χu
ji

χu
jk

+ χu
i j

χu
il

+ χu
ji

χu
jl

)
,

Sv =
∑

i j

γ v
i j (v j − vi )

2, γ v
i j = 1

6

(
χv

i j

χv
ik

+ χv
ji

χv
jk

+ χv
i j

χv
il

+ χv
ji

χv
jl

)
,

Sτ = −
∑

i j

(	τi · 	τ j )
2, SF

τ = −
∑

i

(	τi · 	F )2, 	F = (Fx, Fy). (D2)

The first term S1 is the Gaussian bond potential, which is the
spring potential defined by the sum of squared bond lengths
�2

i j . The inclusion of S1 in S implies that domain D is regarded
as a membrane surface with an internal structure rather than
a plane in R2 [40–42,44–47]. Therefore, we consider that
the frame is spanned by a membrane of area A = LxLy with
surface tension σ , as mentioned in Appendix A (Appendix E
for detailed information on σ ).

The second term UV is a constraint potential that prohibits
bond length �i j from being out of the range �min � �i j � �max,
with �min = 0.01d and �max = 3d . The lattice spacing d is
fixed to two different values in the simulations to check the in-
fluence of surface tension σ [Eq. (16)]. The vertex movements
are constrained inside D by the fixed frame of side lengths
Lx and Ly in Fig. 17(a) and by the condition for nonfolding
triangles in Fig. 18(c). These constraints can also be written
as constraint potentials; however, we omit these potentials for
simplicity. Note that S1/N = 1 is satisfied in the case without
any constraints on the bond length, such as the constraint on
the side lengths Lx and Ly (Fig. 17) and the constraint UV ,
due to the scale-invariant property of the partition function

(Appendix E for further detail). The term UT for the fluid
model is a constraint potential that enforces 4 � qi � 9 for the
coordination number qi, which is the total number of bonds
connected to vertex i [Fig. 21(a)].

The term Su is given by Eq. (C3), and Sv is obtained from Su

by replacing u with v. Sτ represents the interaction energy for
the nearest-neighbor pairs of 	τi and 	τ j . An additional assump-
tion is that an external force 	F aligns 	τ along the direction of
	F . This interaction is described by the final term SF

τ .
Here we comment on the implications of the definitions

of χu
i j and χv

i j in Eq. (B2). Suppose 	τi aligns along the 	ei j

axis; then, χu
i j and, consequently, the interaction coefficient

γ u
i j of Su in Eq. (D2) increase along the 	ei j axis, resulting in

a strong correlation between ui and u j . Therefore, if all 	τi are
aligned along the x axis by 	F = (F, 0), then the interaction
between ui and u j is strong (weak) on bond i j, which is
almost or relatively parallel (perpendicular) to the x axis, and
as a consequence, the direction-dependent γ u

i j makes Du large
(small) along the x (y) direction. This is the pattern alignment
mechanism for the variable u induced by external 	F . We
should emphasize that the definition of χv

i j is opposite to that
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of χu
i j in Eq. (B2), even though the pattern direction of v is the

same as that of u. However, if the expression of χv
i j is the same

as that of χu
i j , then relatively weak anisotropic patterns also

emerge along the same direction parallel to 	F . This situation
corresponds to cases a > 1 and b > 1 with cμ

ν > 1 in Eqs. (2),
(3), and (4). In contrast, under the definitions in Eq. (B2), if 	τi

is aligned along the x direction, then the strongest anisotropy
appears, implying that χu

i j and χv
i j in Eq. (B2) correspond to

the conditions a > 1 and b < 1 shown in Fig. 4(g). Thus, we
consider that the definitions of χu

i j and χv
i j in Eq. (B2) describe

the competing nature of u and v.

APPENDIX E: COMPUTATIONAL DOMAIN SPANNED BY
A MEMBRANE WITH A NONTRIVIAL SURFACE TENSION

In this Appendix, we present detailed information on the
computational domain D bounded by a fixed frame [Fig.
22(a)] for PBCs in Figs. 17 and 19(a). As mentioned in
Sec. III, this domain D has an internal structure described
by vertex positions 	ri(∈ R2, 1 � i � N ), and these 	ri are
regarded as membranes [40–42,44–47], which are classical
mechanical N-particle systems governed by the spring po-
tential or the Gaussian bond potential S1(	r) and by several
constraints imposed on 	ri. Mainly due to S1 and the boundary

frame, membrane D is exposed to tensile stress σ , which
originates from the so-called scale-invariant property of the
partition function, as mentioned in Sec. III [48]. This property
is common to both the fixed and fluid models; here we use Zfix

