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Two-qubit entangling operators as chaos control in a discrete dynamic Cournot duopoly game

A. V. S. Kameshwari * and S. Balakrishnan †

Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India

(Received 17 August 2023; accepted 6 December 2023; published 5 January 2024)

The current trend in economics research is to incorporate quantum mechanical concepts to increase the
security of business models. This interdisciplinary field of study represents real-world market dynamics more
closely than do its classical counterparts. In this paper, we shed light on the significance of the two-qubit
entangling operators in controlling chaos. We introduce a modified Eisert-Wilkens-Lewenstein scheme in a
nonlinear Cournot duopoly game with complete and incomplete information. By doing so, the following
interesting results are obtained: To begin, monopoly in a duopoly game can be avoided with the use of special
perfect entanglers. Also, the stability analysis shows that there exists a class of entangling operators which can
stabilize an unstable system and vice versa. Second, numerical analysis highlights the two-qubit entangling
operators which can stabilize a chaotic system or at least delay chaos. Finally, we show that with an appropriate
choice of initial state and speed of adjustments, entangling operators can decrease the sensitivity of the system. In
short, while we know the importance of entangling operators in quantum game theory, in this paper we indicate
the significance of operators in the context of a chaotic system.
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I. INTRODUCTION

Classically, game theory consists of two or more players
who decide to maximize their outcome by implementing ap-
propriate strategies [1]. Game theory finds its applications
in various fields such as economics, biology, optimization
problems, and many more [2,3]. One of the most important
concepts in game theory is Nash equilibrium, wherein no
player has an incentive to deviate from their strategy. The ear-
liest version of this concept was proposed by Cournot in 1838
in his mathematical model of an oligopoly market [4]. The
idea of introducing quantum mechanical principles in game
theory was first proposed by Meyer [5]. In his seminal paper,
he discussed how quantum strategies can outperform classical
strategies in a single-penny flip game. This led to the formal
introduction of quantum game theory. Since then, quantum
game theory has been extensively studied to quantize complex
classical games and to understand how quantum mechanical
principles change the game dynamics [6–8].

One of the applications of quantum mechanics is in eco-
nomics as it acts as a powerful tool to deal with the intrinsic
randomness of the real market [9–12]. Any real-world market
can be treated as a game where companies play the role
of players and use the rate of production as strategies to
outperform their opponents. The quantum analog of market
games, namely oligopoly games, was introduced by Li, Du,
and Massar in 2002 [13]. Since then, oligopoly and duopoly
games have been widely studied in various market settings.
Later, Iqbal and Toor [14] quantized duopoly games using
Marinatto and Weber’s scheme. This particular scheme, how-
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ever, is not widely utilized to analyze market games. Later on,
Frąckiewicz and co-workers introduced another quantization
scheme wherein the strategies of the players are entangled
[15,16]. All these schemes were initially structured to operate
for linear systems with rational players and linear inverse
demand and cost functions. A real market is usually non-
linear as there exist various nonlinear relationships between
the expectations of the companies, consumer attitudes, and so
on. Also, in actual market situations, players lack complete
knowledge of their opponents. As a result, they adjust their
profits in each period and slowly attain Nash equilibrium.

Nonlinearity in classical market games is well established.
Rand, in 1978, was the first to introduce the concept of dy-
namics in duopoly games [17]. Later, Puu’s study emphasized
how the players’ adjusting process can lead to chaos [18].
Refer to Refs. [19–24] for works on different types of classical
nonlinear duopoly games. Recently, Ikeda and Aoki’s work
proved the importance of quantum information in economics,
where money may be viewed as a quantum mechanical ob-
ject [9]. There was not much research in quantum nonlinear
duopoly games until Yang and Gong proposed the use of
quantum entanglement in these games in 2018 [25]. They
analyzed the quantum Cournot duopoly game with linear cost
and demand function with bounded rational players (players
with incomplete information). The expectation of the players
is important in economics as it decides the number of equilib-
rium points. Recently, active research has been taking place in
quantizing nonlinear oligopoly games to understand the effect
of entanglement on the stability of the equilibrium points.
Refer to Refs. [26–30] for recent works on quantum nonlinear
market games. The quantum versions of these games fail to
clearly show the role of entanglement, and all of them are
quantized using Li, Du, and Massar’s scheme. This quanti-
zation technique makes it difficult to understand the role of
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quantum operators, which can be realized as a quantum circuit
with single- and two-qubit gates.

