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In order to effectively manage infectious diseases, it is crucial to understand the interplay between disease
dynamics and human conduct. Various factors can impact the control of an epidemic, including social inter-
ventions, adherence to health protocols, mask-wearing, and vaccination. This article presents the development
of an innovative hybrid model, known as the Combined Dynamic-Learning Model, that integrates classical
recurrent dynamic models with four different learning methods. The model is composed of two approaches:
The first approach introduces a traditional dynamic model that focuses on analyzing the impact of vaccination
on the occurrence of an epidemic, and the second approach employs various learning methods to forecast the
potential outcomes of an epidemic. Furthermore, our numerical results offer an interesting comparison between
the traditional approach and modern learning techniques. Our classic dynamic model is a compartmental model
that aims to analyze and forecast the diffusion of epidemics. The model we propose has a recurrent structure
with piecewise constant parameters and includes compartments for susceptible, exposed, vaccinated, infected,
and recovered individuals. This model can accurately mirror the dynamics of infectious diseases, which enables
us to evaluate the impact of restrictive measures on the spread of diseases. We conduct a comprehensive dynamic
analysis of our model. Additionally, we suggest an optimal numerical design to determine the parameters of the
system. Also, we use regression tree learning, bidirectional long short-term memory, gated recurrent unit, and a
combined deep learning method for training and evaluation of an epidemic. In the final section of our paper, we
apply these methods to recently published data on COVID-19 in Austria, Brazil, and China from 26 February
2021 to 4 August 2021, which is when vaccination efforts began. To evaluate the numerical results, we utilized
various metrics such as RMSE and R-squared. Our findings suggest that the dynamic model is ideal for long-term
analysis, data fitting, and identifying parameters that impact epidemics. However, it is not as effective as the
supervised learning method for making long-term forecasts. On the other hand, supervised learning techniques,
compared to dynamic models, are more effective for predicting the spread of diseases, but not for analyzing the
behavior of epidemics.
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I. INTRODUCTION

The global community is increasingly focusing on re-
search and control measures to curb the spread of epidemics
caused by various viruses leading to infectious diseases [1–4].
Predicting the outbreak of such diseases is crucial in epidemi-
ology, as it enables health officials to prepare and respond to
potential outbreaks effectively.

Compartmental dynamic models serve as flexible tools
for predicting different epidemiological parameters [5]. They
can also evaluate the impact of lockdowns and other disease
control measures on disease spread [6–11], the efficacy of vac-
cines, and their distribution strategies [12–16]. For instance, in
a study by Faranda et al. [17], a susceptible-exposed-infected-
recovered (SEIR) model was used to forecast the long-term
dynamics of an epidemic in two countries. The model was
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adjusted for uncertainties in estimating COVID-19 prevalence
and the presence of superspreaders using stochastic perturba-
tions and a lognormal distribution. Another study by Alberti
et al. [18] focused on statistical predictions of COVID-19 in-
fections by fitting asymptotic distributions to real-world data.
The results showed significant uncertainties in predictions
during the initial stages of the epidemic’s growth, indicating
the challenges in accurately forecasting the spread of COVID-
19 due to limited data and inherent complexities.

It is also worth noting that many infectious diseases,
including COVID-19, exhibit recurrent behavior [19–21].
Therefore, incorporating recurrence in epidemic models is
crucial [22]. A recurrent compartmental model, a more com-
plex version of the common model, suggests that the number
of susceptible individuals can increase over time, leading to
potential recurrent outbreaks. This model can help researchers
better understand disease dynamics and the impact of different
interventions on disease transmission [23,24].

The dynamics of disease immunity and transmission in
a society in the setting of vaccination can be modeled by
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epidemiological models. There are different types of works on
the coronavirus infection with dynamical analysis approaches
to controls the infection of disease [25,26], especially, models
including the epidemiological impact of vaccination has a
long and rich history.

Epidemic models with vital dynamics are a category of
mathematical models that take into account the interplay be-
tween disease dynamics and the demographic attributes of a
population. These models serve as valuable tools for gaining
insights into the long-term impact of diseases on populations
and the influence of factors like birth and death rates on
the progression of an epidemic [27–29]. These rates have
a significant influence on population size, and vulnerability,
thereby playing a pivotal role in shaping the transmission and
consequences of epidemics. Vital dynamics models have been
employed to mathematically model COVID-19 [30,31]. Birth
and death rates have also a significant impact on the stability
of disease equilibria. These rates can lead to the emergence
of bistable states, where both disease-free and endemic states
coexist [32–34].

While dynamic models are beneficial for analyzing epi-
demic diseases, deep learning and machine learning models
have emerged as promising tools for forecasting disease
outbreaks. They can analyze large data sets and identify
patterns that traditional methods might miss. Consequently,
these learning methods are often used to predict the likely
number of COVID-19 cases and deaths [35–39]. Advanced
techniques like intelligent algorithms and machine learning
methods are increasingly being used to solve mathematical bi-
ology problems, including modeling and analyzing infectious
diseases like COVID-19. These methods can help researchers
identify patterns and trends in epidemiological data, develop
more accurate predictive models, and optimize disease control
strategies [40–43].

For example, a study by Muhammad et al. [44] used
various machine learning algorithms to develop models for
predicting COVID-19 patient recovery. The decision tree
model was found to be the most efficient, with an overall
accuracy of 99.85%. In another study [45], Convolutional
neural network were used to automatically predict the preva-
lence of COVID-19 cases. Rashed et al. [40] used machine
learning based on long short-term memory (LSTM) to pre-
dict the spread of COVID-19, demonstrating the effectiveness
of vaccination in controlling the outbreak. Syeda et al. [46]
evaluated six different models, including artificial neural net-
works, convolutional neural networks, LSTM, and recurrent
neural networks, to accurately identify COVID-19 patients.
Their predictive models achieved an accuracy of 86.66%, F1
score of 91.89%, precision of 86.75%, recall of 99.42%, and
Area under the curve of 62.50%. They also discussed the
role of artificial intelligence in combating COVID-19, specif-
ically in epidemiology, diagnosis, and disease progression.
A study by Rasmy et al. [47] developed a recurrent neural
network-based model that uses online data from electronic
health records to predict outcomes of COVID-19 patients
without feature selection or missing data imputation. These
studies highlight the potential of machine learning and deep
learning techniques in accurately diagnosing and managing
COVID-19, enabling healthcare providers to make informed
decisions and control the disease spread.

