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Non-Kolmogorov-Arnold-Moser (KAM) systems, when perturbed by weak time-dependent fields, offer a
fast route to classical chaos through an abrupt breaking of invariant phase-space tori. In this work, we employ
out-of-time-order correlators (OTOCs) to study the dynamical sensitivity of a perturbed non-KAM system in
the quantum limit as the parameter that characterizes the resonance condition is slowly varied. For this purpose,
we consider a quantized kicked harmonic oscillator (KHO) model, which displays stochastic webs resembling
Arnold’s diffusion that facilitate large-scale diffusion in the phase space. Although the Lyapunov exponent of
the KHO at resonances remains close to zero in the weak perturbative regime, making the system weakly chaotic
in the conventional sense, the classical phase space undergoes significant structural changes. Motivated by this,
we study the OTOCs when the system is in resonance and contrast the results with the nonresonant case. At
resonances, we observe that the long-time dynamics of the OTOCs are sensitive to these structural changes,
where they grow quadratically as opposed to linear or stagnant growth at nonresonances. On the other hand, our
findings suggest that the short-time dynamics remain relatively more stable and show the exponential growth
found in the literature for unstable fixed points. The numerical results are backed by analytical expressions
derived for a few special cases. We will then extend our findings concerning the nonresonant cases to a broad
class of near-integrable KAM systems.
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I. INTRODUCTION

Quantum chaos is the study of quantum systems whose
classical counterparts are chaotic. An overwhelming majority
of such studies have considered Hamiltonian chaos in classi-
cal systems, where the celebrated Kolmogorov-Arnold-Moser
(KAM) theorem is applicable and studied the signatures of
classical chaos in the quantum domain. The KAM theorem
states that if an integrable Hamiltonian system, which ad-
mits as many independent constants of motion as the total
system degrees of freedom, is subjected to a weak generic
perturbation, most invariant tori in the phase space will persist
with slight deformations [1–4]. The chaos in such systems
manifests through the gradual destruction of the invariant tori.
However, the validity of the KAM theorem rests on a few
fundamental assumptions. For example, it presupposes that
the unperturbed Hamiltonian is nondegenerate, meaning that
when expressed in the action-angle variables, the Hamiltonian
takes the form of a nonlinear function involving only the
action variables while the angle variables remain cyclic. In ad-
dition, the characteristic frequency ratios must be sufficiently
irrational for the phase-space tori to survive the perturbations.
On failing to meet these assumptions, the tori will likely
break immediately at any arbitrary perturbation, leading to the
emergence of widespread chaos [5]. Most realistic physical
systems satisfy the KAM conditions. There is, however, a
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family of non-KAM systems that do not follow the usual
KAM route to chaos.

In this work, we ask the following question: How sensi-
tive is the information scrambling to the perturbations in a
quantum system whose classical counterpart is non-KAM?
We tackle this question by studying the scrambling at classical
resonances, which are the salient features of a non-KAM
system. At the resonances, the non-KAM systems display
large-scale structural changes in the presence of perturbations.
In the classical phase space, the resonances are generally
associated with breaking the invariant phase-space tori via the
creation of stable and unstable phase-space manifolds. Such a
mechanism results in diffusive chaos in the phase space even
when the perturbation is arbitrarily small. Thus, the non-KAM
systems show high sensitivity to the small changes in the
system parameters at the resonances. Earlier works exem-
plified the dynamics of non-KAM systems by studying the
systems that transit from being discontinuous to continuous
depending on the values of the appropriate parameters [6–9].
We instead focus on a system that exhibits non-KAM behav-
ior as a consequence of the classical degeneracy. With this
objective in mind, we adopt the kicked harmonic oscillator
(KHO) model as a paradigm to study information scrambling.
We use out-of-time-ordered correlators (OTOCs) to diagnose
and investigate the sensitivity of scrambling at the resonances
and the nonresonances of the quantum KHO.

The OTOCs were first introduced in the context of su-
perconductivity [10] and have been recently revived in the
literature to study information scrambling in many-body
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quantum systems [11–16], quantum chaos [17–30], many-
body localization [31–34], and holographic systems [35,36].
Given two operators A and B, the out-of-time-ordered com-
mutator function in an arbitrary quantum state |ψ〉 is
given by

C|ψ〉, AB(t ) = 〈ψ |[A(t ), B]†[A(t ), B]|ψ〉, (1)

where A(t ) = Û †(t )AÛ (t ) is the Heisenberg evolution of A
governed by the Hamiltonian evolution of the system. When
expanded, the function C|ψ〉, AB(t ) contains two-point and four-
point correlators. Since the time ordering in these four-point
correlators is nonsequential, they are usually referred to as
the OTOCs. The behavior of CAB(t ) depends predominantly
on the four-point correlators. Hence, the terms OTOC and the
commutator function are often used interchangeably to denote
the same quantity C|ψ〉,AB(t ).

To understand how the OTOCs diagnose chaos, con-
sider the phase-space operators X̂ and P̂ in the semiclas-
sical limit (h̄ → 0), where the Poisson brackets replace
the commutators. It can be readily seen that {X (t ), P}2 =
[δX (t )/δX (0)]2 ∼ e2λt , where λ denotes Lyapunov exponent
of the system under consideration, which is positive for
chaotic systems. The correspondence principle then estab-
lishes that the OTOCs of a quantum system, whose classical
limit is chaotic, grow exponentially until a time known
as Ehrenfest’s time tEF that depends on the dynamics of
the system [37–40]. For the single-particle chaotic systems,
tEF scales logarithmically with the effective Planck constant
and inversely with the corresponding classical Lyapunov
exponent—tEF ∼ ln(1/h̄eff )/λ. For t > tEF, the correspon-
dence breaks down due to the nontrivial h̄ corrections arising
from the phase-space spreading of the initially localized wave
packets. While many recent works have revealed that the
early-time growth rate of OTOCs correlates well with the
classical Lyapunov exponent for the chaotic systems, it is,
however, worthwhile to note that the exponential growth
may not always represent true chaos in the system [41–46].
Nonetheless, by carefully treating the singular points of the
system, one can show that the OTOCs continue to serve as a
reliable diagnostic of chaos [47,48].

Recently, the OTOCs have been found to show intrigu-
ing connections with other probes of quantum chaos such
as tripartite mutual information [18], operator entanglement
[49,50], quantum coherence [51], and Loschmidt echo [52]
to name a few. Moreover, the OTOCs have been investigated
in the deep quantum regime and observed that the signatures
of short-time exponential growth can still be found in such
systems [53]. Also, see Ref. [54] for an interesting comparison
of the OTOCs with observational entropy, a recently intro-
duced quantity to study the thermalization of closed quantum
systems [55,56].

This paper is structured as follows. In Sec. II we review
some basic features of the KHO model, including resonances
and nonresonances in both classical and quantum domains.
We analyze the behavior of OTOCs in Sec. III with a spe-
cial emphasis given to the short-time dynamics in Sec. III A.
Thereafter, we focus on the asymptotic time dynamics of the
OTOCs in Sec. III B and show how the OTOCs distinguish
the resonances from the nonresonances. In Sec. IV we analyt-
ically derive the OTOCs for a few special cases of the quantum

KHO model. Then, in Sec. V we provide a brief overview of
the OTOCs for the phase-space operators. We finally conclude
this text in Sec. VI with a few remarks on the relevance of this
work to the stability of quantum simulators.

II. MODEL: KICKED HARMONIC OSCILLATOR

We consider the harmonic oscillator model with a natu-
ral frequency ω, subjected to periodic kicks by a nonlinear
position-dependent field, having the following Hamiltonian
[57–69]:

H = P2

2m
+ 1

2
mω2X 2 + K cos(kX )

∞∑
n=−∞

δ(t − nτ ), (2)

where X is the position, P is the momentum, m is the mass
of the oscillator, and k is the wave vector. The strength of
the kicking is denoted by K . The time interval between two
consecutive kicks is given by τ . For simplicity, throughout the
paper, we will take m = k = 1. The system is parity invariant,
i.e., H (P, X ) = H (−P,−X ).

