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Perturbative computation of nonlinear harvesting through a path integral approach
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Statistical field theories provide powerful tools to study complex dynamical systems. In this work those tools
are used to analyze the dynamics of a kinetic energy harvester, which is modeled by a system of coupled
stochastic nonlinear differential equations and driven by colored noise. Using the Martin-Siggia-Rose response
fields we analytically approach the problem through path integrals in the phase space and represent the moments
that correspond to physical observables through Feynman diagrams. This analysis method is tested by comparing
the solution to the linear case with previous analytical results. Through a perturbative expansion it is calculated
how the nonlinearity affects, to the first order, the energy harvest supporting the results through numerical
simulations.
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I. INTRODUCTION

The inevitable depletion of fossil fuels and the environ-
mental pollution generated by their use present the need for
a global energy transition towards renewable and clean en-
ergy sources. This must occur at all energy scales and in a
multitude of different scenarios. An interesting application
corresponds to environmental energy sources and their imple-
mentation in wireless systems to operate small devices such
as sensors, actuators, and information engines [1–5]. These
spatially distributed wireless nodes detect and communicate
local information such as acceleration, temperature, pressure,
air pollution, biological parameters, magnetic field, light in-
tensity, etc.

The study of converting energy present in the environment
into electrical energy is known as energy harvesting [1,4,6,7].
Several renewable energies in the environment are the wind,
solar radiation, temperature or concentration gradients, kinetic
energy in the form of mechanical vibrations, etc. In all of
them the external force responsible for the movement can
be considered deterministic as well as stochastic. The most
outstanding types of systems for their power density, ver-
satility and abundance, are the mechanical vibration energy
harvesters that convert kinetic energy through electromag-
netic, electrostatic, or piezoelectric transducers into electrical
energy [1,8–10]. This conversion produces a loss of kinetic
energy, which can be considered as an electrically induced
damping.

Most vibration power generators are resonant systems that
obtain maximum power when the resonance frequency of
the generator matches the ambient vibration frequency. In its
simplest version, the mass of the system is subject to Hooke’s
law and therefore the mechanical force is linear. The system
then harvests maximum energy from the ambient vibrations
if the excitation frequency matches the natural frequency of
the system, which is known as resonant energy harvesting.
Outside the resonance bandwidth the response of the system
and, therefore, the power obtained drop drastically. Adap-
tive kinetic energy harvesters are developed to increase their
operating frequency range, thus addressing the bandwidth

limitation [11]. Among the possible strategies of adaptive
harvesters is the application of nonlinear oscillators, which
have been shown to be an important ingredient to improve the
yield of the harvester of kinetic energy [12–18].

A general model for the conversion of kinetic energy from
a vibrating mass into electrical energy can be formulated
without the need to specify the mechanism by which the
transduction takes place. The model is not a specific device
and therefore the conversion mechanism does not need to be
set [19]. In this work we analytically study, by means of a per-
turbative expansion, the effect of nonlinearity on the Duffing
potential to improve the harvested power, the efficiency of the
system, and the effective bandwidth. The results obtained are
contrasted with the numerical solution of the equations.

In Sec. II, we present the model and the formal solution us-
ing path integrals. In Sec. III, we solve the linear case exactly
by comparing the results with those presented in [20] and we
introduce the Feynman diagrams which we use to pictorially
represent the calculated moments. In Sec. IV, by means of
a perturbative expansion and with the help of the Feynman
diagrams introduced in the previous section, we analytically
calculate the first-order nonlinear case, numerically corrobo-
rating the results. Finally in Sec. V we give our conclusions.

II. MODEL

The harvester model we study (based on the general model
[1]) consists of a one-dimensional Duffing’s oscillator—
i.e., an oscillating mass, m, in a potential U (xI ) = αx2

I /2 +
βx4

I /24—coupled to a transducer system (either piezoelectric,
electrostatic, or electromagnetic)1 that transforms mechanical
energy into electrical inducing an electrical voltage VI . Then,
the voltage is connected to a load resistance R. The stochastic
differential equations for a kinetic energy harvester arise from

1Other transducer systems use different variables and parameters
but the general structure of the equations is the same, allowing us to
analyze the general issues.
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applying Newton’s second law to the mass m in addition to
the constitutive relations of the transducer system,2

m
d2xI (s)

ds2
= − γm

dxI (s)

ds
− kV VI (s) − αxI (s)