This article presents the combined dynamic-learning
model, an approach that merges classical dynamic models
and contemporary learning methods to analyze and predict
infectious diseases, with a particular focus on COVID-19 over
a 160-day period. The study emphasizes the integration of
dynamic systems theory for understanding complex nonlinear
processes related to disease recurrence, along with advanced
learning techniques for processing large data sets and identi-
fying intricate patterns. The training and testing data undergo
processing using decision tree learning, Bidirectional long
short-term memory (BiLSTM), gated recurrent unit (GRU),
and a combined deep learning method. The model also in-
corporates considerations for vaccinations and acknowledges
partial immunity in vaccinated individuals or those with active
antibodies. It utilizes officially reported data for parameter es-
timation and accommodates uncertainties through a stochastic
approach. This innovative model aims to enhance our under-
standing of disease dynamics and improve our forecasting
capabilities, ultimately contributing to more effective preven-
tion and treatment strategies.

II. METHODS

A. The proposed Combined Dynamic-Learning Model

The proposed dynamic-learning model in this study in-
tegrates two approaches: a recurrent compartmental model
to analyze disease outbreaks and fit the available data, and
learning algorithms to enhance prediction accuracy for future
outbreak scenarios. The model utilizes dynamic systems the-
ory in conjunction with various learning methods, including
decision tree learning, bidirectional long short-term memory
(BiLSTM), GRU, and a combined deep learning approach.

The recurrent compartmental epidemic model uses piece-
wise constant parameters to fit released data and provide
various analyses of epidemic behavior. This model is par-
ticularly effective in understanding the dynamics of disease
immunity and transmission in a society, especially in the con-
text of vaccination.

The model also accounts for temporal variability in disease
outbreaks, which can exhibit gradual or abrupt changes over
time. By calibrating the model’s parameters based on real
epidemic data and assuming piecewise constant parameters,
the model aims to capture the fluctuations in the values of
parameters and the number of population groups resulting
from control measures implemented by authorities.

In our model, we have divided the total population into five
categories based on their disease status: Susceptible (S), Ex-
posed (E ), Infectious (I), Vaccinated (V ), and Recovered (R).
To simplify our calculations, we use fractions instead. Thus,
S, E ,V, I, and R, respectively, represent the fraction of the
population that is susceptible, exposed, vaccinated, infectious,
and recovered. The interactions among these categories are
illustrated in Fig. 1.

The model presented in this article consists of a set of
differential equations that represent the progression of the
population in each compartment. The model is

dS(t )

dt
= σ − β(t )S(t )E (t ) + ζ (t )V (t ) + ρ(t )R(t )

− (ν(t ) + μ)S(t ),
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FIG. 1. Scheme of the SEIRS-V model transmission.

dE (t )

dt
= β(t )S(t )E (t ) − α(t )E (t ) − η(t )E (t ) − μE (t ),

dV (t )

dt
= ν(t )S(t ) − ζ (t )V (t ) − μV (t ),

dI (t )

dt
= α(t )E (t ) − γ (t )I (t ) − μI (t ),

dR(t )

dt
= γ (t )I (t ) + η(t )E (t ) − ρ(t )R(t ) − μR(t ). (1)

The parameters of the model are piecewise constant and
positive, each representing different aspects of disease trans-
mission and progression. These include the transmission
rate, β(t ), diagnosis rate, α(t ), recovery rate, γ (t ), rate
of recovered individuals becoming susceptible again, ρ(t ),
vaccination rate, ν(t ), waning rate of the vaccine, ζ (t ), symp-
tomatic recovery rate, η(t ), constant natural birth rate, σ , and
constant natural death rate, μ. The model assumes that a
specific period of interest can be divided into multiple stages,
each characterized by relatively stable parameters within the
virus-human system. However, these parameters may vary
across different stages due to changes in population behavior,
interventions, or the natural evolution of the pathogen.

The model simplifies several aspects as assumptions,
including limited immunity leading to susceptibility after
recovery, the possibility of vaccinated individuals getting in-
fected, and the consideration of birth and natural death rates.
Incorporating birth and death processes in our model offers a
more comprehensive representation of population dynamics,
aligning with real-world scenarios and allowing us to cap-
ture observed demographic changes [48]. Given the sustained
presence of the coronavirus, we include both birth and death
rates in our model. Infection-related deaths are often negligi-
ble compared to the natural death rate.

In the second part, this research offers a description
and comparison of some learning models. “Learning” refers
to the use of machine learning or statistical techniques to
extract patterns and insights from data. In the context of
epidemic analysis and forecasting, learning methods can be
applied to historical data on epidemic outbreaks, popula-
tion demographics, intervention measures, and other relevant
factors [40–43]. These methods can identify relationships,
trends, and hidden patterns in the data, enabling the de-
velopment of predictive models. We use some supervised
learning methods that can be used to predict outbreaks
and control the spread of infectious diseases. We also pro-
pose an efficient deep learning method that combines two

well-known learning methods to improve the accuracy of
predictions. The architecture of the learning methods used
in this article is shown in Fig. 2, which includes both a
feedforward neural network and a recurrent neural network.
The feedforward network can capture complex relationships
between input features and output predictions, while the
recurrent network can model dynamic temporal patterns in
the data. Based on Fig. 2, the learning methods employed in
the article can be classified into the following categories:

(1) Regression tree learning (RT): Decision tree learning
is a widely used supervised learning method that constructs
a hierarchical structure, called a decision tree, to model data.
Decision trees are composed of nodes representing features
or attributes and edges representing relationships between
them [49]. They are effective for both classification and
regression tasks, especially when dealing with complex rela-
tionships and numerous features. The accuracy of a decision
tree relies on strategic splits, where the most informative
feature is chosen at each node. Information gain and other
metrics are used to maximize separation between different
classes or categories. Classification trees are used for dis-
crete outputs, while regression trees are used for continuous
outputs. Algorithms like the Gini index, entropy, and infor-
mation gain determine optimal splits and subnode creation.
The cost function evaluates model performance and aids in
split point selection, with the goal of minimizing prediction
error. The sum of squared errors is commonly used for regres-
sion trees. By minimizing the cost function, the decision tree
identifies optimal splits and creates subnodes for improved ac-
curacy. Homogeneous branches, exhibiting similar responses,
are sought to enhance predictability. The decision tree eval-
uates each feature in the training data, calculates costs for
potential splits, and selects the split with the lowest cost [50].