In the action-angle coordinates, the Hamiltonian of the
harmonic oscillator (H0) scales linearly with the action
coordinate—the canonical transformation to the action-angle
variables as given by (X, P) = (

√
2I/ω cos θ,

√
2Iω sin θ )

yields H0 = ωI . Since H0 is linear in I , the characteristic fre-
quency of the phase-space tori (∂H0/∂I = ω) turns out to be
independent of I , which violates one of the KAM assumptions
that the unperturbed Hamiltonian must be nonlinear in I (the
nondegeneracy condition). Hence, the harmonic oscillator is
classified as non-KAM integrable. In the following, we briefly
discuss the dynamical aspects of the KHO model in both the
classical and quantum limits.

A. Classical dynamics

In the classical limit, the dynamics of the KHO model can
be visualized by the following two-dimensional map:

un+1 = (un + ε sin vn) cos(ωτ ) + vn sin(ωτ ),
(3)

vn+1 = −(un + ε sin vn) sin(ωτ ) + vn cos(ωτ ),

where u = P/ω and v = X denote scaled momentum and
position variables, respectively, and ε = K/ω is the effective
strength of perturbation. In the remainder of this paper, we
adopt the notation ωτ = 2π/R. The system is considered clas-
sically resonant (or simply in resonance) whenever R assumes
integer values. For noninteger R, the system is nonresonant.
The KHO map can be physically realized through the motion
of a charged particle in a constant magnetic field, with the
particle being kicked by the wave packets of an electric field
that propagates perpendicular to the direction of the magnetic
field [70].

Under the rescaling of the variables (X, P/ω) → (v, u), the
unperturbed harmonic oscillator is rotationally invariant in the
phase space. Besides, the kicking potential, cos X , is invari-
ant under the translations along the X direction by integer
multiples of 2π . Thus, when K is nonzero, there will be a
natural competition between the translational and rotational
symmetries of the phase space. This competition becomes
more prominent for R ∈ Rc ≡ {1, 2, 3, 4, 6} [57,61]. The
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FIG. 1. The figure illustrates the classical phase-space trajecto-
ries of the KHO model for three randomly chosen initial conditions
in the vicinity of R = 4, and each evolved for 104 time steps. Here we
set K = 1 and τ = 1. When R = 4, for the given set of parameters,
the phase space mainly constitutes three regions: the stochastic web,
period four islands, and a period one regular island surrounding the
origin. Each initial condition in the figure corresponds to one of
these regions. When the system is fully nonresonant, the phase space
is mostly regular. With R varying from 3.9 to 4 in the sequential
order depicted in panels (a)–(d), the trajectories become increas-
ingly distorted until they completely break apart at the resonance.
The periodic islands feature stable periodic points at their centers
and unstable periodic points on their exterior. The boundaries of
these islands collectively constitute the stochastic web that facilitates
large-scale phase-space diffusion

system is exactly solvable for R = {1, 2}. In the remaining
cases, the phase space consists of periodic stochastic webs.
These webs display translation and rotational invariance in
the phase space. In particular, the cell structure of these webs
closely resembles tessellations. For R = 4, the web appears
as a square lattice, and for R = 3 and 6, it is a Kagome
lattice with hexagonal symmetry. In this work, we focus on the
vicinity of R = 4 for the studies of information scrambling.

The stochastic webs resemble Arnold’s diffusion in sys-
tems with more than two degrees of freedom. Their thickness
is exponentially small in ε [61]. These webs arise from the
exteriors of the periodic islands and mainly consist of the
separatrices of the KHO. Any trajectory that sets out on
the separatrices will eventually diffuse towards the infinity—
〈rn〉 ∼ ε

√
n, where rn = ω

√
P2 + X 2 is the distance traversed

by an average phase-space trajectory after n time steps. As a
result, the mean energy of the system grows linearly at any
finite perturbation—〈En〉 ∼ ε2n. The diffusion, however, is
suppressed for weak perturbations when R takes noninteger
values. In the latter case, the diffusion coefficient remains
close to zero for small perturbations [60]. Nevertheless, the
differences between the resonances and the nonresonances
become less apparent as the perturbation increases. Figure 1
shows the phase-space trajectories of the KHO system for
a few randomly chosen initial conditions in the vicinity of
R = 4 for K = 1. The corresponding separatrix equation is

given by v = ±(u + π ) + 2lπ , l ∈ Z [61]. The phase space is
regular with distorted circles when the system is nonresonant.
However, it can be seen from the figure that the trajectories get
increasingly deformed as R approaches 4. At R = 4, the phase
space undergoes significant changes due to the creation of
period-4 orbits. Such behavior has applications in the chaotic
electron transport in semiconductor superlattices [71,72].

B. Quantum dynamics

The existence of stochastic webs in the classical phase
space can have far-reaching consequences on the correspond-
ing quantum dynamics, which we briefly discuss here to set
the ground for the OTOC analysis in the next section. As the
system is being kicked at periodic intervals of time, the time
evolution is given by the following Floquet operator:

Ûτ = exp

{
−2π i

R
â†â

}
exp

{
− iK

h̄
cos X̂

}
, (4)

where â and â† are the annihilation and creation operators cor-
responding to the particle trapped in the harmonic potential,
respectively. The position operator is X̂ = √

h̄/2ω(â + â†).
The irrelevant global phase e−iπ/R is ignored. The quan-
tum chaos in the KHO model has been extensively studied
over many years [59,60,67,69,73–75]. Experimental propos-
als have also been put forth to realize the dynamics of
quantum KHO using ion traps and Bose-Einstein condensates
[58,63,76–78].

Recall that the classical KHO displays translational invari-
ance whenever R ∈ Rc, which in the quantum limit, translates
into the existence of commuting groups of translations. In
particular, under the translation invariance, the Rth powers of
Ûτ commute with either one or two parameter groups of trans-
lations or displacement operators [68]. As a result, the system
admits extended Floquet states in the phase space, leading to
an unbounded growth of the mean energy 〈(a†a)(t )〉. More-
over, these states also facilitate the dynamical tunneling of the
localized coherent states [76]. As we shall see later, the trans-
lation invariance is also crucial to obtaining certain analytical
expressions of the OTOCs, which are otherwise intractable.

For the noninteger R values, previous studies argued that
quantum localization takes place, and energy growth will be
stopped after some time [68]. More specifically, when R is an
irrational number, the quantum KHO model can be mapped to
a tight-binding approximation in the limit of K � h̄π , which
explains the localization of the quantum dynamics [60,79].
The effects of localization are also prevalent in the scrambling
dynamics. We will explore this in more detail in the coming
sections.

III. SCRAMBLING IN QUANTUM KHO MODEL

In this section, we address the central goal of our paper,
which is to contrast the dynamics of information scrambling
at resonances with that of nonresonances of the quantum
KHO. The OTOCs are natural candidates to quantify the
scrambling. While the OTOCs have been extensively studied
in finite-dimensional systems, including those with time de-
pendence [27,53,80–82], the studies on continuous variable
systems have primarily focused on time independent settings
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[42,83]. However, the system considered in this paper is both
continuous variable and time dependent, leading to possible
unbounded orbits in phase space and consequently to un-
bounded growth of OTOCs.

To study the OTOCs in the continuous variable systems, an
appropriate choice of initial operators would be the canonical
pair of position (X̂ ) and momentum (P̂) operators. However,
for the reasons that become clear later, we instead consider
the bosonic ladder operators â and â† as the initial operators.
For an arbitrary state |ψ〉, we are interested in evaluating the
quantity

C|ψ〉, ââ† (t ) = 〈ψ |[â(t ), â†]†[â(t ), â†]|ψ〉, (5)

where â(t ) = Û †t
τ âÛ t

τ is the Heisenberg evolution of â under
the dynamics of KHO and t is the total number of time steps.
Before analyzing C|ψ〉, ââ† (t ), it is helpful first to examine how
â(t ) depends on t . A single application of Ûτ on â gives

â(1) = Û †
τ âÛτ = e−2π i/R

[
â + iK√

2h̄ω
sin X̂

]
. (6)