in Eq. (13) for simplicity.
First, we note that the variables 	ri are integrated in Zfix, i.e.,∫ ∏

i d	ri exp(−S), corresponding to 2N-dimensional multiple
integrations. Here we rewrite S as S = S1 + Ufr (A) + Sother,
where Ufr (A) is the potential for fixing the frame area A to
A = LxLy and not included in S of Eq. (12), and Sother is
the remaining term in S. Note that S1 = ∑

i j �
2
i j and Ufr (A)

depend on 	r and that Sother is independent of 	r. We replace
	r with 	rβ = β	r in Zfix with the scale parameter β(�1). This
replacement constitutes a simple variable change in integra-
tion

∫
d	ri → β2

∫
d	ri, S1 → β2S1, · · · , and it does not change

Zfix; therefore, we have Zfix(	r) = Zfix(	rβ ), where

Zfix(	rβ ) = β2N
∫ ∏

i

d	ri exp[−β2S1 − Ufr (Aβ ) − Sother].

(E1)

In the expression Ufr (Aβ ), Aβ is given by Aβ = β−2A because
the fixed frame means that the area scales as A → Aβ = β−2A
according to the scale change 	r → β	r. By differentiating both
sides of Zfix(	r) = Zfix(	rβ ) with respect to β and by fixing β →
1, we have

0 = ∂

∂β
Zfix(	rβ )|β=1

= ∂

∂β

{
β2N

∫ ∏
i

d	ri exp[−β2S1 − Ufr (Aβ ) − Sother]

}∣∣∣∣∣
β=1

= 2Nβ−1Zfix(	rβ )|β=1 + 2β2N+1
∫ ∏

i

d	ri S1 exp[−S(	rβ )]

∣∣∣∣∣
β=1

+ ∂Zfix(	rβ )

∂Aβ

∂Aβ

∂β

∣∣∣∣
β=1

= 2NZfix(	r) − 2
∫ ∏

i

d	ri S1 exp [−S(	r)] − 2A
∂Zfix(	r)

∂A
, (E2)

where ∂Aβ

∂β
|β=1 = ∂β−2A

∂β
|β=1 = −2A is used in the final term

of the third line. We note that the boundary of the surface
expanded by β(�1) is identified with the fixed frame only
when β → 1 [Fig. 22(b)]. Multiplying 2−1Zfix(	r)−1 by the
final expression in Eq. (E2), we obtain

0 = N − 〈S1〉 − A

Zfix(	r)

∂Zfix(	r)

∂A
. (E3)

Since 〈S1〉 = 〈∑i j �
2
i j〉 can be replaced by

∑
i j〈�2

i j〉 =∑
i j〈�2〉 = 〈�2〉∑

i j 1 = NB〈�2〉 = 3N〈�2〉, we have the
mean-squared bond length 〈�2〉

〈�2〉 = 1

3
− 1

3N

A

Zfix(	r)

∂Zfix(	r)

∂A
. (E4)

If the boundary frame for the PBCs is not assumed, then the
second term on the right-hand side is unnecessary. Hence, we

have 〈�2〉 = 1/3(⇔ 〈S1〉/N = 1), as mentioned in the main
text.

The problem lies in how to evaluate the second term when
a frame is present. The potential Ufr (A) expressed as UV in
Eq. (D2) is not differentiable. Therefore, to evaluate ∂Zfix(	r)

∂A
for surfaces with a fixed frame, we regard the membrane of
the N-particle system bounded by the frame as a sheet of
area A without the internal structure associated with the N
particles. For this simple surface of area A, its free energy
F (A) is given by F (A) = σA, where σ is the surface tension.
Therefore, the partition function can also be expressed as
Z (A) = exp[−F (A)]. Thus, ∂Zfix(	r)/∂A can be evaluated by
replacing Zfix(	r) with exp[−F (A)] = exp(−σA), and we have
〈�2〉 = 1/3 + σA/(3N ) from Eq. (E4); therefore,

σ = 3N

A

(
〈�2〉 − 1

3

)

 3

d2

(
〈�2〉 − 1

3

)
,

A = LxLy = (nx − 1)(ny − 1)d2, (E5)
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FIG. 22. (a) Surface enclosed by a fixed boundary frame of area
A under a constant surface tension σ . This surface has a mechan-
ical free energy F (A) = σA(= ∫ A

σdA) because σ is constant and
isotropic. (b) Illustrations of the original surface with a boundary
frame and a surface expanded by a scale parameter β(�1).

where Lx, Ly, nx, and ny are shown in Fig. 17. Thus, σ depends
on the lattice spacing d . In this expression, 〈�2〉 is originally
γ 〈�2〉 with the tension coefficient γ (=1), and hence, 〈�2〉 − 1

3
has the simulation unit of 1, which is of physical unit kBT .
Therefore, the physical unit of the surface tension σ is given
by kgs−2 = Nm−1.