(2) Gated recurrent unit (GRU): Gated recurrent units
(GRUs) were introduced in 2014 by Cho et al. as a gating
mechanism for recurrent neuralnetworks (RNNs) [51]. They
are similar to LSTM networks but have fewer parameters
and lack output gates, making them more computationally
efficient. GRUs use gating mechanisms, including reset and
update gates, to control information flow and address the
vanishing gradient problem in traditional RNNs. The reset
gate determines what information to discard from the previ-
ous time step, while the update gate controls the amount of
information to keep from the current time step. GRUs perform
similarly to LSTMs in tasks like polyphonic music model-
ing, speech signal modeling, and natural language processing.
However, the choice between GRUs and LSTMs depends
on the specific task and available data. Full-gated units have
variations based on previous hidden states and bias, and there
is a simplified version called the minimal-gated unit. The fully
gated unit is defined as follows [52]:

zt = σg(Wzxt + Uzht−1 + bz ), (2)

rt = σg(Wrxt + Urht−1 + br ), (3)

ĥt = φh(Whxt + Uh(rt � ht−1) + bh), (4)

ht = zt � ht−1 + (1 − zt ) � ĥt , (5)
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FIG. 2. Architecture of learning methods.

where the operator � denotes the Hadamard product, the
subscript t indexes the time step, xt denotes the input vector, ht

denotes output vector, ĥt denotes activation vector, zt denotes
update gate vector, rt denotes reset gate vector, and W , U , and
b denote parameter matrices and vector. Active functions are
as follows:

(a) σg: sigmoid function;
(b) σh: hyperbolic tangent function.

Additionally, the minimal gated unit is similar to the fully
gated unit, except that the reset and update gates are merged
into a single forget gate. In this case, we must also change the
equation for the output vector:

ft = σg(Wf xt + Uf ht−1 + b f ), (6)

ĥt = φh(Whxt + Uh( ft � ht−1) + bh), (7)

ht = (1 − ft ) � ht−1 + ft � ĥt . (8)

(3) Bidirectional long short-term memory (BiLSTM): A
BiLSTM is a RNN that combines two LSTMs, one moving
in the forward direction and the other in the backward di-
rection, to process sequential data. The forward LSTM reads
the input sequence in a forward direction, while the backward
LSTM reads it in reverse. This enables the BiLSTM to cap-
ture information from both past and future inputs, enhancing
contextual understanding and increasing available informa-
tion. During training, input data is first fed into the forward
LSTM, followed by training with a reversed input sequence
using another LSTM model [53]. This allows the model to
capture both forward and backward contextual information,
making it highly effective for tasks involving sequence ele-
ment relationships. BiLSTMs have proven effective in various
applications, including natural language processing, speech

recognition, and music modeling. They are particularly valu-
able for predicting and managing infectious disease outbreaks.
By capturing both forward and backward contextual infor-
mation, BiLSTMs offer insights into temporal dynamics and
transmission patterns, aiding in the formulation of public
health policies and interventions. Studies have demonstrated
that BiLSTM models outperform regular LSTMs [54].

(4) New combined method BiLSTM-GRU: The BiLSTM-
GRU is a combined method that leverages the strengths of
both BiLSTM and GRU neural network architectures [55]. To
train our data, we adopt a combined approach that leverages
the strengths of BiLSTM and GRUs to create a powerful
deep-learning model. Our network architecture, as illustrated
in Fig. 2, comprises three layers. The first layer employs a
BiLSTM network, which processes input data in both forward
and backward directions, capturing information from past and
future inputs. This layer enables the network to learn intricate
temporal patterns and dependences in the data. The output of
the BiLSTM layer serves as input to the second layer, which
features a GRU network. The GRU network utilizes its gat-
ing mechanism to regulate information flow and mitigate the
vanishing gradient problem often encountered in conventional
RNNs. The final layer of our network is a fully connected
layer responsible for generating the ultimate prediction for
the output variable. By integrating the strengths of BiLSTM
and GRU, our network can effectively capture complex and
nuanced relationships in the data, resulting in enhanced pre-
dictions and more efficient control strategies for managing
infectious disease outbreaks.

By integrating modeling and learning, this method aims
to provide a more comprehensive understanding of epidemic
dynamics. It leverages the strengths of both approaches to
capture the complexity of disease spread, consider the impact
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of various factors (such as interventions and human behavior),
and make accurate forecasts about future epidemic trends. The
integrated approach allows for a more nuanced analysis of
the dynamics of infectious diseases. It can help in evaluating
the effectiveness of intervention strategies, assessing the po-
tential impact of different control measures, and providing
insights for public health decision making. Ultimately, the
goal is to enhance our ability to manage and mitigate the
spread of epidemics by combining the strengths of traditional
modeling and modern learning techniques.

B. Mathematical analysis of dynamic model

The qualitative analysis aims to establish the consistency
between the numerical simulation and analytical results.

Moreover, qualitative analysis can present graphical represen-
tations of the behavior of the model’s solutions. In this regard,
we investigate some theorems and lemmas about the proposed
model (1) as outlined below:

Theorem B.1. The simplex � = {(S, E ,V, I, R) ∈ R5
+ :

S(t ), E (t ),V (t ), I (t ), R(t ) � 0, S(t ) + E (t ) + V (t ) + I (t ) +
R(t ) � 1} is positively flow invariant for model (1).