After t recursive applications of Ûτ , the Heisenberg evolution
of â reads as

â(t )e2π it/R = â + iK√
2h̄ω

t−1∑
j=0

e2π i j/R sin X̂ ( j), (7)

where X̂ ( j) = Û † j
τ X̂Û j

τ and sin X̂ = [eiX̂ − e−iX̂ ]/2i. From
Eq. (7), we make the following immediate observations: (i)
the total number of terms on the right-hand side scales lin-
early with t and (ii) the operator sin X̂ ( j) is always bounded,
i.e., ‖ sin X̂ ( j)|ψ〉‖ � |‖ψ〉‖ for any |ψ〉. As a result, the
asymptotic growth of â(t ) can be at most linear. Long-time
dynamics of several other quantities, such as mean energy
growth, follow directly from this result. For instance, in an
arbitrary Fock state |n〉, one can use Eq. (7) to show that the
mean energy is always bounded above by a quadratic function
of t , i.e.,

〈n|(a†a)(t )|n〉 � n +
√

2n

h̄ω
Kt + K2t2

2h̄ω
. (8)

In a similar way, we use Eq. (7) to learn the behavior of
C|ψ〉, ââ† (t ). To do so, we take

[â(t ), â†]e2π it/R = 1 + iK√
2h̄ω

t−1∑
j=0

e2π i j/R[sin X̂ ( j), â†]. (9)

For K = 0, the system is just an integrable harmonic oscillator
and the OTOC remains a constant in any given state |ψ〉 for
all t � 0—C|ψ〉, ââ† (t ) = 1. This means that the initial operator
â remains fully regular, i.e., the operator â(t ) retains the diag-
onality in the coherent state basis. For K �= 0, as the system
evolves, the operator will start to scramble into the operator
Hilbert space via the mixing of eigenstates, which is hinted at
by the positive growth of the OTOC. For example, after one
time step, we can calculate explicitly that

C|ψ〉, ââ† (t = 1) = 1 + K2

4ω2
〈ψ | cos2 X̂ |ψ〉 � 1 (for all |ψ〉).

(10)

For t > 1, in general, a closed form expression for C|ψ〉, ââ† (t )
is out of reach. Hence, we resort to numerical methods to
probe the OTOCs. To be precise, we numerically compute
the OTOCs by considering a weak (K � 1) and a moderately
strong [K ∼ O(1)] kicking strength under both resonance
(R = 4) and nonresonance (R = 3.9) conditions. We choose
two initial quantum states: the vacuum state |0〉 and a coherent
state |α〉. In what follows, we shall first examine the early-time
behavior of the OTOCs, then proceed to analyze the long-time
dynamics.

A. Early-time dynamics

Classically, the vacuum state corresponds to a fixed point
of the dynamical map given in Eq. (3). In contrast, the coher-
ent state is chosen to be centered at a point on the classical
stochastic web associated with the resonant case R = 4, satis-
fying the equation v = ±(u + π ) + 2lπ , l ∈ Z. In the phase
space, these two initial conditions give rise to different dy-
namics altogether. Thus, it is essential to see if the differences
are also reflected in the behavior of the OTOCs over short
periods.

1. Vacuum state (fixed point) OTOC

We first discuss the resonant scenario and then contrast it
with the nonresonant one. Due to the correspondence princi-
ple, the early time growth of the vacuum state OTOCs will
have a close correspondence with the fixed point behavior of
(u, v) = (0, 0) in the classical phase space. To illustrate, we
consider the Jacobian matrix of the classical map evaluated at
(0, 0),

JR=4 =
[

0 1

−1 −K cos vn
ω

]∣∣∣∣∣
un=0,vn=0

=
[

0 1

−1 −K
ω

]
,

(11)

whose eigenvalues are γ± = (−K ± √
K2 − 4ω2)/2ω. In this

work, we always assume that K is positive. Therefore, for
K < 2ω, the eigenvalues are a pair of complex conjugates
with unit modulus, i.e., |γ±| = 1, which implies that the
fixed point is stable. The phase-space trajectories in this re-
gion will wrap around (0, 0) in closed elliptically shaped
orbits. Consequently, the vacuum state OTOCs are expected
to remain stagnant until the Ehrenfest time due to the
vanishing Lyapunov exponent. The map then undergoes a
bifurcation at K = 2ω with the emergence of two other sta-
ble fixed points. For K > 2ω, the point (0, 0) becomes a
saddle—in this case, the trajectories with the initial condi-
tions located slightly off (0, 0) will diverge exponentially
from one another with the saddle point exponent λs given by
∼max{log(|γ+|), log(|γ−|)}. Accordingly, the OTOCs in the
vacuum state |0〉 or any coherent state |α〉 that lives close by
are expected to display short-time exponential growth when-
ever K > 2ω.

Figures 2(a) and 2(b) illustrate the vacuum state OTOCs
for two different kicking strengths, namely K = 0.627ω and
K = 2.5ω in the vicinity of R = 4. All the blue curves (with
point markers) correspond to R = 4, and the orange curves
(with square markers) represent the case of R = 3.9. First,
when R = 4 and K is small, the function C|0〉, ââ† (t ) shows an
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FIG. 2. The figure illustrates the early time OTOC behavior near R = 4 in two different perturbative regimes of the quantum KHO, con-
sidering two different initial states, namely the vacuum state |0〉 and a coherent state |α〉, where Re(α) = √

ω/2h̄〈X̂ 〉 and Im(α) = 〈P̂〉/√2ωh̄,
centered at an unstable period four point given by (〈P̂〉, 〈X̂ 〉) = (0, π ). The kicking period is fixed at τ = 1, which automatically sets
ω = 2π/R. While the top panels demonstrate the OTOC calculations, the bottom panels show the classical phase-space dynamics in the
vicinity of the corresponding initial conditions. The square-shaped black dot in the bottom panels represents the corresponding classical initial
condition. Also, note the color coding—we use blue to denote the resonant case (R = 4) and orange for the nonresonant case (R = 3.9). The
darker colors denote the deep quantum regime, and the lighter colors indicate the semiclassical domain. [(a) and (b)] The system is initialized
in the vacuum state |0〉. In (a), the kicking strength is fixed at K = 0.627ω, corresponding to the weak perturbative regime. Moderately strong
perturbation is considered in (b). The plot shows early-time dynamics on the semilog scale. Black and gray dashed lines are plotted here to
illustrate the two-step early-time exponential growth. Furthermore, we find no visible differences between the cases of R = 4 and R = 3.9.
[(c) and (d)] Here we repeat the same calculations as before by replacing the vacuum state with the coherent state [see the main text for details].

initial stagnant behavior, which is demonstrated in Fig. 2(a).
The lack of growth at initial times is reminiscent of the clas-
sical elliptic stability of the point (0, 0). On the other hand,
for K = 2.5ω, we observe the initial growth to be quadratic
in the deep quantum regime (h̄ = 1) [see Fig. 2(b)]. This
is because, in the deep quantum regime, the Ehrenfest time
τEF ∼ ln(1/h̄eff )/2λs [37] remains very small, which makes
it hard to observe the exponential growth. However, one can
witness genuine exponential growth by slowly moving to-
wards the semiclassical regime. This can be done by tuning
the Planck constant h̄. While for K = 0.627ω, the semiclas-
sical OTOCs under the resonance remain stagnant for much
longer as they should be, the case of K = 2.5ω shows a
clear exponential scaling. In the latter case, when h̄ = 10−3,
the quantum Lyapunov exponent extracted from the OTOC
through an exponential fitting of the first six data points is
λotoc ≈ 0.68. This value aligns well with the classical saddle
point exponent of the origin, λs = ln(2) ≈ 0.693. In Ref. [46],
it has been observed that in locally hyperbolic systems, the
OTOCs exhibit a two-step early-time exponential growth. Due
to the hyperbolicity of (0, 0), a similar behavior is expected in
the vacuum state OTOC for K > 2ω. We indeed observe in
Fig. 2(b) that the initial growth of ∼e2λotoct is followed by a
subsequent regime scaling as ∼eλotoct .