In this paper, a discrete dynamic Cournot duopoly game
is quantized using a modified Eisert-Wilkens-Lewenstein
(EWL) scheme [31] to investigate the role of quantum op-
erators in nonlinear games. By quantizing and analyzing the
game from the perspective of quantum operators, we add an
additional dimension to Yang and Gong’s work. The major
goal of this paper is to demonstrate the importance of two-
qubit nonlocal operators, namely special perfect entanglers
[32], in a game with partial and imperfect information. Also,
we aim to show the interplay of two-qubit operators and
the speed of adjustment of the players in controlling chaos.
Such an observation is of great interest in quantum nonlinear
duopoly games. Furthermore, we wish to see the choice of
entangling operators that can prevent monopoly and control
chaos. The outline of the paper is as follows: The discrete
dynamical nature of a Cournot duopoly game with differ-
ent expectations is analyzed in Sec. III. Section IV confirms
the chaotic nature of the system with bifurcation diagrams,
strange attractors, and sensitive dependence on initial con-
ditions. Finally, in Sec. V we highlight the importance and
uniqueness of our results in detail.

II. COURNOT DUOPOLY GAME

“Cournot duopoly” refers to a game between two com-
panies whose profits do not fluctuate over a period of time.
However, it is important to note that the real economic mar-
ket situation is dynamic and companies (firms) continuously
adjust their strategies due to incomplete information about
their opponents. Taking into account the actual market, we
study the quantum version of the dynamic market game with a
linear inverse demand and cost function. Classically, the profit
function of the firms for a single-period game is given as [33]

�i = qi[ki − (q1 + q2)], (1)

where ki = a − Ci for i = 1, 2 and a > 0 and where q1 and
q2 are the quantities of production set by the firms. The cost
function of the firms has the form Ci = Ciqi. The classical
version of this game is quantized using a modified EWL
scheme.

III. DYNAMIC QUANTUM COURNOT DUOPOLY GAME

The modified EWL scheme provides a range of two-
qubit nonlocal operators which were earlier not available
using the Eisert-Wilkens-Lewenstein scheme [6] and the
Marinatto-Weber scheme [34]. This is obtained by revoking
the commutator conditions imposed by the EWL scheme. The
general two-qubit entangling operator U is defined as [31]

U =

⎡
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where c± = cos( c1±c2
2 ), s± = sin( c1±c2

2 ), and c1, c2, and c3

are the geometrical points of the Weyl chamber (geometrical

representation of two-qubit operators) [32,35]. Considering
c3 = 0, we obtain the entangling operator U as defined in
the modified EWL scheme. Now the quantum structure of the
game is as follows: The game starts with an initially entangled
state |ψi〉 = U |00〉. This state is then given by the arbiter (in
this case, the government) to the firms that produce homoge-
neous goods in the market. Let firm 1 and firm 2 initially pick
quantities q1 and q2, respectively. These firms have an option
to adhere to their initial decision or change it during the course
of the game. Let us assume that firm 1 sticks to the decision
(represented by an identity matrix) and firm 2 flips its decision
using the Pauli σx operation. After the implementation of
their strategies, a disentangling operator is applied to remove
the initial entanglement. The final state of the game is as
follows:

|ψ f 〉 = U †(I ⊗ σx )U |00〉. (3)

This state is measured using the measurement operator
Mi(x1, x2) for xi ∈ [−1, 1]. The measurement operator is
given by Frąckiewicz [15] and is of the form

Mi(x1, x2) =
{

(x1|0〉〈0| + x2|1〉〈1|), if i = 1

(x2|0〉〈0| + x1|1〉〈1|), if i = 2.
(4)

After measurement, the quantities of the companies are deter-
mined as qi = Tr(Miρi ), where ρi is a reduced density matrix
of the final state. As a result, the quantities can be written as
follows:

q1 = lx1 + mx2,

q2 = lx2 + mx1.
(5)

Here, l = cos2 c1, m = sin2 c2, and x1 and x2 are the con-
tinuous strategic space available to firms with xi ∈ [−1, 1].
Substituting Eq. (5) into Eq. (1), one can easily obtain the new
profits of the firms after quantization. In the entire analysis,
we consider c2 = c1 for the choice of entangling operators to
satisfy the condition q1 + q2 = x1 + x2.