Proof. See Supplemental Material [56]. �
Our next objective is to estimate the reproduction number

and show that the disease-free equilibrium point is locally
asymptotically stable if the reproduction number is less than
unity. The equilibrium points of the model can be easily ob-
tained. The two disease-free equilibrium points, (X0), and the
endemic equilibrium point, (X1), are as follows:

X0 =
(

ζ + μ

ζ + ν + μ
, 0,

ν

ζ + ν + μ
, 0, 0

)
, (9)

and

X1 = (S∗, E∗,V ∗, I∗, R∗), S∗ = α + η + μ

β
, V ∗ = ν(α + η + μ)

β(ζ + μ)
, I∗ = α

μ + γ
E∗, R∗ = γα + η(γ + μ)

(γ + μ)(ρ + μ)
E∗,

E∗ = (ζ + μ)(ν + μ)(α + η + μ) − μβ(ζ + μ) − ζν(α + η + μ)

ργα + ρη(γ + μ) − (γ + μ)(ρ + μ)(α + η + μ)

(γ + μ)(ρ + μ)

(ζ + μ)β
. (10)

The next theorem gives the basic reproduction number
R0. The basic reproduction number is known as the outbreak
threshold of epidemiology models.

Theorem B.2. The basic reproduction number of model (1)
is defined by

R0 = β(ζ + μ)

(α + η + μ)(ζ + ν + μ)
. (11)

Proof. See Supplemental Material [56]. �
The following result presents the local stability condition

for the disease-free equilibrium through the analysis of the
eigenvalues of the Jacobian matrix of system (1) at this equi-
librium.

Theorem B.3. The disease-free equilibrium X0 =
( ζ+μ

ζ+ν+μ
, 0, ν

ζ+ν+μ
, 0, 0) of system (1) is locally asymptotically

stable in � if R0 < 1 and it is unstable if R0 > 1.
Proof. See Supplemental Material [56]. �

C. Sensitivity analysis of R0

We proceed with a sensitivity analysis of the model to
examine its response to variations in each parameter. Under-
standing the sensitivity of the model is crucial in identifying
the most influential parameters affecting disease transmission,
particularly regarding the endemic threshold (10). Sensitivity
analysis is a popular technique used to evaluate the robustness
of model predictions to parameter values, especially when
there is incomplete or inaccurate data. It is important to note
that the sensitivity index can be affected by various parameters
in the system, but it can also remain constant regardless of
any parameter. This suggests that some parameters play a
more significant role in determining the sensitivity index than
others.

When estimating sensitive parameters, caution must be
exercised as even slight perturbations in such parameters can
lead to substantial quantitative changes in the model’s pre-
dictions. Conversely, parameters with a low sensitivity index
require less attention during estimation, suggesting that the
model’s predictions are relatively insensitive to changes in
these parameters. Our objective is to conduct a sensitivity
analysis on R0 = β(ζ+μ)

(α+η+μ)(ζ+ν+μ) with respect to the param-
eters α, β, ζ , η, and ν.

Definition C.1. The normalized forward sensitivity index
of R0 which is differentiable concerning a given parameter θ ,
is defined by

ϒ
R0
θ = ∂R0

∂θ

θ

R0
.

The sensitivity indices’ values for the parameter values can
be experimentally determined in a manner that accurately re-
flects the mathematical model’s ability to describe real-world
data. The next theorem examines the sensitivity of our system
to changes in modeling parameters.

Theorem C.1. The normalized sensitivity index of R0 con-
cerning model parameters in � can be estimated as follows:

ϒ
R0
β = 1, −1 < ϒR0

α < 0, −1 < ϒR0
η < 0,

− 1 < ϒR0
ν < 0, 0 < ϒ

R0
ζ < 1. (12)

Proof. See Supplemental Material [56]. �
Based on these calculations and parameter conditions, we

can conclude that
(1) The transmission rate β has the highest sensitivity

index of 1, indicating that it has the most substantial impact
on the model’s predictions. For example, decreases (increases)
in transmission rate by 10% would decrease (increase) R0 by
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10%. Therefore, controlling this parameter may be one of the
most effective ways to control the spread of the disease.

(2) Since 0 < α
α+η+μ

< 1, thus it is trivial that −1 <
−α

α+η+μ
< 0. So, ϒR0

α being negative which means that R0

decreases when α increases. The same holds for ϒR0
η and ϒR0

ν .
In other words, increasing the values of these three parameters
is beneficial to controlling the epidemic.

(3) It is obvious that ζν

(ζ+μ)(ζ+ν+μ) is always positive and

smaller than 1. Note that, ϒ
R0
ζ being positive means that in-

creasing ζ implies growth of R0 and it has a negative impact
on the spread of COVID-19.

III. NUMERICAL ANALYSIS

A. Datasets

In our study, we utilized a data set consisting of COVID-19
reports from the World Health Organization (WHO) [57].
The data set included information on infected, recovered,
and vaccinated individuals. Confirmed cases were classified
based on the WHO’s definition, which considered individuals
positive for the nucleic acid amplification test or meeting
clinical and/or epidemiological criteria and testing positive
using SARS-CoV-2 Antigen-RDT. Additionally, we included
individuals who had completed the recommended vaccination
protocol, which typically involves receiving two doses, or in
some cases, three doses for certain types of vaccines.

To analyze the COVID-19 outbreak, we selected three
countries from different continents: Austria (Europe), Brazil
(South America), and China (Asia). Daily data from February
26, 2021, to August 4, 2021, was divided into training and
testing sets. Each country had 160 daily data points used
for training, testing, and evaluating the proposed methods for
predicting COVID-19 cases. This timeframe was chosen be-
cause it represented a critical period in the pandemic, marked
by widespread vaccination efforts and the emergence of the
Gamma variant in Brazil. Various vaccines, such as Johnson
& Johnson’s, AstraZeneca’s, Pfizer-BioNTech, and Moderna,
were being administered during this time. The Delta variant
also became dominant, leading to a third wave of infections,
particularly in the United States. Analyzing this period al-
lowed us to assess the impact of vaccination on virus spread
and develop accurate deep-learning models for predicting
COVID-19 cases. We employed a dynamic model to calculate
disease parameters and trained our learning algorithms and
dynamic model using 80% of the data. The remaining 20%
was used to evaluate the prediction process and assess model
accuracy. By comparing the results of the dynamic model
with the predictions generated by the deep learning model,
we validated the effectiveness of our approach in predicting
and controlling infectious disease outbreaks.

