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Analysis of chaos and regularity in the open Dicke model

David Villaseñor * and Pablo Barberis-Blostein
Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México,

C.P. 04510 CDMX, Mexico

(Received 10 July 2023; revised 26 September 2023; accepted 22 November 2023; published 5 January 2024)

We present an analysis of chaos and regularity in the open Dicke model, when dissipation is due to cavity
losses. Due to the infinite Liouville space of this model, we also introduce a criterion to numerically find a
complex spectrum which approximately represents the system spectrum. The isolated Dicke model has a well-
defined classical limit with two degrees of freedom. We select two case studies where the classical isolated
system shows regularity and where chaos appears. To characterize the open system as regular or chaotic, we
study regions of the complex spectrum taking windows over the absolute value of its eigenvalues. Our results
for this infinite-dimensional system agree with the Grobe-Haake-Sommers (GHS) conjecture for Markovian
dissipative open quantum systems, finding the expected 2D Poisson distribution for regular regimes, and the
distribution of the Ginibre unitary ensemble (GinUE) for the chaotic ones, respectively.
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I. INTRODUCTION

The way to characterize the chaotic behavior in isolated
quantum systems comes from the classical realm. Classically,
the concept of chaos is explained as a strong sensibility to
initial conditions. This sensibility is typically measured with
the Lyapunov exponent, a rate of divergence between two ini-
tial trajectories which separate between them as time evolves
[1]. The extension of the last idea cannot be directly made
in the quantum realm, due to the nature of quantum mechan-
ics. Instead, the spectral fluctuations of the quantum system
Hamiltonian have traditionally been studied through statistical
tests of their eigenvalue spacings [2,3].

For integrable (regular) quantum systems, the eigenvalue
spacings generically follow the Poisson distribution associ-
ated with uncorrelated levels, as stated by the Berry-Tabor
conjecture [4]. However, for nonintegrable (chaotic) quantum
systems with time-reversal symmetry, the eigenvalue spac-
ings follow the Wigner-Dyson distribution (Wigner-Dyson
surmise) associated with level repulsion. The last was conjec-
tured by Bohigas, Giannoni, and Schmit for quantum systems
whose classical limit is chaotic [5], and whose spectral fluc-
tuations are described by the Gaussian orthogonal ensemble
(GOE) of the random matrix theory [2,3,6]. The last charac-
terization is also applicable for systems without a well-defined
classical limit [7–9].

When dissipation is taken into consideration, the system
of interest can be modeled by an effective non-Hermitian
Hamiltonian. Thus, chaotic behavior can be studied using its
complex spectrum. This approach is well-known and widely
used in mesoscopic and nuclear physics [10–17]. Another
possibility to study dissipation is under the formalism of open
quantum systems [18–21], using a Lindblad master equa-
tion in the Markov approximation.

*Corresponding author: d.v.pcf.cu@gmail.com

In the formalism of open quantum systems, the system
state is given by an operator, the density operator, which
acts on the Hilbert space of the system. The dynamics of the
system state is dictated by a new operator, called Liouvillian
superoperator or simply Liouvillian, which acts on the space
of operators or Liouville space. The Liouvillian is in general
a non-Hermitian operator with complex eigenvalues [18,22].
The spectrum of the Liouvillian does not have the same in-
terpretation as the real spectrum of Hermitian Hamiltonians.
This fact prevents a simple generalization of the criteria that
characterize chaotic behavior in isolated quantum systems to
open quantum systems. In this work, we study a quantum
optical system, the open Dicke model, where atoms and pho-
tons interact in presence of dissipation. Thereby, due to its
broad application in quantum optics, we follow the formalism
of open quantum systems, using a Lindblad master equa-
tion in the Markov approximation, to characterize chaos in this
system.

Pioneering studies trying to understand the chaotic nature
of open quantum systems were performed in periodically
kicked dissipative tops with classical limit [23], where it was
found that the distribution of the complex-eigenvalue spac-
ings, understood as the Euclidean distance in the complex
plane, follows a 2D (two-dimensional) Poisson distribution
when the classical model is regular. The last point is under-
standable at some extent, since the intuitive extrapolation from
isolated regular systems suggests that the eigenvalue spacings
must be uncorrelated in the plane. In contrast, when the clas-
sical model is chaotic, the eigenvalue spacing distribution was
found to agree with the distribution of the Ginibre unitary en-
semble (GinUE) [24], showing a cubic level repulsion [23,25].