− β

6
xI (s)3 + ηI (s), (1)

dVI (s)

ds
= kc

dxI (s)

ds
− γeVI (s). (2)

The variables xI and VI are the displacement of the oscillator
and the electrical voltage induced in the transducer, respec-
tively. The coefficient γm accounts for the damping of the
mechanical oscillations, kV and kc are the couplings between
the oscillation and the induced voltage, while γ −1

e = RC
is the time constant of the circuit (given by the capacitance C
of the system and the load resistance R). The system is driven
by an external force, modeled with an Orstein-Uhlenbeck
noise ηI (s) with 〈ηI (s)〉 = 0 and correlation 〈ηI (s)ηI (s′)〉 =
D e−λI |s−s′ |.

Changing the variables to

s → t = γm

m
s, (3)

xI → x = γ 2
m

m
√

D
xI , (4)

VI → V = γ 2
m

m
√

Dkc

VI , (5)

and renaming k = mkckV /γ 2
m, a = mα/γ 2

m, b = m3Dβ/γ 6
m,

ζ = mγe/γm, and λ = mλI/γm, we reduce the number of pa-
rameters. This choice of adimensionalization is arbitrary and
the physical results do not depend on it. The values chosen for
the parameters in the images are generic, as in Mendez et al.
Using ẋ = v (the dot indicates the t derivative) the equation of
the system with the new dimensionless variables is

ṙ = f (r) + �(t ), (6)

where

r = (x, v,V, η)T ,

f (r) =
(

v,−v − kV − ax − b

6
x3 + η, v − ζV,−λη

)T

,

� = (0, 0, 0,
√

2λ ξ )T . (7)

Here the superscript T indicates transposed. As usual, we use
a Gaussian white noise ξ—with 〈ξ (t )〉 = 0 and 〈ξ (t )ξ (t ′)〉 =
δ(t − t ′)—to generate η = ηI/

√
D, through the last equa-

tion of (6).
If the energy source η is turned off, the system—because

of its dampening—reaches a state of equilibrium or rest req =
(xeq, 0, 0, 0)T . The only possible value for the linear case
is xeq = 0, while xeq = ±√

6a/|b| are additional equilibrium
points if b < 0.

Due to the diffusion matrix 〈� �T 〉 being singular, the
approach through the Fokker-Planck equation is not optimal

2These relations tell us how the characteristic displacement, x, of
the oscillator induces the electrical tension V and vice versa.

[21]. Instead of working with the probability density func-
tion (pdf) p(r(t )) we use the functional pdf p[r(t )] [21–25].
This is the pdf of the trajectory r(t ) in phase space—linked
to Eq. (6)—and can be studied by path integrals. Using
the Martin-Siggia-Rose auxiliar fields or response fields r̃ =
(x̃, ṽ, Ṽ , η̃)T [26], we have

p[r(t )] =
∫

D[r̃(t )]e−S[r(t ),r̃(t )], (8)

where the stochastic action S is

S[r(t ), r̃(t )] =
∫

du{r̃(u)T [ṙ(u) − f (r(u))] − λη̃2(u)}. (9)

For simplicity we have taken the initial conditions r(t0) = 0,
since we are only interested in the stationary properties of the
model. Likewise, as all the time integrals in this work are
given between t0 and t , we omit these integration limits to
simplify the notation.

We can write the action as S = SG + SInt, separating it into
two, a Gaussian action SG that contains the bilinear part in the
fields and SInt which contains the nonlinear couplings of the
system.3 So we have

SG =
∫

du du′r̃(u)T G−1
0 (u, u′)r(u′), (10)

SInt = b

3!

∫
du ṽ(u)x3(u) − λ

∫
du η̃2(u), (11)

where G−1
0 (t, t ′) = G−1

0 (t ′)δ(t − t ′) is the inverse matrix oper-
ator of the Feynman response propagator G0(t, t ′), satisfying
Green’s relation∫

du G−1
0 (t, u)G0(u, t ′) = δ(t − t ′)I, (12)

where I is the identity matrix. G0 is called the free propagator
associated with the linear part of the system (6).