To strengthen the correspondence between the classi-
cal and the quantum exponents, we analytically extract the
quantum exponent from the vacuum state OTOC in the semi-
classical limit (h̄ → 0). Let l ∈ R+ and l > 1, then reducing
h̄ by the factor of l is equivalent to increasing both K and
ω in the second term of the Floquet operator by the same
factor l while keeping h̄ fixed. This, however, does not

affect the first term exp{−i2π/Râ†â} [84]. Since K is now
increased, one plausible effect would be enhanced scrambling.
Then again, for small t , with the initial state |0〉, it holds
that cos(X̂/

√
l ) ≈ 1 − X̂ 2/2l for l 
 1. Therefore, we have

e−iKl cos(X̂/
√

l ) ≈ e−iKl eiKX̂ 2/2. The phase term e−iKc can be
ignored here. At R = 4, under the modified Floquet evolution,
the bosonic operators evolve according to the following trans-
formation: [

â(t )
â†(t )

]
=

(
y − i y

y y + i

)t[
â
â†

]
, (12)

where y = K/2ω. The eigenvalues of the above linear trans-
formation are given by λ± = (K ± √

K2 − 4ω2)/2ω, which
also turn out to be the eigenvalues of the Jacobian in Eq. (11).
Hence the semiclassical vacuum state OTOC [C|0〉,ââ† (t )]
grows exponentially in time with max{log(λ+), log(λ−)} be-
ing the rate of growth. For K > 2ω, the growth remains
exponential. For K = 2ω, the classical bifurcation point,
|λ±| = 1, leading to the stagnant behavior. When K is below
2ω, oscillatory behavior is expected. This establishes a strong
classical-quantum correspondence in the limit of h̄ → 0. At
this point, the time scale for which the above approximation
remains valid is unclear. Nevertheless, given the nature of
classical fixed point behavior, we anticipate its validity within
the Ehrenfest regime.

Interestingly, for R = 3.9, we observe that the short-time
growth of the OTOCs almost coincides with that of the reso-
nant counterpart, regardless of the strength of kicking. This
can be intuitively understood by examining the fixed point
nature of (0, 0) under the nonresonance condition. The general
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condition for the bifurcation of (0, 0) is given by

K

ω
= 2 cos ωτ ± 2

sin ωτ
, where ωτ = 2π

R
. (13)

Accordingly, for R = 3.9, the bifurcation point is located at
K = 1.921ω, slightly off that of R = 4. Therefore, for K <

1.921ω, the point (0, 0) remains stable. Also, when the per-
turbation is more than what is required for the bifurcation, the
origin becomes a saddle with the emergence of two other sta-
ble fixed points. Thus, the bifurcation mechanism resembles
that of the resonance, with the only difference being a slight
change in the bifurcation location along the parameter axis of
K . Consequently, at any given perturbation strength, the phase
trajectories in the vicinity of the origin do not acquire any
major changes as R is moved from 4 to 3.9. The phase-space
plots presented in Fig. 2(a) support this conclusion. Therefore,
we expect the short-time growth of the vacuum state OTOCs
for R = 3.9 and R = 4 to be qualitatively identical, irrespec-
tive of other system parameters, which is confirmed by the
numerical results. Similarly to the case of R = 4, the two-
step exponential growth is also observed for R = 3.9. This
behavior is evident in Fig. 2(b), where the blue and orange
curves exhibit nearly identical growth rates.

2. Coherent state (on the web) OTOCs

As for the coherent state OTOCs, at R = 4, the short-time
dynamics rely mainly on the nature of the classical stochastic
web. Recall that for K < 2ω, the origin (0, 0) is the only
classical fixed point. There exist, however, an infinite number
of period four points, each located at (u, v) = (pπ, qπ ) with
p, q ∈ Z for any arbitrary small K [60]. The period four orbits
these points generate are stable if p + q is even and unstable
otherwise. Thus, the presence of alternate stable and unstable
manifolds causes the movement of any trajectory set out from
the neighborhood of an unstable orbit to be highly complex.
Such a complex motion persists even in the limit of small k,
where the Lyapunov exponent approaches zero—for example,
see the phase-space trajectories in Fig. 1(d). We are interested
in seeing if such behavior is also reflected in coherent state
OTOCs. Here, for the OTOC calculations, we focus on a
specific coherent state with the mean coordinates located at
(〈P̂〉, 〈X̂ 〉) = (0, π ), which corresponds to an unstable period
four point.

The results are plotted in Figs. 2(c) and 2(d) for the same
perturbation strengths as before. We first discuss the case
of resonance. When K = 0.627ω, the OTOC in the deep
quantum regime exhibits an approximate quadratic growth. In
this case, the corresponding classical phase-space trajectories
diverge at a rate given by λcl ≈ 0.06, the maximum Lyapunov
exponent associated with the unstable period four point (0, π ).
Due to the smallness of the exponent, it is difficult to observe
the exponential growth even when h̄ is small. On the other
hand, when K = 2.5ω, the corresponding classical exponent
is given by λcl ≈ 0.9. In this case, the OTOC in the deep quan-
tum regime (h̄ = 1) still displays an initial algebraic growth.
However, on reducing h̄, a clean exponential growth can be
observed. For h̄ = 10−2, the rate of growth of the OTOC
is extracted to be λotoc ≈ 0.81, which agrees closely with
the classical exponent, highlighting a good quantum-classical

correspondence. The corresponding plots are shown in
Fig. 2(d). We also notice that the coherent state OTOCs for
smaller h̄ overshoot those for larger h̄ in both Figs. 2(c) and
2(d). Moreover, since the stochastic webs fill a significant
portion of the phase space at resonances, it is expected that
nearly all coherent states overlapping with these webs will
exhibit similar behavior as shown in Figs. 2(c) and 2(d).

To contrast the above results with the nonresonant case,
we repeat the OTOC calculations by setting R = 3.9 for the
same coherent state (〈P̂〉, 〈X̂ 〉) = (0, π ). First, under small
perturbations, the classical phase space remains primarily
regular. Hence, the initial time growth of OTOCs is expected
not to contain any exponential scaling. We confirm this from
Fig. 2(c), where the initial growth (as shown by orange curves
with square markers) for all the cases of h̄ is algebraic and
shows no exponential growth. At initial times, the orange
curves nearly coincide with the blue curves. However, a
clear departure from one another can be observed as time
progresses. The algebraic growth can be reasoned with the
following argument: Although the system is in nonresonance,
the closeness of R to the resonance condition suggests a
competition between the diffusive and regular dynamics. The
diffusive dynamics usually dominate the early-time behavior.
Hence, we see a coincidence between the initial growths of
resonant and nonresonant cases. On the other hand, when
K is sufficiently large, the classical phase-space trajectories
display chaotic diffusion. One might expect exponential
scaling over a short time in this case. The numerics indicate
that the OTOCs in the deep quantum regime still display
algebraic growth. Nevertheless, the exponential growth
appears in the semiclassical regime [see Fig. 2(d)], where the
orange curves show identical growth as the blue curves. Recall
that reducing h̄ leads to a competition between the enhanced
scrambling and the oscillatory behavior due to an effective
increase in K and ω. Here, for h̄ = 0.1, the OTOC grows at a
faster rate than the case of h̄ = 1 for both values of K . There
is, however, no reason to expect similar behavior as h̄ further
varies. For instance, in Fig. 2(c), the growth for h̄ = 0.01, as
shown by the lighter orange curve, seems to be suppressed
after some initial time. Intuitively, the correspondence
principle implies oscillatory behavior in the OTOC as h̄ → 0
as the phase space is stable under nonresonances. Hence, for
very small h̄, the enhanced scrambling effect is suppressed,
and the oscillatory behavior takes over. When the perturbation
is large, the semiclassical OTOCs outperform those in the
deep quantum regime [see Fig. 2(d)].

B. Long-time dynamics

Although the OTOCs do not appear to distinguish the
nonresonances from the resonances over a short time, the
long-time dynamics produce significant differences between
the two. These differences are more pronounced when the
kicking strength is small (K � 1). Let us first examine the
resonant cases to see how long-time dynamics stand out.
Recall from Eq. (9) that the total number of terms in the
equation grows linearly with time. At each time step, the
right-hand side grows by one more term, which is given by
[sin X̂ ( j), â†]e2π i j/R. The resonances will then lead to a co-
herent addition of all the terms, thus rendering the asymptotic
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FIG. 3. The figure illustrates the OTOC growth over a period of 103 time steps for both the initial states |0〉 and |α〉. We consider the
interval between two successive data points 10τ to avoid computational overhead due to the unbounded nature of the system. The parameters
across the panels are fixed to be the same as those in Fig. 2. The black dashed lines following various scalings are drawn to contrast the growth
under the resonance and nonresonance conditions. In the strong perturbative regime (K = 2.5ω), the quadratic growth remains the dominant
behavior for all the parameters as shown in (b) and (d). The differences between the resonant and nonresonant cases become apparent when
K is small (see the main text for details; also see Fig. 2 for the corresponding short-time growth). Note that as the time interval is large, the
oscillations may not be fully visible in Fig. 2(a).

growth of the OTOC a quadratic function of time, for a typical
initial state—C(t ) ∼ K2t2. When K is too small (K � 1), the
operator sin X̂ ( j) grows only by a negligible amount. Then
the OTOC can be explicitly shown to exhibit quadratic growth
by ignoring the terms of order O(K3) and higher in the time-
evolved operator â(t ). Refer to Appendix B for more details,
where we give an explicit derivation for the same. However,
since sin X̂ ( j) is bounded, the quadratic growth is expected to
persist even when K is large.