The extrapolation of the results found in the periodi-
cally kicked dissipative tops to any open quantum system
is nowadays called the Grobe-Haake-Sommers (GHS) con-
jecture [23,25]. It has been shown to be satisfied in other
open quantum systems with finite dimension, as spin chains
[26,27], or Richardson-Gaudin Liouvillians [28], and seems to
be universal. Some quantum systems in the chaotic case, using
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the effective non-Hermitian Hamiltonian approach to treat dis-
sipation, show an eigenvalue spacing distribution that agrees
with the GinUE distribution from the GHS conjecture [29,30].
Nevertheless, for nuclear and mesoscopic systems, the eigen-
value spacing distribution can be obtained analytically and
deviates from the GinUE distribution [10–13], suggesting that
the GHS conjecture is not well established for all systems
under this approach.

In this way, as the GHS conjecture has been validated for
finite-dimensional systems following the formalism of open
quantum systems, a natural question is to ask if it remains
valid for infinite-dimensional systems. Thus, the main goal
in this work is to study the open Dicke model, which is an
infinite-dimensional system, and verify that it satisfies the
GHS conjecture of spectral universality.

The isolated Dicke model represents the simplest inter-
acting radiation-matter system [31–33]. It was introduced
to study the radiation process from a quantum mechani-
cal perspective [31–37]. In recent years it has been used
in a broad variety of theoretical studies, including quan-
tum phase transitions [38–41], classical and quantum chaos
[42–49], quantum scarring [49–54], quantum localization
in phase space [55–57], nonequilibrium quantum dynam-
ics [33,58–62], evolution of out-of-time-ordered correlators
(OTOCs) [63–66], connections between chaos, entanglement
[48,49,67], and thermalization [66,68,69], among others.

The Dicke model can be experimentally realized with
setups as diverse as superconducting circuits [70], cavity as-
sisted Raman transitions [71,72], trapped ions [73,74], and
others. Moreover, this model has a well-defined classical limit
with two degrees of freedom [42,47], which depending on the
parameters and energy regions, can show regular or chaotic
motion.

A Dicke model including cavity dissipation or collective
atomic dissipation is known as the open Dicke model. This
model has been studied from superradiance and quantum
phase transitions [75–80], to classical and quantum chaos
[81–83]. Some studies have focused in a particular version
of the model, as the two-photon open Dicke model [84,85].
Experimental realizations of the open Dicke model with op-
tical cavities are shown in Refs. [86,87]. Moreover, the study
of this model could be extended to more general dissipation
channels, as those including collective atomic decay or con-
sidering temperature effects [18–20,33,88].

The open Dicke model has an infinite Liouville space, this
makes the study of its spectrum difficult, since we need to find
a numerically approximated complex spectrum that represents
the original one. In this regard, in this work we first propose a
criterion for finding meaningful eigenstates and eigenvalues of
the system. Then, we apply the standard methodology of open
quantum systems to reveal the appearance of chaotic behavior
in the open Dicke model using the GHS conjecture.

The article is organized as follows. In Sec. II, we introduce
the isolated Dicke model and discuss its important features.
Next, we introduce the open Dicke model using a Lindblad
master equation in the Markov approximation and discuss
relevant results as the dissipative phase transition. In Sec. III,
we propose a convergence criterion for the eigenstates and
eigenvalues of the Dicke Liouvillian. In Sec. IV, we outline
the standard procedures for performing spectral analysis in

open quantum systems, along with a brief review of spectral
analysis in isolated quantum systems. The main results of
the article concerning chaos and regularity in the open Dicke
model are shown in Sec. V. Finally, we summarize our results
and present our conclusions in Sec. VI.

II. OPEN DICKE MODEL

The Dicke model, which describes the interaction between
a set of N two-level atoms and a single-mode electromagnetic
field without dissipation (isolated system), is modeled with
the Hamiltonian (setting h̄ = 1) [31]

ĤD = ωâ†â + ω0Ĵz + γ√
N

(â† + â)(Ĵ+ + Ĵ−), (1)

where â† (â) is the bosonic creation (annihilation) operator
of the field mode. The set of operators {â†, â, Î} satisfy the
(Heisenberg-Weyl) HW(1) algebra. Moreover, Ĵ+ (Ĵ−) is the
raising (lowering) collective pseudospin operator, defined as
Ĵ± = Ĵx ± iĴy, where Ĵμ = (1/2)

∑N
k=1 σ̂ (k)

μ (μ = x, y, z) are
the collective pseudospin operators and σ̂μ are the Pauli matri-
ces. The set of operators {Ĵ+, Ĵ−, Ĵz} satisfy the SU (2) algebra
in the same way as the Pauli matrices.