III. LINEAR SYSTEM

In this part we address the linear case, i.e., b = 0. From
p[r(t )] the moment generating functional, Z[J, J̃] Eq. (A1)
(Appendix A), can be expressed as a series given by Eq. (A5).
However, for the linear system the series can be summated to
give [25]

Z0[J, J̃] = ZG[0, 0]eA[J,J̃], (13)

with ZG[0, 0] given by (A2) and

A[J, J̃] =
∫

du du′J(u)T G0(u, u′)J̃(u′)

+ λ

∫
du du′du′′Ji(u

′)G0iη(u′, u)Jj (u
′′)G0 jη(u′′, u).

(14)

From now on we use the Einstein summation convention on
the Latin indices (i, k = x, v,V, η).

3This choice of writing the response functional S with the noise
vertex SInt is appropriate because Feynman’s rules are given from
[25] or [27] so that we can use them here systematically. Addition-
ally, Feynman’s diagrams are drawn with a single propagator, G0.
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From Eq. (A1) of Appendix A the moments are〈 ∏
i, j,k,l

ri(tk )r̃ j (tl )

〉0

= 1

ZG[0, 0]

∏
i, j,k,l

δ

δJi(tk )

δ

δJ̃ j (tl )
Z0[J, J̃]|J=J̃=0. (15)

The superscript 0 indicates that it is for the linear harvester.
Note that it is not necessary to calculate ZG[0, 0] to obtain the
moments. The first moments are 〈ri(t )〉0 = 〈r̃i(t )〉0 = 0, since
we have a single equilibrium point at req = 0 and 〈η(t )〉 = 0.
However, η(t ) perturbs the system away from the rest state,
resulting in nonzero higher-order moments. From Eq. (15) we
find

〈rm(t )r̃n(t ′)〉0 = G0mn(t, t ′), (16)

〈rm(t )rn(t ′)〉0 = 2λ

∫
du G0mη(t, u)G0nη(t ′, u). (17)

For simplicity of notation symbol ∼ is not added to the second
subscript in propagators.

To obtain the propagator we have to solve (12), where

G−1
0 (t ) =

⎛
⎜⎜⎝

d
dt −1 0 0
a d

dt + 1 k −1
0 −1 d

dt + ζ 0
0 0 0 d

dt + λ

⎞
⎟⎟⎠. (18)

Using the Fourier transformation4 at t and t ′ we get

G0(w,w′) = G0(w)2πδ(w + w′) = g(w)

Q(w)
2πδ(w + w′),

(19)
with

Q(w) = −w3 − i(ζ + 1)w2 + (k + a + ζ )w + iaζ , (20)

and the matrix g(w) is given by

⎛
⎜⎜⎜⎝

i[k − (w + i)(w + iζ )] w + iζ −ik w+iζ
λ−iw

−a(w + iζ ) w(ζ − iw) −kw
w(ζ−iw)

λ−iw−ia w i[a − (w + i)w] w
λ−iw

0 0 0 Q(w)
λ−iw

⎞
⎟⎟⎟⎠, (21)

where G0(w) is called the reduced free propagator. Applying
the Routh-Hurwitz stability criterion to (6) it is verified that
the linear system is stable for all values of the parameters
[20,28]. Therefore, the poles of G0(w) have a negative imagi-
nary part.

Using the so-called Feynman diagrams, the terms in the
expansion of the moments can be visually represented. The
elements of a diagram are points—called vertices νnm—that
represent different times, corresponding to the nonlinear inter-
actions in SInt, and solid lines that represent the propagators
of the matrix G0 that carries on the signal from one variable to
another. Time evolves to the left so that a vertex that is to the
right of another one corresponds to a previous time.

Vertices are linked by free propagators5

(22)

A vertex νi j couples j fields coming in from the right with i
response fields going out to the left, for example,

(23)

4Defined as f (w) = ∫ ∞
−∞ dt f (t ) eiwt , on the dimensionless variable

t . We can obtain the true frequency results making the variable
change w → ω = γmw/m.

5In this case t > t ′.

The dashed lines are to visualize the fields going out (or in) the
vertex in a particular diagram (in this case two response fields
r̃η). The vertices imply an integration over time. The sources
Ji or J̃k at the corresponding time are represented by

(24)

(25)

Therefore, A[J, J̃] in Eq. (14) is represented by

(26)

Functional derivatives with respect to Jk or J̃l remove the
corresponding sources (black dots in diagrams). When, evalu-
ating at J = J̃ = 0, all diagrams that still possess sources are
canceled out. With this in mind, we can represent the (16) and
(17) moments by diagrams according to

(27)
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(28)

Due to the system being linear and the stochastic force having
zero mean, only these diagrams contribute. As a consequence,

the system can be analytically solved, thus getting closed ex-
pressions. Obtaining the moment 〈∏M

i=1 ri〉 implies that all the
diagrams that can be assembled with M outgoing propagators
and none incoming must be considered.