To verify numerically, we refer to Fig. 3, where the long-
time dynamics have been illustrated for ∼103 time steps. Due
to the unbounded nature of the system, a sufficiently large
Hilbert space is needed to perform these numerical simula-
tions. Here we analyze the resonant cases in the figure. The
figure demonstrates that in the deep quantum regime (h̄ = 1),
for both the initial states |0〉 and |α〉, the long-time dynamics
always scale quadratically as long as the resonance condition
is satisfied regardless of the strength of perturbation. While
the same result seems to hold in the semiclassical limit for
the coherent state, the vacuum state OTOC shows anomalous
oscillatory behavior as shown in Fig. 3(a). This behavior is not
surprising as it is expected due to the classical-quantum cor-
respondence. The classical stability of (0, 0) implies a longer
tEF for the vacuum state OTOC in the semiclassical limit com-
pared to other cases in the figure. The numerics suggest that
this behavior persists beyond 103 time steps. The quadratic
scaling may emerge as the OTOC picks up nontrivial h̄ effects.
Moreover, for large K , the quadratic growth persists for both
h̄ = 1 and h̄ = 0.1 as shown in Figs. 3(b) and 3(d). It is
worth noting that the degree of scrambling, as quantified by
the magnitude of the OTOC, always depends on the specific
choice of the state vector despite both states exhibiting long-
time quadratic growth. For example, the coherent states with
the mean coordinates located on the stochastic web delocalize
quickly in the phase space when acted on by the Floquet
unitary Ûτ . In these states, the initial operators are relatively
more prone to get scrambled compared to the vacuum state
|0〉.

Contrary to the resonant cases, the nonresonant R com-
prises a dense set of rational numbers (excluding integers)
with measure zero and irrational numbers with measure one.

When R is irrational, the equidistribution property implies that
in the long-time limit, the phases {e2π i j/R}t

j=0 will tend to
behave as though they were drawn uniformly at random from
the unit circle in the complex plane. This leads to incoherent
summations, causing various terms in Eq. (9) to interfere de-
structively. Therefore, we expect that the growth of the OTOC
will be suppressed. As we shall show in the next section,
the irrationality of R, on average, induces linear growth in
the OTOC (see also Appendix B for more details). Let us
also point out that the OTOC growth in a typical pure state
may generally vary from the linear behavior. Moreover, the
rational R values also induce subdued growth, though not as
much as the irrationals. The results demonstrated in Fig. 3
indicate that the growth is suppressed for R = 3.9 in all the
cases considered (shown in the orange curves). When K is
small, while the vacuum state OTOCs oscillate as shown in
Fig. 3(a), the coherent state OTOCs follow power laws given
by ∼t0.2 and ∼t0.6 respectively for h̄ = 1 and h̄ = 0.1 [see
Fig. 3(c)]. As K becomes large, the OTOCs at nonresonances
will also grow quadratically as the system becomes fully
chaotic.

IV. ANALYTICALLY TRACTABLE CASES

In the preceding section, our analysis primarily relied on
numerical investigations to compare the operator growth in
both the resonant and the nonresonant scenarios. Given that
the kicking potential is highly nonlinear, the exact solutions
of the quantum KHO are generally intractable. There is, how-
ever, a narrow window of opportunity involving a few special
cases, such as the symmetries and quantum resonances that al-
low for the analytical treatment of the OTOCs. In this section,
we exploit the translation invariance of the quantum KHO
by considering a few selective resonant cases to obtain the
OTOCs as explicit functions of t . In particular, we consider the
trivial cases, R = 1 and 2, followed by a more intricate case of
R = 4. Additionally, we provide an analytical approximation
for the OTOC averaged over the space of pure states, which
we shall refer to as the average state-OTOC, by considering
small K (K � 1) and an irrational R.
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A. Case-1: R = 1 and 2

Here we focus on the commutator function C|ψ〉, ââ† (t ) for
the case of R = 2. We do not consider R = 1 separately since
the resulting expressions for the OTOCs are the same in both
cases. In the present case, stochastic webs do not constitute
the classical phase space due to the exact solvability of the
classical map, which is given by

vn = (−1)nv0

un = (−1)n[u0 + nε sin v0]. (14)

It is worth noting that the time-evolved operators X̂ (t ) and
P̂(t ) admit the same functional form as the classical variables
vn and un, indicating a persistent classical-quantum correspon-
dence.

When R = 2, the phase operator e−(2π i/R)â† â possesses al-
ternating +1 and −1 on its diagonal. This enables us to
express â(t ) explicitly as

(−1)t â(t ) = â + iKt√
2h̄ω

sin X̂ , (15)

which shows a clear linear dependence on t accompanied by
an oscillatory behavior originating from the term (−1)t . By
noting that [sin X̂ , â†] = √

h̄/2ω cos X̂ , we finally obtain

C|ψ〉, ââ† (t ) = 1 + K2t2

4ω2
〈ψ | cos2 X̂ |ψ〉, (16)

which is a quadratic function of t . The oscillating term (−1)t

disappears as the OTOCs involve absolute squares of the
commutators. Moreover, the commutator function always re-
tains quadratic growth except when 〈ψ | cos2 X̂ |ψ〉 = 0. As
an example, we here take |ψ〉 = |0〉, then 〈0| cos2 X̂ |0〉 =
e−h̄/2ω cosh(h̄/2ω). We can therefore write

C|0〉, ââ† (t ) = 1 + K2t2

4ω2
e−h̄/2ω cosh

(
h̄

2ω

)
. (17)

To obtain the OTOC as a state-independent quantity, one
can average C|ψ〉, ââ† (t ) over the space of pure states or a suit-
able set of vectors forming a continuous variable 1-design. In
continuous variable systems, the Fock state and the coherent
state bases are known to form 1-designs [85,86]. Note that
in finite-dimensional systems, the OTOCs are often evaluated
in the maximally mixed states, equivalent to averaging over
the Haar random pure states. On the contrary, the notion of
maximally mixed states in continuous variable systems is
not well defined due to the diverging traces induced by the
infinite-dimensional Hilbert spaces. Despite this limitation,
the averaging procedure can still provide insights into the
nature of scrambling in a typical pure state.

For R = 2, one can readily evaluate the average state-
OTOC as follows:

C|ψ〉, ââ† (t ) = 1 + K2t2

4ω2
cos2 X̂ . (18)

This expression can be simplified by recalling that cos X̂ is
related to the displacement operators,

cos X̂ = 1

2

[
D

(
i

√
h̄

2ω

)
+ D

(
−i

√
h̄

2ω

)]
. (19)

From Eq. (A1) and (A3), it then follows that

C|ψ〉, ââ† (t )

= 1 + K2t2

16ω2

⎡
⎣D

(
i

√
2h̄

ω

)
+ D

(
−i

√
2h̄

ω

)
+ 2D(0)

⎤
⎦

= 1 + K2t2

8ω2
. (20)

In the second equality, we used the result from Appendix A
that D(β ) = δRe(β ),0δIm(β ) for any β ∈ C. We also assumed a
finite nonzero value for h̄. The above expression for C|ψ〉, ââ† (t )
is exact and valid for all kicking strengths.