The Dicke Hamiltonian can be studied in invariant sub-
spaces specified by the eigenvalues j( j + 1) of the squared

total pseudospin operator Ĵ
2 = Ĵ2

x + Ĵ2
y + Ĵ2

z . We use the to-
tally symmetric subspace, which is defined by the maximum
pseudospin value j = N /2 and includes the ground state. Fur-
thermore, the Dicke Hamiltonian possesses a parity symmetry,
[ĤD, �̂] = 0, where �̂ = exp[iπ (â†â + Ĵz + jÎ)] is the parity
operator. When an eigenbasis of this operator is selected as
diagonalization basis of the Hamiltonian, the states of the
system can be identified in two sectors of well-defined parity.

The main parameters of the Dicke Hamiltonian are the
radiation frequency of the single-mode electromagnetic field,
ω, the atomic transition frequency from the ground state to
the first excited state, ω0, and the coupling strength, γ , which
modules the atom-field interaction within the system and
reaches the critical value γc = √

ωω0/2. At this value, the sys-
tem develops a quantum phase transition going from a normal
(γ < γc) to a superradiant (γ > γc) phase [34–36,38]. Classi-
cally, the Dicke model displays regular or chaotic behavior
depending on the latter Hamiltonian parameters (ω,ω0, γ )
and excitation energies [47].

To study the open version of the Dicke model we use
the Lindblad master equation in the Markov approximation.
This equation describes the evolution of a small system of
interest interacting with its environment [18–20]. The Lind-
blad equation is obtained by assuming that the total system
state is approximately always separable (Born approximation)
and that its evolution does not depend on its past (Markov
approximation). These approximations are justified when the
system-environment coupling strength is weak.

When dissipation in the system is given by cavity losses,
the open Dicke model is modeled with the following Lindblad
master equation (setting h̄ = 1) [18–20]

d ρ̂

dt
= L̂Dρ̂ = −i[ĤD, ρ̂] + κ (2âρ̂â† − {â†â, ρ̂}), (2)
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where ρ̂ is the density matrix operator of the system, L̂D

is the Liouvillian superoperator or Dicke Liouvillian, which
acts over states in the Liouville space (operators acting on the
Hilbert space of the system), κ is the cavity decay coupling,
and â† (â) is the bosonic creation (annihilation) operator of
the field mode. The Dicke Liouvillian inherits a weak-parity
symmetry of the Hamiltonian [89–91], since [L̂D, P̂] = 0,
where P̂ ρ̂ = �̂ρ̂�̂† is the parity superoperator. An eigenbasis
of this superoperator, used as diagonalization basis of the
Liouvillian, identifies states of the system with well-defined
parity analogous to the isolated system.

When cavity dissipation is considered in the open Dicke
model, a quantum dissipative phase transition takes place at
the critical coupling strength [33,75,88]

γ os
c =

√
ωω0

2

√
1 + κ2

ω2
, (3)

defining, analogous to the isolated system, two phases in the
open system, a normal (γ < γ os

c ) and a superradiant (γ > γ os
c )

dissipative phase, respectively.
In this work, we use dimensionless Hamiltonian param-

eters scaled to the cavity decay coupling κ , (ω̃, ω̃0, γ̃ ) =
(ω/κ, ω0/κ, γ /κ ). For convenience, from now on we remove
the tilde in the last scaled parameters. We choose the resonant
frequency case ω = ω0 = 1, such that, the critical coupling
strength value of the isolated and open system is γc = 0.5
and γ os

c = 1/
√

2 ≈ 0.707, respectively. With the selected pa-
rameters, we consider two case studies, one with a coupling
strength in the normal phase (γ = 0.2), and another one in
the superradiant phase (γ = 1) of the open system. For these
values, the classical isolated system shows regular and chaotic
motion, respectively [47]. Moreover, to perform the spectral
analysis we select the sector of eigenstates (eigenvalues) with
positive parity in the Liouville space (see Appendix A for
an explanation of the Dicke Liouvillian with well-defined
parity). We choose the smallest system size j = 1 (N = 2
atoms) to show the convergence criterion for eigenstates and
eigenvalues of the Dicke Liouvillian and to later perform the
spectral analysis related with chaos.