Let us calculate the oscillator bandwidth defined as the fre-
quency range w in which the amplitude of the propagator6

|G0V v (w)|2 is greater than half the maximum amplitude. For
the case ζ = 0 the calculations are greatly simplified and the
following analytical expression can be found:

w =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
a + k − 1/2 +

√
2(a + k)2 − a − k + 1/4

]1/2
if a + k < 1/2,[

a + k − 1/2 + √
a + k − 1/4

]1/2
if 1/2 < a + k � 1 + √

2/2,[
a + k − 1/2 + √

a + k − 1/4
]1/2

−[
a + k − 1/2 − √

a + k − 1/4
]1/2

if a + k > 1 + √
2/2.

(29)

The plot of w vs a is shown in Fig. 1 (dotted line). This

bandwidth has a maximum value
√

1 + √
2 ≈ 1.55 for a +

k = 1 + √
2/2 ≈ 1.7.

For ζ 
= 0 the bandwidth depends on three independent
parameters: ζ , k, and a. Figure 1 (2) shows the bandwidth vs
a for fixed k (ζ ) and different values of ζ (k), from numerical
calculations.

The mean electrical power that dissipated in the load resis-
tor is given by

P0
R =

〈
V 2

I

〉0
st

R
= m2Dk2

c

γ 4
mR

〈V 2〉0
st

= m2Dk2
c

γ 4
mR

lim
t→∞〈V 2(t )〉0, (30)

where the subscript st indicates that the average is done in the
steady state. Using (17) and (28) we can express

(31)

and taking the limit t → ∞ we arrive at〈
V 2

〉0
st = lim

t→∞ 2λ

∫
du G2

0V η(t, u)

= 2λ

∫
dw̌

∣∣G0V η(w)
∣∣2

(32)

(w̌ = w/2π ), which results in the expression

P0
R = m2k2

c D

γ 4
mR

�λ(ζ + λ + 1)

kλ + (λ + ζ )(λ2 + λ + a)
, (33)

6G0V v (w) = V (w)/η(w), i.e., the ratio of the voltage and external
force, in the Fourier space.

� = 1

(ζ + 1)(ζ + k) + a
. (34)

The mean power [20] entering the system is

P0
in =

〈
dxI

ds
ηI

〉0

st

= D

γm
〈v(t )η(t )〉0

st

= D

γm
lim

t→∞ 〈v(t )η(t )〉0. (35)

Therefore, from (17) and (28) we obtain

(36)

FIG. 1. Bandwidth for the linear oscillator with k = 1 and differ-
ent ζ values: ζ = 0 [Eq. (29), dotted line], ζ = 0.01 (dashed line),
ζ = 0.1 (solid line), and ζ = 1 (dash–dotted line).
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FIG. 2. Bandwidth for the linear oscillator with ζ = 0.1 and
different k values: k = 0 (dotted line), k = 0.5 (dashed line), k = 1
(solid line), and k = 2 (dash–dotted line).

then

〈vη〉0
st = lim

t→∞ 2λ

∫
du du G0vη(t, u)G0ηη(t, u)

= 2λ

∫
dw̌ G0vη(w)G0ηη(−w), (37)

and finally

P0
in = D

γm

λ(λ + ζ )

kλ + (λ + ζ )(λ2 + λ + a)
. (38)

Therefore, the conversion efficiency of kinetic energy to elec-
trical energy is given by

ρ0 = P0
R

P0
in

= m

γ 2
m

Ck2
c ζ

ζ + λ + 1

ζ + λ
�. (39)

The results of this section agree with those derived previously
in [20].