B. Estimating parameters and fitting process of the dynamic
model and uncertainty quantification

In this study, we used MATLAB software to develop an
optimization algorithm based on the least square method. The
algorithm was employed to determine the parameters for the
dynamic model proposed in the article. Key parameters, such
as transmission rate, diagnosis rate, recovery rate, vaccina-
tion rate, waning rate of vaccine, recovery rate of exposed

individuals, and recurrence rate, were calculated for 160 days
in the targeted countries. These parameters provided valuable
insights into the dynamics of the COVID-19 outbreak in each
country and could inform public health policies and inter-
ventions. The least-squares method optimization algorithm
allowed for accurate parameter estimation and a better under-
standing of the impact of various factors on the virus’s spread.

All parameters in the study were assumed to be piecewise
constant, meaning they remained constant within specific time
intervals. The 160 days were divided into 20 equal intervals,
and the optimization algorithm was applied in each interval to
estimate the parameters of the dynamic model. The parameter
estimation results for Austria are presented in Fig. 3 (See
Supplemental Material [56] for Brazil, and China), offering
insights into the outbreak dynamics and aiding in policy and
intervention decisions.

The optimization algorithm minimized the square of the
absolute error in the objective function using data on infected,
vaccinated, and recovered individuals. This allowed for pa-
rameter estimation and predictions of susceptible and exposed
individuals in each country based on the estimated parameters
and the assumption of a constant total population. Estimating
the number of susceptible and exposed individuals provided a
deeper understanding of the outbreak dynamics and identified
areas for targeted interventions.

Figure 3 depicted valuable insights into the outbreak dy-
namics, revealing trends such as high transmission rates at the
beginning of the period, and emphasizing the importance of
early intervention measures. The figure also highlighted the
high recurrence rate of the virus despite vaccination efforts,
emphasizing the need for ongoing monitoring and control.
Additionally, the low diagnosis and recovery rates indicated
potential challenges in information, equipment, medical staff,
and emerging variants. After estimating the parameters, the
fourth-order Runge-Kutta method was used to solve the dy-
namic model and obtain numerical solutions for variables
such as susceptible, exposed, vaccinated, infected, and re-
covered individuals. The model’s output was compared with
actual data, showing good curve fitting and demonstrating the
accuracy and effectiveness of the proposed method in pre-
dicting outbreak dynamics. This comparison provided insights
into the model’s accuracy and areas for improvement.

In this research paper, we present an analysis that utilizes
various sets of parameters and multiple stochastic realizations.
Our methodology consists of several steps. Firstly, we identify
the parameter set that best fits the data, exhibiting the lowest
error in daily cases across different realizations. Secondly,
we select all parameter sets that are within a 20% distance
from the estimated parameters, using a uniform distribution.
Finally, we combine the results from these selected parameter
sets and their respective stochastic realizations, providing the
mean values, as well as the 2.5th and 97.5th percentiles (rep-
resenting the 95% percentile range), and the 25th and 75th
percentiles (representing the 50% percentile range).

To capture a wide range of potential outcomes, we em-
ploy the Monte Carlo method to sample 10 000 parameter
sets and run the model using each of them. Each parameter
set generates results for 160 days, divided into 20 subin-
tervals. By simulating with parameter sets that are within a
20% distance from the estimated parameters of the best fit,
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FIG. 3. The figure shows the trajectory of the COVID-19 epidemic in Austria (see Supplemental Material [56] for Brazil, and China).
The daily results are displayed for all susceptible, exposed, vaccinated, infected, and recovered individuals. In plot (a), the trajectory of the
COVID-19 outbreak is shown. The model output is shown in solid lines, while the actual data is shown in dotted lines. Also, panel plots of
transmission rate, waning rate of vaccine, diagnosis rate, recovery rates, and recurrence rate are shown for Austria in the plot (b).

we can demonstrate the uncertainty in the model parame-
ters (see Fig. 4). The findings highlight the stability of the
model, even when there are 20% variations in the param-
eters. This suggests that 95% of the results closely align
with real-world data and the approximations presented in our
article. This observation is further supported by the average
outcomes obtained through 10 000 repetitions, reinforcing
the reliability of our analysis. For more detailed results re-
garding Brazil and China, please refer to the Supplemental
Material [56].

Finally, we investigate the relationship between the length
of subintervals within this 160-day period and the fitting of
the data. By dividing the 160-day duration into subintervals
of varying lengths (the number of subintervals is 5, 10, 15,

20, 25, 30, 35, and 40), we examine how well the data aligns
with the predictions within each interval. This analysis allows
us to assess the accuracy and reliability of the model used
for forecasting COVID-19 cases. By comparing the actual
counts with the predicted values for each subinterval, the arti-
cle provides insights into the performance of the model over
different time spans. Based on the insights gained from Fig. 5
and Table I, it is evident that the accuracy of the method does
not necessarily improve with an increasing number of subin-
tervals. This finding highlights the importance of carefully
selecting the appropriate number of subintervals to achieve
satisfactory fitting results when utilizing the method presented
in this article. It emphasizes the need to find the optimal
balance in determining the number of subintervals in order
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FIG. 4. Daily confirmed cases of Austria (purple) overlaid on the median modeled detected cases (vivid orange line), and predicted cases
(strong blue lines) with shaded areas representing the 25th-75th centile (mid blue), and 2.5th–97.5th centile (light blue) of estimated detected
cases.

to obtain accurate and reliable outcomes using the described
approach. Based on the information provided in Table I, it
can be inferred that the optimal number of subintervals for a
160-day duration in Austria falls within the range of 15 to 25.
This range is identified as the one that yields the most accu-
rate and reliable predictions based on the evaluation criteria
utilized in the study.