B. Case-2: R = 4

Here we set R = 4 and derive the analytical expression for
the OTOC owing to certain restrictions on ω. Our analysis
can also be extended to the other cases when R = 3 and 6.
Recall from Ref. [68] and Sec. II that under the translational
invariance, Rth powers of the unitary evolution, U R

τ , commute
with either one-parameter or two-parameter groups of transla-
tions depending on the values ω assumes. Since â(t ) contains
the terms sin X̂ ( j) for j = 0, . . . , t − 1, we are interested in
finding a suitable ω that ensures the commutation relation
[sin X̂ , Û 4] = 0. In order to proceed, it is useful to write U 4

τ in
a compact form as follows:

Û 4
τ = [e−i(K/h̄) cos(P̂/ω)e−i(K/h̄) cos X̂ ]2, (21)

where the Floquet operator within the parentheses can be iden-
tified with the kicked Haper model [87]. Since sin X̂ always
commutes with cos X̂ , we now only require to find ω, that
allows for the commutation between sin X̂ and cos(P̂/ω), i.e.,
[sin X̂ , cos(P̂/ω)] = 0.

One can verify that the commutator [sin X̂ , cos(P̂/ω)] in-
deed vanishes whenever ω = h̄/2kπ with k ∈ Z+. To see this,
we consider the following:

[eiX̂ , e±iP̂/ω] = eiX̂ e±iP̂/ω − e±iP̂/ωeiX̂

= eiX̂±(iP̂/ω)∓(ih̄/2ω) − eiX̂±(iP̂/ω)±(ih̄/2ω)

= (−1)k[eiX̂±2kiπ P̂ − eiX̂±2kiπ P̂] for ω = h̄

2kπ

= 0. (22)

The second equality follows from the BCH formula. In the
third equality, we have made the substitution that e±ikπ =
(−1)k . Likewise, e−iX̂ can also be shown to commute with
cos(P̂/ω). Alternatively, one can also show that the oper-
ator e±iX̂ belongs to a one-parameter group of translations
whenever the above condition on ω is satisfied [68]. As a
result, we have Û †4

τ sin X̂Û 4
τ = sin X̂ . Therefore, for some j ∈

{0, 1, 2, 3}, the translational invariance implies sin X̂ ( j) =
sin X̂ (t + j), for t being an integer multiple of 4. Furthermore,
due to h̄ dependence, this is also called the quantum resonance
condition [58]. In this case, the operator â(t ) at a total time
t = 4s, where s is a nonnegative integer, can be expressed as
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an explicit function of t :

â(t ) = â + iKt

4
√

2h̄ω

3∑
j=0

ei jπ/2 sin X̂ ( j). (23)

This allows us to write the OTOC as follows:

Cââ† (t ) = 1+ Kt

4
√

2h̄ω

⎡
⎣ 3∑

j=0

i j+1[sin X̂ ( j), â†] + H.c.

⎤
⎦

+ K2t2

32h̄ω

⎡
⎣ 3∑

j, j′=0

i j′− j[sin X̂ ( j), â†]†[sin X̂ ( j′), â†]

⎤
⎦,

(24)

where H.c. denotes the Hermitian conjugate of the operator
i j+1[sin X̂ ( j), â†]. Although Eq. (24) implies that the growth
of the OTOC is a quadratic polynomial of time, the presence
of operators such as {sin X̂ ( j)}3

j=1, which are not amenable
to the exact treatment, makes the OTOC only quasiexact
solvable. Nevertheless, in the limit of weak perturbations, we
can still obtain a good approximate analytical solution up
to the leading orders in K . In particular, when K is small
(K � 1) and at sufficiently long times, the terms of the order
O(Kt ) and O(K2t2) dominate over the remaining others, such
as O(Kmt ) with m � 2 and O(Knt2) with n � 3. Therefore,
we only require approximating the terms {sin X̂ ( j)} to the
zeroth order in K—sin X̂ (1) ≈ i sin(P̂/ω) ≈ − sin X̂ (3) and
sin X̂ (2) ≈ − sin X̂ . Thus, ignoring all the other insignificant
contributions, we finally obtain

Cââ† (t ) ≈ 1 + K2t2

16ω2

[
cos X̂ + cos

(
P̂

ω

)]2

. (25)

Equation (25) can be evaluated in any arbitrary initial state.
We calculate the average state-OTOC to better understand its
behavior in a typical quantum state.

C|ψ〉, ââ† (t ) = 1 + ct2 for t = 4s, s ∈ Z+ ∪ {0}, (26)

where c ≈ K2/16ω2 for K � 1.
Figure 4 contrasts Eq. (26) with the numerically com-

puted average state-OTOC for two different kicking strengths.
The quantum resonance condition is invoked by fixing the
frequency at ω = h̄/2π , with h̄ = 1. We find an excellent
agreement between the numerical results and Eq. (26). Note,
however, that the approximation breaks down at large values
of K as the higher-order terms in K become significant and
can no longer be ignored.

One can generalize this analysis to the other translation-
ally invariant cases by imposing suitable conditions on ω.
For instance, an analogous condition for R = 3 in the deep
quantum regime reads ω = √

3/4kπ , where k ∈ Z+, thereby
demonstrating quadratic growth of the OTOC when observed
at t = 3s, with s being a nonnegative integer. An upshot of
this analysis is that the quantum resonances hinder the early-
time exponential behavior, irrespective of the choice of other
free parameters, such as the kicking strength K . It is worth
noting that in finite-dimensional chaotic systems (or systems
with torus boundary conditions in the classical limit), the
OTOCs typically saturate to values predicted by the random

FIG. 4. The averaged commutator function Cââ† (t ) for the trans-
lation invariant case at R = 4. The figure illustrates the growth for
two values of K , namely K = 0.01 and 0.1. We have taken h̄ = 1.
While the solid lines with the markers denote numerical results, the
dashed lines correspond to the theory as given in Eq. (26). The solid
and dashed lines almost coincide for all t > 0. For the numerical
results, we perform the average over two thousand number states.

matrix theory [88]. In contrast, finding an unbounded operator
growth is often possible in infinite-dimensional systems like
the KHO. Quantum resonances are one such example. Here
we leveraged their solvability to show the indefinite operator
growth.

C. Small K and irrational R

In the last section, we argued that whenever R takes irra-
tional values, various terms in Eq. (7) destructively interfere,
given that K is small. As a result, the corresponding dynamics
are suppressed. Here we extend this argument by providing an
analytical expression for the average state-OTOC, C|ψ〉, ââ† (t ),
in the weak perturbative regime by assuming irrational values
for R. The complete derivation is presented in Appendix B.
Retaining only the leading-order terms in K up to the order
of O(K2), the Heisenberg evolution of â can be written as
follows:

â(t )e
2π it

R ≈ â + iK√
2ω

t−1∑
j=0

e
2π i j

R sin
(

X̂ 2π j
R

)

− K2

√
2ω

t−1∑
j=0

j−1∑
n=0

e
2π i j

R

[
cos

(
X̂ 2πn

R

)
, sin

(
X̂ 2π j

R

)]
,

(27)

where X̂θ = (âe−iθ + â†eiθ )/
√

2ω, the quadrature operator
with the phase θ . We have taken h̄ = 1 for the sake of
simplicity. In the next step, we plug this into Eq. (9).
This is then followed by the absolute squaring of the
commutator—[â(t ), â†]†[â(t ), â†], which is given in Eq. (B6)
of Appendix B. After averaging over the pure states, we finally
obtain

C|ψ〉, ââ† (t ) ≈ 1 + K2t

8ω2
, for K � 1. (28)
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FIG. 5. The averaged commutator function Cââ† (t ) in a weak
perturbative regime when R is irrational. We fix R as the golden mean
number, known to be the most irrational number. The figure com-
pares the numerically computed average OTOC with the theoretical
prediction given in Eq. (28). For the numerics, we average the OTOC
over 2000 Fock states.

To test Eq. (28), we numerically evaluate the commutator
function averaged over the Fock state basis when R assumes
an irrational number. For the numerical calculations, we take
R to be the golden mean number—R = (1 + √

5)/2. Figure 5
compares the numerical result with Eq. (28). We see a good
agreement between the both.