IV. NONLINEAR SYSTEM

In this section we work on system (6) with b 
= 0. Then the
interaction action (11) generates a new vertex

(40)
An expression like (13) cannot be obtained here and we must
work with (A3) (Appendix A) because the new vertex ν13

produces an infinite amount of terms proportional to powers
of b. For example, those that are bilinear in J and J̃ will
contribute to the propagator, i.e., corrections to the free prop-
agator appear due to the nonlinearity [27,29–33]. However,

rather than calculate all terms up to desired order together
with the functional derivatives, we use the utility of the pic-
torial representation. To obtain the contribution to the free
propagator it is necessary to build diagrams with an incoming
and an outgoing line (propagators). With both ν20 and ν13 the
following diagrams can be constructed that contribute to the
first order in the perturbative expansion:

(41)

Using the Feynman diagrams representation is useful to obtain
the moments without the need to expand the series. A conve-
nient way to deal with the problem is to work in the Fourier
space—which converts convolutions into products—and later
return to the time domain. In the Fourier representation, the
free propagators and nonlinear vertices are written as

G0mn(w,w′) = G0mn(w)2πδ(w + w′) (42)

and

ν13 = − b

3!

∫
dw̌1dw̌2dw̌3 ṽ(w1)x

× (w2)x(w3)x(−w1 − w2 − w3),

ν20 = λ

∫
dw̌1η̃(w1)η̃(−w1).

With this, the analytic expression for (41) results in

Gmn(w) = G0mn(w) − λbG0mv (w)AG0xn(w), (43)

where 2λA is the correlation of x [to O(b0)], and A, the loop
in the diagram, is given by

A =
∫

dw̌ |G0xη(w)|2

= 1

2aλ

1 + �[a + ζ (ζ + 1)][λ2 + λ(ζ + 1)]

kλ + (ζ + λ)(λ2 + λ + a)
. (44)

Working analytically with (A3) the first correction appears
in j = 4 as

− fsλb
∫

dw̌1dw̌2dw̌3Ji(−w1)G0iv (w1)

× |G0xη(w2)|2G0x j (w3)J̃ j (−w3), (45)

with fs a symmetry factor that arises from the expansion of
the exponential and from the different ways of taking Wick
contractions. Then, from variational differentiating the above
expression with respect to the sources Jm and J̃n, Eq. (43) is
recovered.

One way to sort the infinite contributions of b to the free
propagator is through the so-called self-energy �

014210-5
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(46)

which contains the infinite sum of irreducible diagrams that have an outgoing and an incoming field (diagrams 1PI) [27]. Using
this object, a diagrammatic equation for the renormalized propagator is obtained

(47)

where the thick lines represent renormalized propagators Gi j ,
in contrast to the thin lines, which represent free propagators
G0i j . Analytically, the diagrammatic equation (47) results in
the Dyson equation [27]

G(w) = G0(w)[1 + �(w)G0(w) + �(w)G0(w)�(w)G0(w)

+ · · · ] = G0(w)[1 + �(w)G(w)]. (48)

The renormalized matrix propagator in Fourier space is ob-
tained from

G−1(w) = G−1
0 (w) − �(w). (49)

Due to the shape of the vertex ν13, at O(b), we have

�i j = −λbAδivδ jx. (50)

Introducing (50) into (49), the only element that is altered is
G−1

0vx(w), resulting in

G−1
vx (w) = G−1

0vx(w) + λbA = a + λbA, (51)

where we find that a can be renormalized according to

ar = a + λAb, (52)

thus obtaining the renormalized propagator to 1 loop

G = G0

∣∣
a=ar

. (53)

Therefore, at O(b), the diagrams for the correlation of two
fields are identical to the linear case with thin lines replaced
by thick ones, i.e., propagators G in place of free ones
G0.

Equations (44) and (34) show that A > 0. Furthermore,
λA does not depend on b and it is bounded (it is only di-
vergent if a → 0 or if both ζ → 0 and λ → 0). Figure 3
show how λA varies on each parameter, leaving the rest
fixed.

We can analyze the bandwidth from the linear case by
replacing a → ar . We see that for both positive and nega-
tive b the bandwidth can increase or decrease (with respect
to the linear case) according to the graphs 1 and 2. It is
worth noting that—unlike the linear case—the response and,
therefore, the bandwidth become functions of the character-
istic correlation frequency λ due to replacing a by ar (λ)
in Eq. (53) and consequently in Eq. (29). This is a conse-
quence of nonlinearity because it couples different modes of
vibration.