C. Quantitative analysis of model (1)

Proving the stability of the endemic equilibrium posed
a challenge due to the complexity of our explicit solution.
To overcome this, we turned to MATLAB simulations to
examine the long-term behavior. We applied our methods
to recently released COVID-19 data for Brazil, specifically
from February 26, 2021, to August 4, 2021, which coincided
with the commencement of vaccination efforts. To facilitate
our analysis, we divided the total 160-day time frame into

20 subintervals. To estimate the system’s parameters accu-
rately using real data from Brazil, we developed an optimal
numerical design. For detailed results, please refer to the
Supplemental Material [56].

D. Numerical results of reproduction number
and its sensitivity analysis

In this section, we focus on calculating the reproduction
number and its sensitivity index to various parameters of the
model for particular countries. The sensitivity index enables
us to understand how different factors impact R0, providing
valuable insights into how we can better manage and control
the spread of diseases. In Fig. 6, plot (a) depicts the repro-
duction number for Austria (See Supplemental Material [56]
for Brazil, and China). This plot demonstrates that the re-
production number is a function that is piecewise constant
and is obtained in 20 distinct subintervals. By breaking down
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FIG. 5. The figure displays the daily counts of vaccinated, infected, and recovered cases in Austria over a period of 160 days. The fitting
of the data is presented for different subintervals, ranging from 5 to 40, within the 160-day duration.

the reproduction number into multiple subintervals, we can
better understand how it changes over time, which is critical
when it comes to predicting and controlling the spread of
diseases. Plot (b) in Fig. 6 shows the sensitivity indices of
R0 corresponding to different parameters for Austria (See
Supplemental Material [56] for Brazil, and China). It is worth
noting that the figure displays indices for only those pa-
rameters that appear in the R0 formula, as R0 has no direct
dependence on any other parameter. By examining the signs
of the indices, we can determine whether R0 will increase
or decrease in response to changes in specific parameters.
Additionally, the magnitude of the indices provides insight
into the extent of this change. In Fig. 6, the bar graph rep-
resents the sensitivity indices of R0 to different parameters.
The bars facing upwards indicate that R0 increases as the
parameter value increases. On the other hand, the bars facing

TABLE I. RMSE for different predictions of a 160-day duration
in Austria, with varying subintervals.

Subintervals Vaccinated Infected recovered Mean

n = 5 0.0075 0.0038 0.0114 0.0076
n = 10 0.0041 0.0026 0.0056 0.0041
n = 15 0.0026 0.0024 0.0037 0.0029
n = 20 0.0026 0.0026 0.0035 0.0029
n = 25 0.0018 0.0023 0.0027 0.0023
n = 30 0.0019 0.0026 0.0028 0.0024
n = 35 0.0022 0.0120 0.0178 0.0107
n = 40 0.0020 0.0108 0.0188 0.0105

downwards indicate that R0 decreases as the parameter value
increases.

Figure 6 provides valuable information on the sensitivity
indices of R0 to different parameters. For instance, ϒR0

ζ =
+0.5 implies that R0 will increase by 0.5% if ζ increases
by 1%, and ϒR0

η = −0.6 means that R0 will decrease by
0.6% if η increases by 1%. Moreover, we can observe that
R0 has the strongest negative correlation with α, η, and ν,
while it has the strongest positive correlation with ζ . This
means that changes in α, η, and ν would decrease R0, while
changes in ζ would increase it. Figure 7 also demonstrates
the sensitivity analysis of the model for Austria and check
how it responds to the variation of parameter β (For additional
results on other parameters, please refer to the Supplemental
Material [56]).

E. Prediction process

We conducted a comparative analysis of prediction meth-
ods, focusing on two main categories: classical and modern
approaches. Classical methods relied on mathematical models
like the recurrent dynamic model, using historical data to fore-
cast disease transmission. Modern methods, on the other hand,
employ machine learning techniques such as GRU, BiLSTM,
regression tree, and the combined deep learning BiLSTM-
GRU. These modern methods could learn from extensive data
sets and make predictions about future disease spread. By
thoroughly evaluating these methods, we aimed to identify the
most accurate and reliable approach.

In our study, we utilized 128 days of data to train
the selected prediction methods. All methods underwent
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FIG. 6. The figure displays the reproduction number in (a) and the sensitivity indices of the reproduction number concerning each of the
system parameters linked to R0 for model system (1) in (b) for Austria.

calibration and training under identical conditions. Subse-
quently, we reserved 32 days of data for testing purposes
to evaluate the performance of these methods in predicting
disease spread. By comparing the prediction results for the
32-day testing period, we could assess the effectiveness of the

prediction methods. Figure 8 illustrates the prediction results
for Austria (please refer to the Supplemental Material [56] for
results on Brazil and China).

From Fig. 8, we observe that most of the prediction meth-
ods were well-trained, but their performances varied in the
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FIG. 7. Sensitivity analysis showing the effect of varying the β during the period of investigation for Austria. We multiply the experienced
value of β by 1.2 and show the corresponding evolution of model (1) for its variables. The plot shows the variation in the susceptible,
vaccinated, recovered, exposed, and infected individuals, and their reproduction numbers. The brown curves show the model fit up, and the
blue curves show the variation in the required individuals. Increasing β significantly increases the reproduction number and the model is
extremely sensitive to variations in the value of β.

prediction region. Graphically, it is apparent that the re-
gression tree method and the dynamic system method did
not perform as well in predicting the data compared to
other learning methods. However, other learning methods
such as BiLSTM, GRU, and the combined deep learning
BiLSTM-GRU method exhibited good performance in pre-
dicting disease spread.