We assert that the above result is not limited to the KHO
model under the irrationality of R but rather encompasses a
broader range of KAM systems, including that of the finite
dimensions. To be precise, the linear growth here is a direct
consequence of (i) the uncorrelated eigenphases of the unper-
turbed evolution e−(2π i/R)â† â and (ii) the initial operators being
conserved up to a phase under the unperturbed evolution,
i.e., e(2π i/R)â† ââe−(2π i/R)â† â = âe−2π i/R. One can readily verify
that the average state-OTOC in a typical integrable quantum
system perturbed by a weak generic time-dependent potential,
in general, exhibits linear growth until the saturation as long
as the above two conditions are satisfied—C(t ) ∼ ε2t with
ε being the strength of the perturbation. Let us also men-
tion that, in general, the first condition holds for any typical
KAM integrable system owing to the Berry-Tabor conjecture
[89–91]. In Appendix C, we provide a detailed derivation for
the linear growth of the OTOCs in finite-dimensional quantum
systems by incorporating the aforementioned conditions.

V. OTOC FOR PHASE-SPACE OPERATORS

For completeness, we here provide a bird’s-eye view of the
position-momentum OTOC in an arbitrary state |ψ〉 given by

CXP(t ) = 〈ψ |[X̂ (t ), P̂]†[X̂ (t ), P̂]|ψ〉. (29)

Followed by Eq. (7), the Heisenberg evolution of X̂ can be
readily obtained as

X̂ (t ) = u†t X̂ ut + K

ω

t−1∑
j=0

sin

[
2π

R
(t − j)

]
sin X̂ ( j), (30)

FIG. 6. Contrasting the OTOCs corresponding to the phase-
space operators with the ladder operators in the vicinity of R = 4.
The system parameters are kept fixed at K = 1 and τ = 1. The coher-
ent state centered at (P̂, X̂ ) = (0, π ) is once again chosen to be the
initial state for the OTOC calculations. The figure illustrates that the
X̂ P̂-OTOC and the ââ†-OTOC exhibit strikingly similar behaviors
in both the resonant and nonresonant cases, with the only difference
being the presence of oscillations in the former.

where u = e(2π it/R)â† â, the evolution under the harmonic os-
cillator Hamiltonian with an effective frequency ωτ = 2π/R.
Due to the presence of u, the OTOC exhibits persistent os-
cillations in time. On the other hand, the second term takes
into account the effects of the kicking potential on operator
growth.

When K = 0, the OTOC in any given state |ψ〉 is
C|ψ〉, X̂ P̂(t ) = h̄2 cos2(2πt/R). As K varies from zero, the ini-
tial operator X̂ starts to scramble into the operator Hilbert
space, which is also accompanied by the oscillatory behavior.
We numerically compute the X̂ P̂-OTOC and compare the re-
sults with the ladder operator OTOC. The findings are shown
in Fig. 6. The figure demonstrates that the qualitative nature
of the OTOCs for both choices of the initial operators is iden-
tical, except for the presence of oscillations in the X̂ P̂-OTOC
due to the harmonic evolution. These oscillations may pose
challenges while probing the operator growth and quantum
Lyapunov exponents. Nevertheless, a comparison between
Eqs. (7) and (30) reveals that the oscillating component is
absent in the time evolved ladder operator â(t ). As a result,
we observe steady growth without oscillations in the ladder
operator OTOC, prompting us to study it as an alternative to
the X̂ P̂-OTOC.

VI. SUMMARY AND DISCUSSION

In this work, we have studied how the resonances that arise
when a degenerate classical system is perturbed by a weak
time-dependent potential affect the dynamics of information
scrambling in the quantum domain. For this purpose, we con-
sidered the kicked harmonic oscillator model. Classically, this
system exhibits very complex dynamics. Under the resonance
condition, the system undergoes unusual structural changes
in the phase space. These unusual changes can be traced to
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the emergence of stable and unstable periodic orbits, leading
to diffusive chaos in the phase space for any finite kicking
strength. Conversely, under the nonresonance condition, the
phase-space trajectories of the harmonic oscillator maintain
their regularity with slight deformations, thereby effectively
suppressing the chaos. Motivated by this peculiar classical
behavior, our work examined how these effects manifest in the
dynamics of operator growth and scrambling in the quantum
limit.

To study the information scrambling, we considered the
OTOC with the bosonic ladder operators as the initial oper-
ators. We mainly focused on two specific initial states: The
vacuum state |0〉 that corresponds to a fixed point of the
KHO map and a coherent state |α〉 with its mean coordi-
nates located on the stochastic web. We numerically studied
the OTOC, particularly emphasizing the early-time and the
asymptotic dynamics. In the semiclassical limit, the early-
time dynamics correlate very well with the classical dynamics
of the KHO. In this region, the quantum Lyapunov exponents
extracted from the OTOC match very well with the corre-
sponding classical Lyapunov exponents. To strengthen the
correspondence between the classical and quantum exponents,
we analytically derived the quantum exponent from the vac-
uum state OTOC in the semiclassical limit. Furthermore, we
observed that in the weak perturbative regime, the transitions
between resonance and nonresonance conditions do not affect
the early-time growth, while the asymptotic dynamics remain
highly sensitive. On the contrary, when the perturbation is
strong, the differences become less visible.

The numerical and analytical evidence presented in the
paper suggests a long-time quadratic growth for the OTOC
when the system is in resonance for a generic quantum
state irrespective of the strength of the perturbation. In
contrast, the growth under the nonresonance condition is
largely suppressed. We also identified different scalings for
the nonresonant OTOCs in the coherent state. To support
the numerical results, we have argued based on the coherent
and incoherent additions of the terms in the expansion of
[â(t ), â†]e2π it/R that demonstrate the distinct qualitative be-
havior exhibited by the resonances and the nonresonances.

Following the numerical results, we provided analytical
treatment of the OTOC for a few exceptional cases of R ∈
Rc by utilizing the translation invariance of the KHO. For
R = 1 and 2, the results are exact. We have shown that the
corresponding commutator function grows quadratically. At
R = 4, we utilized the quantum resonance condition to ob-
tain the quasiexact expressions of the OTOCs. The quantum
resonances largely impede the early-time exponential growth
of the OTOCs. We also provided analytical derivation for the
linear growth of the average state-OTOC whenever R takes
irrational values, given that the kicking strength is sufficiently
small.

One central focus in quantum many-body physics is to sim-
ulate quantum systems on a quantum device and benchmark
these simulations in the presence of hardware errors [92,93].
In the semiclassical limit, the assurance will be provided for
the stability of simulation if the classical counterpart of the tar-
get Hamiltonian is KAM and the error that scales extensively
with the number of particles is small enough [94]. However,
for systems that have no classical analog, the quantum KAM

theorem remains elusive. Nevertheless, recent progress in this
direction studied the stability analysis for the symmetries of
quantum systems—see for instance, Refs. [95,96] and the
references therein. Quantum simulations of systems whose
classical limit is non-KAM can pose a significant challenge
to experimental implementations. Any slight perturbation
in the form of hardware noise can give rise to dynamics far
from the target dynamics. Moreover, digital quantum simu-
lation of these systems is also challenging due to structural
changes near resonances even when the hardware error is
negligible [97]. Hence, more careful methods must be devised
to simulate this class of systems. We hope our study paves the
way for exploring these intriguing directions.
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APPENDIX A: COMPUTATION OF 〈D(β)〉
In this Appendix, we find the average of the expectation

value of an arbitrary displacement operator over the space
of all pure states, which facilitates the derivations of the
average state-OTOCs discussed in the main text. Consider a
displacement operator D(β ), where β ∈ C. We are interested
in evaluating 〈D(β )〉 = ∫

ψ
dψ〈ψ |D(β )|ψ〉, where dψ repre-

sents the normalized uniform measure over the space of pure
states in the infinite-dimensional Hilbert space. Since the Fock
states of the quantum harmonic oscillator form an orthonor-
mal basis and constitute continuous variable state 1-designs,
it suffices to average 〈D(β )〉 over the set of Fock states,

〈D(β )〉 =
∫

ψ

dψ〈ψ |D(β )|ψ〉 ≡ lim
N→∞

1

N

N−1∑
n=0

〈n|D(β )|n〉.

(A1)

The elements of the displacement operator in the Fock state
basis can be written in terms of the associated Laguerre poly-
nomials. Specifically, the diagonal entries, 〈n|D(β )|n〉 for all
n � 0, can be obtained as

〈n|D(β )|n〉 = e−|β|2/2L0
n (|β|2),

where L0
n (|β|2) =

n∑
k=0

(−1)k n!