III. CONVERGENCE OF EIGENVALUES AND
EIGENSTATES OF THE OPEN DICKE MODEL

The isolated Dicke model has an infinite-dimensional
Hilbert space composed by a finite atomic subspace with
dimension 2 j + 1, and an infinite-dimensional bosonic sub-
space. To numerically find the eigenvalues and eigenstates of
the Dicke Hamiltonian, a truncation of the Fock basis for the
bosonic subspace by a finite value of the number of photons
nmax is done, generating in this way a finite Hilbert space with
dimension DH = (2 j + 1)(nmax + 1). The space of operators
acting on the Hilbert space, known as the Liouville space,
is also of infinite dimension for the Dicke model. A finite
Liouville space can be obtained using the truncated basis of
the Hilbert space, where the Liouville basis is composed by all
the projectors of the aforementioned basis. Thus, the Liouville
space dimension is the square of the Hilbert space dimension
DL = D2

H. In this section we introduce a convergence criterion
to find eigenstates and its corresponding eigenvalues that are

numerically close to the eigenstates of operators acting on the
Liouville space.

A. Convergence of eigenvalues

A usual way to define convergence of eigenvalues in
infinite-dimensional spaces is comparing the change of the
eigenvalues εk for two truncation values, nmax and nmax + 1,


εk = ∣∣εnmax+1
k − ε

nmax
k

∣∣ � ε, (4)

where ε is a tolerance value. Thus, the eigenvalue εk is
rejected when the change 
εk exceeds the threshold ε.

This method has been successfully tested in the eigenvalues
of the Dicke Hamiltonian [92], but the implementation be-
comes computing demanding when the truncation size of the
Hamiltonian matrix increases, since two diagonalizations are
needed. For this reason, an alternative convergence criterion
based on the eigenstates of the truncated Hamiltonian matrix
was proposed, showing an equivalence with the eigenvalue
convergence criterion and using only one diagonalization of
the system [93].

When extending the eigenvalue convergence criterion to
the Dicke Liouvillian, we found it is not applicable. It is
well known that for complex non-Hermitian matrices, there
is always a set of missing eigenvalues in the complex plane
[94]. This result implies that there is no natural way to iden-
tify corresponding eigenvalues between matrices of different
dimensions and Eq. (4) cannot be used.

B. Convergence of eigenstates

Since the eigenvalue convergence criterion [see Eq. (4)]
is not applicable to eigenvalues of the Dicke Liouvillian, we
propose in this work an extension of the eigenstate conver-
gence criterion from the isolated Dicke model for its open
version. A detailed description of the convergence criterion
for eigenstates of the Dicke Hamiltonian and supporting stud-
ies are presented in Ref. [93]. See Appendix B for explicit
details about the extension of this convergence criterion to
eigenstates of the Dicke Liouvillian. Next, we describe the
overall idea, which consists in expanding the eigenstates of the
Dicke Liouvillian |λk〉〉, which satisfy the eigenvalue equation

L̂D|λk〉〉 = λk|λk〉〉, (5)

in a diagonalization basis, say the Liouville basis
|n′, m′

z; n, mz〉〉 = |n′; j, m′
z〉〈n; j, mz| with m′

z, mz =
− j,− j + 1, . . . , j − 1, j and n′, n = 0, 1, . . . , nmax, where
nmax identifies a truncation value of the bosonic subspace or
maximum number of photons [see Eqs. (A6) and (B4)]. Now,
it is possible to obtain two weight distributions by projecting
the eigenstate wave function over the Liouville basis [see
Eqs. (B5) and (B6)]. When the last distributions are evaluated
at the truncation value n′ = n = nmax, it is expected that the
contribution to the eigenstate wave function will be negligible

Pk
1,nmax

=
nmax∑
n=0

j∑
m′

z,mz=− j

∣∣ck
nmax,m′

z,n,mz

∣∣2 � 
, (6)

Pk
2,nmax

=
nmax∑
n′=0

j∑
m′

z,mz=− j

∣∣ck
n′,m′

z,nmax,mz

∣∣2 � 
, (7)
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FIG. 1. (a) Histogram of the absolute value of the converged
eigenvalues |λk | with positive parity of the Dicke Liouvillian for the
coupling strength γ = 0.2, which were computed numerically for
the truncation values nmax = 10, 20, 30, 40, 50, 60. (b) The same as
panel (a) for the coupling strength γ = 1. The Liouvillian parameters
in both panels are ω = ω0 = j = κ = 1 and the tolerance value was
chosen as 
 = 10−3.

where ck
n′,m′

z,n,mz
= 〈〈n′, m′

z; n, mz|λk〉〉 are the eigenstate wave
function components and 
 is a tolerance value. The last
equations mean that we can expand, with a degree of approx-
imation given by 
, the eigenstate wave function of the com-
plete Liouville space using the basis of the truncated space.