F. Performance evaluation outcome

To comprehensively assess the performance of a model, it
is essential to utilize a variety of performance measures or
metrics. Different metrics offer distinct perspectives on the
model’s performance, aiding in identifying areas that may
require improvement. In this study, we employed two com-
monly used metrics, root mean squared error (RMSE) and
R-squared, defined as follows:

RMSE =
√∑N

i=1(Predictedi − Actuali )2

N
, (13)

R − Squared = 1 −
∑N

i=1(Predictedi − Actuali )2∑N
i=1(Actuali )2

. (14)

Table II presents the performance evaluation of five prediction
methods across three categories of individuals (vaccinated,
infected, and recovered) and two data regions (training and
testing). We used RMSE as the metric to assess the meth-
ods’ performance. The methods were ranked based on their

RMSE scores for each category and data region, with the
best-performing method highlighted in a distinct color to dif-
ferentiate it from the others.

As indicated in Table II, the dynamic system method
exhibited superior performance in predicting the spread of
COVID-19 among vaccinated individuals in Austria’s training
data region. Similarly, the GRU method demonstrated the best
performance in predicting the number of vaccinated individu-
als in Austria’s testing data region. These findings underscore
the significance of assessing the performance of different
prediction methods across various regions and categories of
individuals.

Furthermore, Table II presents an overall measure, cal-
culated to facilitate a comprehensive comparison of the five
selected prediction methods using the RMSE metric. We
computed the mean performance of each method for the train-
ing and testing data regions and ranked them accordingly.
According to the RMSE metric, the dynamic system method
(DS) exhibited the best performance in the training data re-
gion, followed by BiLSTM-GRU, regression tree (RT), GRU,
and BiLSTM in descending order of performance. These find-
ings can assist healthcare professionals and policymakers in
selecting the most suitable method for predicting the spread
of infectious diseases in the training data region. Similarly,
in the testing data region, the BiLSTM-GRU method demon-
strated the best performance, followed by GRU, BiLSTM,
DS, and RT in descending order of performance. For results
on the R-squared metric, please refer to the Supplemental
Material [56].
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FIG. 8. Trajectory of the COVID-19 prediction in Austria. Prediction scenario for vaccinated, infected, and recovered individuals are done
by five methods, including recurrent dynamical model (1) and learning methods GRU, regression tree, BiLSTM, and BiLSTM-GRU.

IV. DISCUSSION

The article presents an innovative hybrid model called
the integrated dynamic-learning model.” This model merges
a traditional recurrent dynamic model with modern learning
techniques to evaluate and predict the transmission of in-
fectious diseases, with a specific focus on COVID-19. The
research delves into the utilization of dynamic systems theory
in conjunction with a variety of learning methodologies. By
combining dynamic and learning approaches, it becomes fea-
sible to achieve more accurate and comprehensive predictive
results. Hybrid models that integrate dynamic models and
learning methods find applications in diverse domains. In epi-
demiology, for instance, these models serve as invaluable tools
for predicting the transmission of infectious diseases, adapting
to evolving transmission dynamics, and guiding public health
decision making [58,59].

Our dynamic model is an epidemiological compartmental
model governed by ordinary differential equations to eluci-
date the epidemic dynamics. It utilizes piecewise constant
parameters, allowing it to effectively account for variations

in population groups resulting from control measures im-
plemented by authorities, shifts in population behavior, and
alterations in epidemic characteristics. Within our model, pa-
rameters are derived from officially reported data, providing a
reflection of the genuine dynamics of infectious diseases.

Infectious diseases featuring recurrent patterns, like sea-
sonal influenza, cyclic outbreaks of diseases such as measles
or COVID-19, and other diseases displaying periodicity, de-
mand models capable of encapsulating these patterns and
shedding light on their dynamics. Additionally, the traditional
assumption of permanent immunity following recovery may
not be applicable to diseases like COVID-19, where immunity
can diminish over time, and reinfection remains a possibility.
Our proposed model takes into account recurrence, waning
immunity, and the potential for reinfection, providing a more
realistic portrayal of disease dynamics. Additionally, our pro-
posed model includes the impact of vaccination, which is
crucial in controling diseases like COVID-19 and making it
more applicable to modeling of epidemic diseases.

However, within the existing literature, there is a scarcity
of studies that simultaneously address certain critical aspects:
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TABLE II. RMSE evaluation. The best method for any type of data in any compartmental is indicated by bolding the corresponding number
based on the RMSE.

Country Data type Compartments RT GRU BiLSTM BiLSTM-GRU DS

Trained Vaccinated 0.001690 0.004488 0.004755 0.004294 0.000218
Austria Infected 0.000035 0.002371 0.001128 0.001971 0.000104

Recovered 0.004188 0.000910 0.003434 0.000140 0.000135
Tested Vaccinated 0.350605 0.001993 0.006039 0.004517 0.069424

Infected 0.039854 0.005739 0.013515 0.004970 0.011888
Recovered 0.350149 0.014903 0.032928 0.011788 0.028809

Trained Vaccinated 0.001442 0.001153 0.001398 0.001465 0.000054
Brazil Infected 0.003311 0.003909 0.007633 0.003183 0.000184

Recovered 0.002222 0.002659 0.003611 0.002276 0.000193
Tested Vaccinated 0.239629 0.010747 0.021142 0.011377 0.046999

Infected 0.143138 0.049816 0.082708 0.031578 0.020276
Recovered 0.010494 0.006078 0.010150 0.005133 0.019832

Trained Vaccinated 0.003082 0.001581 0.003378 0.001180 0.000079
China Infected 0.001156 0.000112 0.001294 0.000146 0.000052

Recovered 0.001767 0.001992 0.003065 0.001025 0.000310
Tested Vaccinated 0.130682 0.001904 0.003507 0.002649 0.013394

Infected 0.049393 0.000891 0.002119 0.001017 0.010821
Recovered 0.089787 0.022960 0.071510 0.014165 0.031023

Mean of trained data 0.002099 0.002130 0.003299 0.001742 0.000014
Ranking in training zone 3 4 5 2 1

Mean of tested data 0.155970 0.012781 0.027068 0.009688 0.028051
Ranking in testing zone 5 2 3 1 4

time-varying infectivity, which allows for the capture of epi-
demic characteristic changes, waning immunity, and recurrent
patterns resulting from reinfection.