Nonlinearity in a duopoly game arises when either the cost
function or the inverse demand function is nonlinear or when
the players possess incomplete information. We consider the
following cases: (i) Both firms possess incomplete informa-
tion, and (ii) firms have partial information. Sections III A and
III B provide brief descriptions of these two cases.

A. Dynamic game with homogeneous players

Let us start with a dynamic Cournot duopoly game wherein
the firms produce homogeneous goods and offer them at dis-
crete time intervals. We consider the firms to be bounded
rational players who have limited information about their
opponent’s moves. They adjust their strategies by either in-
creasing or decreasing their level of production at period t + 1
in response to the marginal profit observed at period t . Since
both firms are homogeneous, the discrete dynamic logistic
map can be written as [21,22]

x1(t + 1) = x1(t ) + α
∂�1

∂x1
,

(6)
x2(t + 1) = x2(t ) + β

∂�2

∂x2
.
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Here, α and β represent the speed of adjustments of firm
1 and firm 2, respectively. Setting xi(t + 1) = xi(t ) = xi for
i = 1, 2 in the above logistic map, the following equilibrium
points are obtained: E0 = (0, 0), E1 = ( k1

2 , 0), E2 = (0, k2
2 ),

and E3 = ( l (2k1l−k2 )
4l2−1 , l (2k2l−k1 )

4l2−1 ). Here, E1 and E2 are bound-
ary equilibrium points (also known as monopoly equilibrium
points), whereas E3 corresponds to the quantum Nash equilib-
rium point. Note that in the absence of entanglement, a single
firm dominates the market at the equilibrium points E1 and

E2. This form of monopoly in the market can be avoided in
the quantum version with an appropriate choice of entangling
operator U (π/4, π/4, 0).

The stability of these equilibrium points is analyzed by
calculating the eigenvalues of the Jacobian matrix con-
structed using Eq. (6). Note that the equilibrium point
is stable if and only if the eigenvalues of the Jaco-
bian matrix |λi| < 1. The Jacobian matrix of Eq. (6) is
written as

J (x1, x2) =
[

1 + α(lk1 − 4lx1 − x2) −αx1

−βx2 1 + β(lk2 − 4lx2 − x1)

]
. (7)

Substituting E0 into Eq. (7), the following eigenvalues are obtained: λ1 = 1 + αlk1 and λ2 = 1 + βlk2, wherein both the
eigenvalues λ1 and λ2 are greater than zero. This implies that the trivial equilibrium point stays unstable independent of the
choice of entangling operators.

For the equilibrium point E1 the eigenvalues are λ1 = 1 − α
2 k2 + αk1l and λ2 = 1 − βk2l . This point can be both stable

and unstable depending on the choice of the entangling operators. For the choice of entangling operators U (0 � c1 � π
4 , c2 =

c1, c3 = 0), the eigenvalues are λ1 > 1 and λ2 < 1 (unstable equilibrium point). However, for the choice of entangling operators
U ( π

4 < c1 � π
2 , c2 = c1, c3 = 0), both the eigenvalues are negative, and hence the equilibrium point is stable. Such an

observation holds true for the equilibrium point E2 with the eigenvalues λ1 = 1 − αk1l and λ2 = 1 − β

2 k1 + βk2l . Once again
the equilibrium point E2 is unstable for the choice of entangling operators U (0 � c1 � π

4 , c2 = c1, c3 = 0).
The local stability of the Nash equilibrium point E3 is analyzed by checking the following Jury conditions [36,37]:

1 + Tr(J ) + Det(J ) = l2(2αk1l − αk2 − 4)(2βk2l − βk1 − 4) − 4

4l2 − 1
> 0,

1 − Tr(J ) + Det(J ) = l2αβ(2k1l − k2)(2k2l − k1)

4l2 − 1
> 0, (8)

1 − Det(J ) = l2[2α(k1l − k2) + β(2k2l − k1)(2 − α(2k1l − k2))]
4l2 − 1

> 0.

Here, J is the Jacobian matrix given in Eq. (7). The Nash
equilibrium point is stable only for the choice of entan-
gling operators U (0 � c1 � π

4 , c2 = c1, c3 = 0) irrespective
of the choice of control parameters α and β.