(n − k)!k!k!
|β|2k . (A2)

After incorporating this into Eq. (A1), we get

〈D(β )〉 = lim
N→∞

1

N

N−1∑
n=0

e−|β|2/2L0
n (|β|2)

= e|β|2/2 lim
N→∞

L1
N−1(|β|2)

N
= e|β|2/2δRe(β ),0δIm(β ),0

= δRe(β ),0δIm(β ),0. (A3)
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In the second equality, we used the recursive relation∑k
n=0 Li

n(x) = Li+1
k . Therefore, the average vanishes unless β

is zero, in which case D(β ) reduces to an infinite dimensional
identity operator.

APPENDIX B: SMALL-K APPROXIMATION OF OTOCs

In this Appendix, we aim to achieve two objectives. First,
we provide analytical arguments to demonstrate that for small
K , the commutator function exhibits quadratic growth at res-
onances. We then give an explicit derivation for Eq. (28)—the
average state-OTOC for irrational R and small K . Here we
take h̄ = 1. The derivation involves approximating the com-
mutator [â(t ), â] up to the terms of order O(K2),

[â(t ), â]e2π it/R = 1 + iK√
2ω

t−1∑
j=0

e2π i j/R[sin X̂ ( j), â†],

where X = â + â†

√
2ω

.

To approximate the commutator up to the second order in K ,
we only require to retain sin X̂ ( j) to the zeroth and the first-
order terms in K for all j > 0. First, a single application of Ûτ

on sin X̂ gives

sin X̂ (1) = eiK cos X̂ eiωτ â†â(sin X̂ )e−iωτ â†âe−iK cos X̂

= sin(X̂2π/R) + iK[cos X̂ , sin(X̂2π/R)] + O(K2),

(B1)

where X̂θ = (âe−iθ + â†eiθ )/
√

2ω. After j-number of re-
peated applications, the time evolved operator sin X̂ ( j) can be
approximated as follows:

sin X̂ ( j) = sin(X̂2π j/R) + iK
j−1∑
n=0

[cos(X̂2πn/R), sin(X̂2π j/R)]

+ O(K2). (B2)

Consequently, the Heisenberg evolution of â can be approxi-
mated as

â(t ) ≈ â + iK√
2ω

t−1∑
j=0

ei jωτ

{
sin(X̂2π j/R)

+ iK
j−1∑
n=0

[cos(X̂2πn/R), sin(X̂2π j/R)]

}
. (B3)

From Eq. (9), it follows that

[â(t ), â†]e2π it/R ≈ 1 + K

2ω

t−1∑
j=0

cos(X̂2π j/R)

− K2

√
2ω

t−1∑
j=0

j−1∑
n=0

e2π i j/R

× [[cos(X̂2πn/R), sin(X̂2π j/R)], â†] (B4)

This approximation is valid for any R as long as K is small. In
the following, we will focus on two separate instances: R = 4
and an irrational value of R.

1. Instance-1

In the main text, we argued that the resonances usually
result in coherent summations, leading to the quadratic growth
of OTOCs. To illustrate this further, we examine Eq. (B4) for
the case of R = 4. To simplify the computation, we consider
t = 4s where s is a nonnegative integer. By doing so, we
can observe that the first summation on the right-hand side
exhibits a clear linear dependence on t ,

t−1∑
j=0

cos(X̂2π j/R) = t

4

3∑
j=0

cos(X̂2π j/R). (B5)

on the other hand, the third term that contains the double sum-
mations has an implicit quadratic time dependence. Therefore,
in the limit of weak perturbations, the OTOCs will grow
quadratically at resonances. The proof of the argument is now
complete.

2. Instance-2

We now consider R to be an irrational number. The approx-
imate OTOC in the limit of small K can be written as

Cââ† (t ) ≈ 1 + K2

4ω2

t−1∑
j, j′=0

cos(X̂2π j/R) cos(X̂2π j′/R)

− K2

√
2ω

t−1∑
j=0

j−1∑
n=0

{e2π i j/R

× [[cos(X̂2πn/R), sin(X̂2π j/R)], â†] + H.c.}
(B6)

On performing the average over the pure states, the third
term vanishes for all j < t and n < j. The second term also
vanishes unless j = j′. Therefore, we finally obtain

C|ψ〉, ââ† (t ) ≈ 1 + K2

4ω2

t−1∑
j=0

〈ψ | cos2(X̂2π j/R)|ψ〉

= 1 + K2t

8ω2
for K � 1. (B7)

This concludes the derivation of Eq. (28) in the main text.

APPENDIX C: LINEAR GROWTH OF OTOCS
IN FINITE-DIMENSIONAL INTEGRABLE

QUANTUM SYSTEMS

It is well known that a generic quantum system, whose
classical limit is integrable, possesses uncorrelated eigenspec-
trum (or eigenphases if the system is time periodic). If V
denotes the time evolution of a typical integrable system, then
its eigenphases can be viewed as complex phases drawn uni-
formly at random from a complex unit circle. Without further
loss of generality, we assume V to be a random diagonal
unitary acting on a d-dimensional Hilbert space. The elements
of V can be characterized as follows:

Vi j =
{

e2π iφ, φ ∈ [−0.5, 0.5] if i = j

0, otherwise,
(C1)
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where φ is a uniform random variable. After applying the
perturbation, we assume the following Floquet form for the
total system evolution:

U = Ve−iεH and ε � 1, (C2)

where H is the perturbation and ε is the kicking strength. By
choosing the uncorrelated eigenphases, we already invoked
the first condition that led to the linear growth of the OTOCs
under the nonresonance condition. We now choose the initial
operators that are conserved up to a phase under the action
of V —let A be an operator that satisfies V †AV = e−iθ A. For
simplicity, we take θ = 0. We are now interested in computing

the quantity given by

C(t ) = 1

d
Tr[[A(t ), A]†[A(t ), A]], (C3)

where A(t ) = U †t AUt . Ignoring all the higher-order terms in
ε, the commutator, [A(t ), A], can be written as

[A(t ), A] ≈ iε
t−1∑
j=0

[[V † jHV j, A], A]. (C4)

It then follows that

Tr[[A(t ), A]†[A(t ), A]] ≈ ε2
t−1∑

j, j′=0

[[V † jHV j, A], A]†[[V † j′HV j′ , A], A]

= ε2
t−1∑

j, j′=0

Tr[6HjA
2Hj′A

2 − 4HjA
3Hj′A − 4HjAHj′A

3 + HjHj′A
4 + Hj′HjA

4]

= ε2
t−1∑

j, j′=0

Tr[6Hj− j′A
2HA2 − 4Hj− j′A

3HA − 4Hj− j′AHA3 + Hj− j′HA4 + HHj− j′A
4], (C5)

where Hj− j′ = V † j− j′HV j− j′ . Now the process of averaging over the random diagonal unitaries gives

∫
V

dVC(t ) = 1

d

∫
V

Tr[[A(t ), A]†[A(t ), A]]dV

= ε2

d

t−1∑
j, j′=0

∫
V

dV Tr[6Hj− j′A
2HA2 − 4Hj− j′A

3HA − 4Hj− j′AHA3 + Hj− j′HA4 + HHj− j′A
4]

= ε2

d
tTr[6HA2HA2 + 2H2A4 − 8HAHA3]

+ ε2

d

∑
j �= j′

∫
V

dV Tr[6Hj− j′A
2HA2 − 4Hj− j′A

3HA − 4Hj− j′AHA3 + Hj− j′HA4 + HHj− j′A
4]. (C6)

The integrals over the random diagonal unitaries can be solved as follows:∫
V

dV Tr[Hj− j′A
2HA2] = Tr[diag(H )]Tr[HA4],

∫
V

dV Tr[Hj− j′A
3HA] = Tr[diag(H )]Tr[HA4],

∫
V

dV Tr[Hj− j′HA4] = Tr[diag(H )]Tr[HA4],

∫
V

dV Tr[HHj− j′A
4] = Tr[diag(H )]Tr[HA4]. (C7)

All the above integrals yield identical results. As a result, the second term in Eq. (C6) involving the double summation vanishes.
Therefore, we finally obtain

∫
V

dVC(t ) = ε2t

d
Tr[6HA2HA2 + 2H2A4 − 8HAHA3]. (C8)

In conclusion, we have shown analytically that the OTOC grows linearly with time, given that the aforementioned conditions
regarding the initial operators and eigenphases are satisfied.
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