Integrating birth and death processes into the model pro-
vides a more holistic depiction of population dynamics,
aligning with real-world scenarios and enabling us to account
for observed demographic shifts and make long-term predic-
tions. Usually, traditional models overlook births and deaths
in the population. These rates have a significant influence on
population size, and vulnerability, thereby playing a pivotal
role in shaping the transmission and consequences of epi-
demics. Our proposed model takes these factors into account,
providing a more accurate representation of population dy-
namics and their impact on disease spread.

While dynamic models are valuable for analyzing epi-
demics, machine learning models serve as auxiliary tools
for studying real data, including COVID-19. Various stud-
ies demonstrate the potential of machine learning models
in creating roadmaps for disease outbreak control and pre-
diction [35–37,39]. In the realm of classification, machine
learning shows promise by seeking out hidden relationships
between inputs and outputs. These methods are also applied
to forecast the number of confirmed cases and mortality in
upcoming seasons. In the second approach, this research of-
fered a description and comparison of some machine learning
models including decision tree learning, BiLSTM, GRU, and
a combined deep learning approach. These methods were
applied to analyze and forecast time series data related to
the COVID-19 outbreak. They were chosen for their capacity
to conduct highly accurate simulations, their training capa-
bilities, and their adaptability as function approximators. We
assessed the performance of these models in terms of training,
learning, and prediction. Our learning models exhibit several

appealing features, such as the ability to address temporal
dependencies within time series data and their flexibility in
modeling nonlinear features. To the best of our knowledge,
this kind of comparative analysis has been scarcely docu-
mented in existing works. Furthermore, this article stands
out for its accurate long-term analysis and forecasting of the
COVID-19 disease.

In the final section of the article, we applied these var-
ious methods to study the spread of COVID-19 in specific
countries such as Austria, Brazil, and China. We first used
an optimization method to fit the models to historical data
and then employed the fitted models for prediction, aiming to
forecast the future spread of the disease. The parameters were
estimated based on officially reported data, ensuring accuracy
and reliability. By utilizing high-quality data, we were able
to accurately estimate key parameters related to transmission
rates, recovery rates, diagnosis rates, vaccination rates, recur-
rent rates, waning rates, and symptomatic recovery rates. The
analysis involved multiple sets of parameters and stochastic
realizations, providing mean values, percentiles, and ranges.
The stability of the model and its alignment with real-world
data were demonstrated through careful validation processes.
The findings offered reliable insights and specific results for
Austria, Brazil, and China.

To evaluate the performance of the proposed method, we
used metrics such as RMSE and R-squared. By compar-
ing the performance of each method in both the fitting and
prediction stages, we identified the most effective method
for each country. According to the results, the DS method
performed exceptionally well in the data training phase, while
the BiLSTM-GRU method exhibited superior performance
in the prediction phase. These findings emphasized the im-
portance of selecting appropriate methods for specific stages
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of disease analysis to ensure accurate predictions and effective
decision making.

The results also highlighted the high recurrence rate of
the virus despite vaccination efforts, indicating the need for
ongoing monitoring and control. Additionally, the low di-
agnosis and recovery rates suggested potential challenges in
information, equipment, medical staff, and emerging variants.
Calculating the reproduction number and its sensitivity to var-
ious parameters of the model for specific countries provided
valuable insights into how different factors impact disease
spread, aiding in better management and control.

Our results emphasized the need for caution when extrapo-
lating epidemic counts in the long term, as they depended not
only on data quality but also on the stage of the epidemic due
to the non-linear nature of the underlying dynamics. The study
investigated how uncertainty changes during different stages
of the epidemic, providing valuable insights into the dynamics
of infectious diseases.

In conclusion, this article effectively examined the trans-
mission of infectious diseases by integrating dynamics and
contemporary approaches. The recurrent SEIR-V model and
deep learning techniques demonstrated their effectiveness in
predicting disease spread. The outcomes derived from eval-
uating diverse methods at different analysis stages offered
valuable perspectives for healthcare experts and policymakers
to make well-informed choices concerning disease manage-
ment and prevention strategies.

Model limitations and strengths. Firstly, like traditional SIR
and SEIR models, our proposed model assumes that individ-
uals in the population have equal chances of contact, which
is not realistic. Factors such as social structures, geographi-
cal barriers, and individual behaviors significantly influence
disease transmission.

Another limitation of traditional models is that they as-
sume constant disease transmission and recovery rates over
time [48]. However, in reality, these rates can change due to
public health interventions, changes in human behavior, and
the emergence of new virus variants. The dynamic model we
propose addresses this by incorporating time-varying param-
eters, allowing for more flexibility in real-world scenarios.
Additionally, traditional models overlook births and deaths in

the population, which are important for long-term predictions
or diseases with high mortality rates. Our proposed model
takes these factors into account, providing a more accurate
representation of population dynamics and their impact on
disease spread. Moreover, the assumption of permanent im-
munity after recovery in traditional models may not hold true
for diseases like COVID-19, where immunity can wane over
time and reinfection is possible. Our proposed model consid-
ers waning immunity and possible reinfection, offering a more
realistic depiction of disease dynamics. Furthermore, our pro-
posed model, like traditional SIR and SEIR models, does not
consider individual characteristics such as age, sex, or health
status, which can significantly influence disease susceptibility
and outcomes [60].

While traditional models ignore spatial structure and
geographical factors that can impact disease spread [61],
our proposed model also does not explicitly include them.
However, it has been successfully implemented in different
countries with varying geographies, indicating its adaptability
and relevance to different regions. Similarly, changes in hu-
man behavior, like social distancing or mask-wearing, are not
incorporated into traditional models or the proposed model.
Moreover, traditional models do not consider the impact of
vaccination on disease dynamics, which is crucial in con-
trolling diseases like COVID-19 [5]. Our proposed model
includes the impact of vaccination, making it more applica-
ble to diseases where vaccination plays a key role. Lastly,
neither traditional models nor the proposed model explicitly
accounts for the emergence of new virus variants, which
can have different transmissibility and virulence character-
istics. Finally, we propose a hybrid approach to overcome
the limitations of traditional models in disease prediction. By
combining a traditional model with modern supervised meth-
ods, our aim is to significantly improve the accuracy of disease
prediction.
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