B. Dynamic game with heterogeneous players

In this section, we focus on the chaotic dynamics of het-
erogeneous players. We continue to consider firm 1 as the
bounded rational player, whereas we now consider firm 2 as
a naive player. A naive player is one who believes that the
production of the opponent firm in period t + 1 is the same
as that in the last period, t , in a dynamic game setting. The
two-dimensional discrete dimensional map for these players
is defined as [24]

x1(t + 1) = x1(t ) + α
∂�1

∂x1
,

(9)

x2(t + 1) = (a − C2)l − x1(t )

2l
.

Again, α is the speed of adjustment of firm 1. Setting xi(t +
1) = xi(t ) = xi, the following equilibrium points are obtained:

E0 = (0, k2
2 ) and E1 = ( l (2k1l−k2 )

4l2−1 , l (2k2l−k1 )
4l2−1 ). Here, E0 is a

monopoly equilibrium point, and E1 is the Nash equilibrium
point. The Jacobian matrix of the two-dimensional logistic

map given in Eq. (9) is

J (x1, x2) =
[

1 + α[l (k1 − 4x1) − x2] −αx1

− 1
2l 0

]
. (10)

Substituting E0 into the above matrix, the following eigenval-
ues are obtained: λ1 = 0 and λ2 = 1 − α k2

2 + lαk1. For these
eigenvalues, the equilibrium point is stable but not asymp-
totically stable for the choice of entangling operator U ( π

4 <

c1 � π
2 , c2 = c1, c3 = 0). However, for any other choice of

entangling operators, E0 is unstable.
Furthermore, the Nash equilibrium point E1 is stable if and

only if the following Jury conditions are satisfied:

1 + Tr(J ) + Det(J ) = 16l2 − 4 + α(k2 − 2lk1)(1 + 4l2)

8l2 − 2
> 0,

1 − Tr(J ) + Det(J ) = α

(
k1l − k2

2

)
> 0, (11)

1 − Det(J ) = 8l2 + 2αlk1 − αk2 − 2

8l2 − 2
> 0.

Here again, J is the Jacobian matrix given in Eq. (10) at
the Nash equilibrium point. Unlike homogeneous players, the
stability of the Nash equilibrium is determined by the choice
of entangling operator and the speed with which firm 1 ad-
justs. Furthermore, the Nash equilibrium is stable only for
the choice of entangling operator U ( π

4 < c1 � π
2 , c2 = c1,
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FIG. 1. Bifurcation diagrams for β = 0.3 (a) without quantum
entanglement and (b) with quantum entanglement U (π/6, π/6, 0)
and for β = 0.4 (c) without quantum entanglement and (d) with
quantum entanglement for homogeneous players.

c3 = 0) and for the choice of the control parameter 0 < α <

0.4. It is to be noted that the identified entangling operator U
belongs to the class of perfect entanglers [35].

IV. NUMERICAL ANALYSIS

In the context of nonlinear dynamical systems, it is not
feasible to obtain exact analytical solutions. Hence we have
shown the chaotic nature of the system by using bifurcation di-
agrams, Lyapunov dimensions, and the sensitive dependence
on the initial condition. Throughout the analysis, we set the
cost function and marginal cost as follows: a = 10, C1 = 3,
and C2 = 2.3. In addition, we assume initial conditions of
x1 = 0.1 and x2 = 0.1.

A. Bifurcation and chaos

1. For homogeneous players

The bifurcation diagrams for different adjustment speeds
of firm 2 are shown in Figs. 1(a)–1(d). Figure 1(a) indicates
that the Nash equilibrium point is stable for α < 0.25 in the
absence of entanglement when the speed of adjustment of firm
2 is set at β = 0.3. As the adjustment speed of firm 1 in-
creases (α > 0.25), bifurcation occurs with a period-doubling
route to chaos. However, for the choice of entangling operator
U (c1 = π/6, c2 = c1, c3 = 0) as in Fig. 1(b), the system is
stable up to α < 0.5. Furthermore, for α > 0.5 the system just
bifurcates with two periods.

Figures 1(c) and 1(d) show the bifurcation diagrams when
the speed of adjustment of firm 2 is set at β = 0.4. Figure 1(c)
indicates that the Nash equilibrium is not stable even for
low values of α. The dynamics of the game starts with two
periods, and the system becomes chaotic for α > 0.2 through
period doubling. In the presence of quantum entanglement
as in Fig. 1(d), Nash equilibrium is stable up to α < 0.3
for the same β, beyond which bifurcation occurs with a
period-doubling route to chaos. Overall, the system stability
for bounded rational players is controlled by two intrinsic

FIG. 2. (a) Without quantum entanglement and (b) with quantum
entanglement U (π/6, π/6, 0) for heterogeneous players.

parameters, β and α, and a two-qubit nonlocal entangling
operator U . An appropriate choice of these three parameters
can delay the onset of chaos.