APPENDIX F: DIRECTION-DEPENDENT DIFFUSION
CONSTANTS AND EFFECTIVE ENERGIES

In this Appendix, we describe the direction-dependent
diffusion constants and corresponding effective direction-
dependent energies obtained by the discrete Laplace operator
in Eq. (11). First, we note that the unit tangential vec-
tor 	ei j from vertices i to j can be decomposed into
	ei j = 	e x

i j + 	e y
i j [Fig. 21(b)]. Then, by using the angle θi j

and the relations 1 = 	ei j · 	ei j = (ex
i j )

2 + (ey
i j )

2 = cos2 θi j +
sin2 θi j satisfying cos2 θi j = sin2 θi j = 1/2 for θi j = π/4, γ u

i j
is decomposed into two different parts, which can be consid-
ered the x and y components:

γ u
i j = γ u,x

i j + γ
u,y
i j = γ u

i j cos2 θi j + γ u
i j sin2 θi j . (F1)

This γ u
i j is considered to have values on bond i j. Here we

assume an anisotropic case in which γ u
i j is very large on bonds

that are almost parallel to the x axis [⇔ θi j 
 0 in Fig. 21(b)].
In this case, γ u,x

i j > γ
u,y
i j on bonds i j almost parallel to the x

axis because cos2 θi j 
 1 and sin2 θi j 
 0. Thus, we have the
direction-dependent diffusion constants defined by

Dx
u = 1∑

i j 1

∑
i j

γ u,x
i j = 1

NB

∑
i j

γ u
i j cos2 θi j,

Dy
u = 1∑

i j 1

∑
i j

γ
u,y
i j = 1

NB

∑
i j

γ u
i j sin2 θi j, (F2)

where NB = ∑
i j 1(=3N ) denotes the total number of bonds.

FIG. 23. Bond length distribution h(�) vs � of the fixed model
(red) and fluid model (blue) with (a) λ = 0, 	F = (0, 0) and (b) λ =
0.5, 	F = (0, 2), which correspond to the isotropic and anisotropic
patterns plotted in Figs. 6(a) and 7(a) and in Figs. 6(d) and 7(d),
respectively. The cutoff is �max = 3d = 1.575, with a lattice spacing
of d (=0.525). The curves h(�) vs � for d = 0.41 are almost the same
as those in the figures.

Direction-dependent energies Sx
u and Sy

u in Eq. (18) cor-
responding to Dx

u and Dy
u can also be obtained using Su in

Eq. (C3):

Su =
∑

i j

γ u
i j (ui − u j )

2 =
∑

i j

(
γ u

i j cos2 θi j + γ u
i j sin2 θi j

)
× (ui − u j )

2

= 1

NB

∑
i j

γ u
i j cos2 θi j

∑
i j γ

u
i j cos2 θi j (ui − u j )2

(1/NB)
∑

i j γ
u
i j cos2 θi j

+ 1

NB

∑
i j

γ u
i j sin2 θi j

∑
i j γ

u
i j sin2 θi j (ui − u j )2

(1/NB)
∑

i j γ
u
i j sin2 θi j

= Dx
uSx

u + Dy
uSy

u. (F3)

APPENDIX G: BOND LENGTH DISTRIBUTION

In this Appendix, we plot the bond length distribution h(�)
on fixed and fluid lattices of size N = 6400 in Figs. 23(a)
and 23(b). The lattice size is the same as that assumed for
the calculations of the diffusion constants Dμ

u , Dμ
v and σ ,

as plotted in Figs. 8–10, respectively. The total numbers of
iterations nitr and nMC are also the same as those in Eq. (19).
The coefficients are (Du, Dv ) = (0.2, 5) in the fixed model,
and (Du, Dv ) = (0.2, 10) in the fluid model. These parame-
ters, including (α, γ ), are the same as those assumed in the
calculation of isotropic and anisotropic snapshots in Figs. 6(a)
and 6(d) for the fixed model and in Figs. 7(a) and 7(d) for the
fluid model. From both the isotropic and anisotropic cases in
Fig. 7(a) and 7(b), we find that the distribution of h(�) on the
fluid lattice is slightly wide in both directions of small and
large �. This slightly broad spectrum of h(�) in the fluid model
is due to the free diffusion of the vertices.
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