To calculate the output and input powers we need the
correlations 〈V 2(t )〉 and 〈v(t )η(t )〉. Analogously to the linear

FIG. 3. Factor λA from Eq. (52) vs ζ and k = λ = a = 1 (solid
line), vs k and ζ = λ = a = 1 (dot–dashed line), vs λ and ζ =
k = a = 1 (dashed line), and vs a and ζ = k = λ = 1. All curves
intersect at Aλ|ζ=k=λ=a=1 = 0.2.
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FIG. 4. Mean electrical power harvested on a load resistor R. The
lines correspond to Eq. (56) and the points to the numerical results,
for β = 0 (solid with circles), β = −0.1 (dash with squares), and
β = 0.1 (dot-dash with diamonds). The remaining parameters are
α = 0.5 and kc = kV = m = γm = C = R = D = λI = 1.

case we have

(54)

whose analytical expression is

〈
V 2

〉
st = lim

t→∞ 2λ

∫
du G2

V η(t, u)

= 2λ

∫
dw̌|GV η(w)|2, (55)

so that the electrical power harvested by the nonlinear system
is

PR = P0
R

∣∣
a=ar

. (56)

In Fig. 4 we plot Eq. (56) together with the numerical integra-
tion of the system (6) (using the Heun method) for different
values of the parameter b. The good agreement between the
simulations and the theoretical result is apparent. Since A >

0, from Eq. (52) we see that for b > 0 we get ar > a, which
reduces the output power, while for b < 0 the performance in-
creases. However, such an improvement is bounded due to the
stability condition imposed by the Routh-Hurwitz criterion,7

namely

b > − a

λA
. (57)

However, it does not mean that the nonlinear system was sta-
ble since a negative b produces an inverted quartic potential. In

7This criteria is in the effective linear system. It means that a linear
harvester with an effective stiffness must satisfy ar > 0.

FIG. 5. Mean input power from the forcing η. Same parameters
and indicators as in Fig. 4.

practice, some kind of stopper must be added to keep the oscil-
lations inside the potential well. Another point of view can be
to consider the next term in the restorative potential, i.e., up to
the sixth power [U (x) = 1

2 ax2 + 1
4! bx4 + 1

6! cx6, with a, c > 0
and negative or positive b] solving instability problems. This
new term produces an analogous first correction to a, namely
ar = a + bλA + c

12 (λA)2. Then, if a + bλA < 0 one needs
to include c

12 (λA)2 to fix it. But, if a + bλA + c
12 (λA)2 < 0

one only needs to include the next order in the perturbative
expansion.

Proceeding in a similar way the input power is obtained by
substituting ar in place of a in the linear harvester expressions,
i.e.,

Pin = P0
in

∣∣
a=ar

. (58)

Figure 5 shows Pin, where it can be seen that it has a depen-
dency with b similar to PR. Therefore, the efficiency ρ for
Duffing’s nonlinear harvester, shown in Fig. 6, is given by

ρ = ρ0
∣∣
a=ar

= m

γ 2
m

Ck2
c ζ

ζ + λ + 1

ζ + λ
�

∣∣∣∣
a=ar

, (59)

which only differs from ρ0 in the expression for �.

FIG. 6. Mean efficiency ρ. Same parameters and indicators as in
Fig. 4.
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V. CONCLUSIONS

In this work, the field theory formalism was introduced to
the study of stochastic energy harvesters. It was applied to
a Duffing harvester driven by an Ornstein-Uhlenbeck noise.
Using Feynman diagrams, the internal dynamics of the system
can be visualized in a different way.

In the first part the linear case is solved, corroborating the
previous results of Mendez et al. [20]. Next, the general case is
approached analytically by means of a perturbative expansion
in b—coefficient of the nonlinear term of the potential—to
first order. The main result is a renormalization of the a → ar

parameter. This means that a nonlinear harvester behaves—
to first order—in the same way as a linear harvester with an
effective Hooke parameter a = ar .

It was shown that for b < 0 the three performance indica-
tors (harvested power, input power, and efficiency) improve
monotonically with |b|. However, since b is bounded below
by the stability condition of the system, such improvement is
limited. We also show that the bandwidth depends nontrivially
on b and the characteristic frequency of the noise.

We note that at next order in b new diagrams are found that
contribute by introducing a frequency dependency such that
a → a(w).

As a final comment, this formalism can be extended,
through an iterative solution, to the case of non-Gaussian
noises knowing 〈η(t )〉 and 〈η(t )η(t ′)〉 [27].

APPENDIX A: GENERATING FUNCTIONAL AND ITS
PERTURBATIVE EXPANSION

The moment generating functional is

Z[J, J̃]

=
∫

D[r(t )]D[r̃(t )]e−S[r(t ),r̃(t )]e
∫

du J(u)T r(u)+∫
du J̃(u)T r̃(u).