2. For heterogeneous players

The bifurcation diagrams without and with quantum entan-
glement for bounded rational and naive players are shown in
Figs. 2(a) and 2(b). In the absence of entanglement, the Nash
equilibrium of the system is stable for α < 0.4. Beyond that,
the system experiences period doubling, and for α > 0.5 the
system approaches chaos. Furthermore, Fig. 2(b) shows that
the Nash equilibrium is stable up to α < 0.6 in the presence of
entangling operator U (π/6, c2 = c1, c3 = 0), beyond which
period doubling leads to chaos for α > 0.8. Therefore we
can state that an appropriate choice of α and entanglement
improves the stability of an otherwise chaotic system in a
heterogeneous game.

B. Strange attractors

Chaotic strange attractors have a local topological structure
and are characterized by fractal dimension. In 1979, Kaplan
and Yorke proposed a relationship between the fractal di-
mension and the Lyapunov spectrum called the Lyapunov di-
mension [38]. The Lyapunov dimension of a two-dimensional
logistic map is defined as

DKL = 1 + λ1

|λ2| ; λ1 > 0 and λ2 < 0. (12)

In this context, we calculate the Lyapunov dimension for a
two-dimensional logistic map of homogeneous and hetero-
geneous players. For the parametric values (α = 0.32, β =
0.4, a = 10, C1 = 3, C2 = 2.3), two Lyapunov exponents,
λ1 = 0.2160 and λ2 = −0.2009, exist when there is no
entanglement. The Lyapunov dimension for the homo-
geneous players with no entanglement assumes DKL =
2.0752. Furthermore, in the presence of quantum entangle-
ment U (π/6, π/6, 0), two Lyapunov exponents, λ1 = 0.1485
and λ2 = −0.6371, exist for the parametric values (α =
0.35, β = 0.4, a = 10, C1 = 3, C2 = 2.3). As a result, the
Lyapunov dimension is DKL = 1.2331 which is less than that
of its classical analog. This difference in the Lyapunov dimen-
sion indicates that quantum entanglement reduces the chaotic
nature of the system. The strange attractors for these paramet-
ric values for homogeneous players are shown in Fig. 3.
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FIG. 3. Strange attractors for bounded rational players (a) with-
out quantum entanglement and (b) with quantum entanglement
U (π/6, π/6, 0).

In the case of heterogeneous players, with the parametric
values (α = 0.6, a = 10, C1 = 3, C2 = 2.3), two Lyapunov
exponents, λ1 = 0.1862 and λ2 = −0.5980, exist when there
is no entanglement. The Lyapunov dimension for these fixed
points is DKL = 1.3113. Furthermore, for the choice of en-
tangling operator U (π/6, π/6, 0), for the parametric values
(α = 0.6, a = 10, C1 = 3, C2 = 2.3), two Lyapunov expo-
nents, λ1 = 0.1945 and λ2 = −0.5889, exist. The Lyapunov
dimension with quantum entanglement is DKL = 1.0554.
Once again, a smaller value of Lyapunov dimension with
quantum entanglement indicates that the system is less
chaotic. The strange attractors for heterogeneous players are
shown in Fig. 4. Both Figs. 3 and 4 indicate the separation
of the two strange attractors triggered by the presence of
quantum entanglement.

C. Sensitive dependence on initial conditions

In this section, sensitivity to initial conditions is iden-
tified for homogeneous and heterogeneous players. The
difference between the two trajectories (x1(0), x2(0)) and
(x1(0) = 0.001, x2(0)) is observed for the initial conditions
x1(0) = 0.1 and x2(0) = 0.1. From Fig. 5(a) for the conditions
(α = 0.6, a = 10, C1 = 3, C2 = 2.3), it is observed that in
the absence of entanglement, the two trajectories are indis-
tinguishable in the beginning. After t > 20 iterations, the
difference between the two trajectories builds up rapidly. Such
an observation is referred to as the butterfly effect, wherein
a small change in initial conditions can have far-reaching
consequences over time [39]. Note that in the presence of
an entangling operator U (c1 = π/6, c2 = c1, c3 = 0), the
difference between the two trajectories becomes negligible
and the system becomes periodic for the iterations t > 70.