C. Convergence of eigenstates versus eigenvalues

In this section, we show numerical approximations for the
eigenstates of the Dicke Liouvillian using the convergence
criterion described in the previous section. We also argue why
their corresponding eigenvalues are a good approximation to
the eigenvalues of the full operator.

We select a set of truncation values nmax =
10, 20, 30, 40, 50, 60 and diagonalize the Dicke Liouvillian
for the parameters ω = ω0 = j = κ = 1. We perform this
procedure for two cases γ = 0.2 and γ = 1 to ensure we
are diagonalizing the system in the normal (γ < γ os

c ) and
superradiant (γ > γ os

c ) dissipative phase, respectively. We use
the Liouville basis with positive parity (P = +1) to perform
the convergence analysis. See Appendix A for a complete
description on how to diagonalize the Dicke Liouvillian
using the Liouville basis and how to select the basis with
well-defined parity. The well-converged sets of eigenvalues
obtained with the convergence criterion will be used in Sec. V
to perform the spectral analysis.

Now, we consider that the eigenvalue λk is close to the
eigenvalue of the full operator, when its corresponding eigen-
state |λk〉〉 fulfills relations (6) and (7) simultaneously. In this
case we say that λk is well converged. We now take the con-
verged eigenvalues for the set nmax = 10, 20, 30, 40, 50, 60,
and present the histogram of their absolute value |λk| in Fig. 1
for both cases γ = 0.2, 1. These histograms can be interpreted

as a density of states for the absolute value |λk|. In both cases
γ = 0.2, 1, we find that increasing the truncation value nmax

preserves the behavior of the density of states. Furthermore,
we see a number of converged eigenvalues higher for the low
coupling strength γ = 0.2 than for the high one γ = 1. The
last finding is intuitive extrapolating from the isolated system.
In general, there are less converged eigenstates (eigenvalues)
when the coupling strength is high in the system, since the
eigenstate wave functions are more spread in the diagonaliza-
tion basis and the convergence criterion is more difficult to be
fulfilled [92,93].

To visualize explicitly the convergence criterion in the
eigenstate wave functions, we focus on the single trun-
cation value nmax = 60, for which we obtained NCES =
11 030, 9165 converged eigenstates (eigenvalues) for γ =
0.2, 1 with a tolerance value 
 = 10−3. In Fig. 2 we show
the case γ = 0.2, where the complex spectrum ordered by the
eigenvalue absolute value |λk| is presented in Fig. 2(a). In this
panel, the black dots represent the complete set of eigenvalues,
while the blue dots represent the converged ones.

Figures 2(b1) and 2(b2) show the convergence criterion
computed for all eigenstates |λk〉〉 [see Eqs. (6) and (7)]. In
the same way, the black dots represent the criterion computed
for all the set of eigenstates, while the blue dots for the
converged ones. In these panels, a fraction of eigenstates for
which the criterion is apparently fulfilled can be seen beyond
k = 15 000 and even for the region k > 10 000, where the
lack of convergence arises. Nevertheless, to avoid ambiguities
by selecting them, and recalling that they are ordered by the
increasing eigenvalue absolute value |λk|, we select them until
the first eigenstate does not fulfill the criterion, discarding the
remaining ones.

In Fig. 2(c) we show the spectrum in the complex plane.
In this panel and Figs. 2(a), 2(b1), and 2(b2), a 3D diamond,
representing a particular eigenvalue (eigenstate) with label
k = 6000, is shown. In Figs. 2(d1) and 2(d2) we show the
wave function of this selected eigenstate projected over the
Liouville basis [see Eqs. (B5) and (B6)], where we can see
that the wave function is completely contained in the truncated
Liouville space for both projections.