(A1)

Multiplying and dividing by the free functional

ZG[0, 0] =
∫

DrDr̃ e−SG[r(t ),r̃(t )], (A2)

we get

Z[J, J̃] = ZG[0, 0]〈e−SInt [r(t ),r̃(t )]+∫
du J(u)T r(u)+∫

du J̃(u)T r̃(u)〉G

= ZG[0, 0]

〈
1 +

∞∑
j=1

μ j

j!

〉
G

, (A3)

with

μ = −SInt +
∫

du J(u)T r(u) +
∫

du J̃(u)T r̃(u). (A4)

Equation (A3) expresses Z as a Gaussian average expansion
of the nonlinear terms and sources J and J̃. Such as ZG ∝
exp

∫
du du′J(u)T G0(u, u′) J̃(u′) has the first null moments

〈r(t )〉G = 〈r̃(t )〉G = 0, and it is bilinear in the variables r
and r̃, Wick’s theorem states that only combinations with
the same number of fields and response fields survive. Given
that 〈ri(t )r̃ j (t ′)〉G = G0i j (t, t ′) ∝ θ (t − t ′) (θ is the Heaviside
function) we must take into account only the contributions
coming from different integrals in the expansion [25].

For the linear case (b = 0) one way to obtain the functional
Z0 is to expand the powers μ j and then do the Gaussian
contractions, resulting in

Z0[J, J̃]

ZF [0, 0]
= 1 +

∫
du du′Ji(u)G0ik (u, u′)J̃k (u′)

+ λ

∫
du du′ du′′Ji(u

′)G0iη(u′, u)Jk (u′′)

× G0kη(u′′, u) + · · · , (A5)

where the Einstein summation convention over repeated Latin
indices, (i, k = x, v,V, η), has been used. It can be noted
that the terms start to get complicated and calculating higher
orders becomes laborious very quickly.

We see the first terms of the series (A3) with b = 0. For
j = 1 we have (applying Wick’s Theorem)

〈μ〉G =
〈
λ

∫
du η̃2(u)+

∫
du J(u)T r(u)+

∫
du J̃(u)T r̃(u)

〉
G

= 0. (A6)

For j = 2 we have

〈μ2〉G =
〈(

λ

∫
du η̃2(u) +

∫
du J(u)T r(u) +

∫
du J̃(u)T r̃(u)

)2
〉

G

= 2
∫

du du′Ji(u)
〈
ri(u)r̃k (u′)

〉
GJ̃k (u′)

= 2
∫

du du′Ji(u)G0ik (u, u′)J̃k (u′). (A7)

All other combinations belonging to j = 2 are canceled out.
For j = 3 we have

〈
μ3

〉
G =

〈(
λ

∫
du η̃2(u) +

∫
du J(u)T r(u) +

∫
du J̃(u)T r̃(u)

)3
〉

G

= 3λ

∫
du du′du′′〈η̃2(u)ri(u

′)rk (u′′)
〉
GJi(u

′)Jk (u′′)

= 3λ

∫
du du′du′′Ji(u

′)G0iη(u′, u)Jk (u′′)G0kη(u′′, u). (A8)

The moments 〈μ j〉G with j > 3 are combinations of these three: 〈μ〉G, 〈μ2〉G, and 〈μ3〉G.
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APPENDIX B: VARIABLE AND PARAMETER TRANSFORMATIONS

In following, we show the table of transformations of variables and parameters made in Sec. II. See Table I for the main
variables and parameters used.

TABLE I. Main variables and parameters used. T , L, M, and V in the dimensions columns refers to time, length, mass, and electric
potential, respectively. In the last column we can see that the number of parameters is reduced in three after transforming the dynamical
equations.

Variable Dimensions Dimensionless variable

s T t = γm
m s

ω T −1 w = m
γm

ω

xI L x = γ 2
m

m
√

D
xI

VI V V = γ 2
m

m
√

Dkc
VI

ηI MLT −2 η = 1√
D
ηI

Parameter Dimensions Dimensionless parameter

γm MT −1 1
α MT −2 a = m

γ 2
m
α

kc V M−1 1
kV MLV −1T −2 k = mkckV

γ 2
m

γe = 1
RC T −1 ζ = m

γm
γe

D M2L2T −4 1
λI T −1 λ = m

γm
λI

β ML−2T −2 b = m3D
γ 6

m
β
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