FIG. 4. Strange attractors for heterogeneous players (a) with-
out quantum entanglement and (b) with quantum entanglement
U (π/6, π/6, 0).

FIG. 5. Sensitive dependence on initial conditions for hetero-
geneous players (a) without quantum entanglement and (b) with
quantum entanglement U (π/6, π/6, 0).

Figure 6 shows the sensitive dependence for homogeneous
players for the conditions (α = 0.32, β = 0.4, a = 10,

C1 = 3, C2 = 2.3). Again in the absence of quantum entan-
glement, there exists a difference between the two trajectories
after t > 20 iterations. Furthermore, for the choice of en-
tangling operator U (c1 = π/6, c2 = c1, c3 = 0), there is no
difference in the trajectories of the system, and it is periodic
for t > 5 iterations. Such an observation holds good for firm
2 as well. The sensitive dependence plots for the two types
of players illustrate that an appropriate choice of entangling
operator can make the two trajectories identical. Thus, in
the presence of quantum entanglement, the system loses its
sensitivity to the initial conditions and after some iterations
becomes periodic.

V. DISCUSSION AND CONCLUSION

Nonlinearity in duopoly games has received a lot of atten-
tion in the context of classical economic market situations.
The quantum version of this game is less explored with little
or no significance of quantum entanglement. In this paper,
we address the existing research gap pertaining to quan-
tum nonlinear discrete dynamical systems. We highlight the
significance of the two-qubit nonlocal entangling operators
available due to a modified EWL scheme in controlling chaos.
The following noteworthy insights are found by quantizing the
linear Cournot duopoly game with dynamic players.

First of all, local stability analysis of the equilibrium points
shows that there exists monopoly in a duopoly game. This
can be prevented by the arbiter (or government) by em-
ploying a double controlled-NOT (DCNOT) operation. Double
CNOT U (π/4, π/4, 0) is a special perfect entangler which
can maximally entangle a full product basis [35]. Also there

FIG. 6. Sensitive dependence on initial conditions for homo-
geneous players (a) without quantum entanglement and (b) with
quantum entanglement U (π/6, π/6, 0).
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exists a choice of entangling operator U and intrinsic control
parameters α and β that adds stability to an unstable equilib-
rium point.

Secondly, the bifurcation diagrams for particular initial
conditions (x1 = 0.1, x2 = 0.1) highlight how quantum en-
tanglement can bring order in a discrete dynamical system.
This is proved by the observation that no bifurcation occurs
when the entangling operator is a DCNOT. This is true for
all initial conditions with stable Nash equilibrium through-
out. For all choices of entangling operators U (0 < c1 <

π/4, c2 = c1, c3 = 0), the stability of the Nash equilibrium
can be tuned by delaying bifurcation and thereby preventing
chaos in the system. It is also to be noted that the same
choice of entangling operator that can prevent chaos can
also prevent monopoly by equalizing the profits of the firms.
Furthermore, the strange attractors emphasize how quantum
entanglement changes the fractal dimensions. The small posi-
tive and negative Lyapunov exponent values indicate a weakly
chaotic system. Furthermore, the sensitive dependence on ini-
tial conditions indicates that the two trajectories with small
perturbations of the order of 0.001 are distinguishable in
the absence of entanglement. Whereas, for the choice of
entangling operator U (π/6, π/6, 0), the trajectories are indis-
tinguishable, and the system eventually becomes periodic. In
other words, entangling operators can make the system less
sensitive and control chaos.

To conclude, quantum entanglement in a discrete dynami-
cal system with other control parameters α and β (speed of
adjustments of the firms) can delay bifurcation and hence
benefit the players in a real market to attain stability. We
add significance to the two-qubit entangling operators in a
discrete dynamical quantum Cournot duopoly game. Notably,
quantum entanglement as chaos control requires further in-
vestigation with nonlinear inverse demand and cost functions
in different game settings. It is known from earlier works
[31,40] that entangling operators can increase or decrease
the payoff of the players under certain game settings. In this
paper, we highlight that entangling operators can prevent or
delay the chaotic nature of the dynamical systems. It remains
interesting to see the crossroads of quantum games and the
chaotic nature of the system at the junction of entangling
operators. To be precise, it is worth investigating the class
of entangling operators, which can increase the payoff and at
the same time control the chaotic features of the dynamical
system.
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