We repeat the last analysis for the case γ = 1, showing
the results in Fig. 3. For this case, we see the same overall
behavior but with the eigenstate wave functions more spread
over the Liouville basis, as can be seen in Figs. 3(d1) and
3(d2). Nevertheless, Fig. 3(d1) shows the projection of the
eigenstate wave function more spread over the Liouville basis
than the projection of Fig. 3(d2). This shows that the eigen-
state wave function in chaotic regions has a very complex
structure in Liouville space, and these projections are useful
tools to understand it.

IV. SPECTRAL ANALYSIS AND QUANTUM CHAOS IN
OPEN QUANTUM SYSTEMS

The way to perform the spectral analysis for open quantum
systems with complex spectra was first outlined for periodi-
cally kicked dissipative tops in Ref. [23]. These studies were
latter extended to other open systems with finite dimension
[26–28], which suggest that the behavior regarding regular-
ity and chaos in open quantum systems is universal [23,26].
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FIG. 2. (a) Absolute value of the eigenvalues |λk | (black dots) with positive parity of the Dicke Liouvillian for the coupling strength
γ = 0.2, which were computed numerically for the truncation value nmax = 60. The blue dots represent the well-converged eigenvalues selected
under the eigenstate convergence criterion, and the diamond selects the eigenvalue with label k = 6000, λ6000. (b1, b2) Convergence criterion
for the eigenstates |λk〉〉 with positive parity of the Dicke Liouvillian [see Eqs. (6) and (7)]. (c) Complex spectrum of the Dicke Liouvillian.
(d1, d2) Wave function projections of the selected eigenstate |λ6000〉〉 [see Eqs. (B5) and (B6)]. The Liouvillian parameters in all panels are
ω = ω0 = j = κ = 1 and the tolerance value was chosen as 
 = 10−3.

Thus, we follow the procedure exposed in these references to
corroborate the validity of the GHS conjecture for the infinite-
dimensional open Dicke model.

A. Eigenvalue spacing distributions for regular and chaotic
complex spectra

In isolated quantum systems, the real eigenvalues of their
Hamiltonians, εk ∈ R, can be ordered in increasing order,
εk � εk+1. The spacing is defined as the separation between
an eigenvalue εk and its nearest neighbor εk+1, sk = εk+1 − εk .
Performing an unfolding procedure of the spectrum [3], we
can study its spectral fluctuations using the nearest-neighbor
spacing distribution, which follow typically the Poisson distri-
bution, PP(s) = exp(−s), for integrable (regular) systems and

the Wigner-Dyson surmise, PWD(s) = (π/2)s exp(−πs2/4),
for the nonintegrable (chaotic) ones [3,5].

For open quantum systems, the Liouvillians are non-
Hermitian and the eigenvalues are complex, ϕk ∈ C, such
that, the standard treatment to analyze spectral fluctuations
is not longer applicable. For these systems, the spacing is
understood as the minimal Euclidean distance in the com-
plex plane for an eigenvalue ϕk and its nearest neighbor ϕ1N

k ,
sk = |ϕk − ϕ1N

k |. After performing an unfolding procedure for
complex spectra (see Appendix C for an explanation of this
technique), we can study, analogous to the isolated systems,
the spectral fluctuations for open quantum systems.

Typically, the nearest-neighbor spacing distribution for in-
tegrable (regular) open quantum systems follows a 2D Poisson

FIG. 3. The same as Fig. 2 for the coupling strength γ = 1.
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distribution [2,23,26], which is given by

P2DP(s) = π

2
s e−πs2/4. (8)

Note that this distribution is functionally the same as the
Wigner-Dyson surmise, which characterizes the chaotic cases
in isolated quantum systems.

However, for nonintegrable (chaotic) open quantum sys-
tems, the nearest-neighbor spacing distribution follows
the distribution of the Ginibre unitary ensemble (GinUE)
[2,23,24,26,27], given by

PGinUE(s) =
∞∏

k=1

�(1 + k, s2)

k!
×

∞∑
k′=1

2s2k′+1e−s2

�(1 + k′, s2)
, (9)

where �(k, z) = ∫ ∞
z dt t k−1e−t is the incomplete Gamma

function,
∫ ∞

0 ds PGinUE(s) = 1, and s̄ = ∫ ∞
0 ds s PGinUE(s) ≈

1.1429. To compare this distribution with numerical values,
a scaling must be made to ensure that its first moment is unity

P̃GinUE(s) = s̄PGinUE(s̄s), (10)

with
∫ ∞

0 ds P̃GinUE(s) = 1 and
∫ ∞

0 ds s P̃GinUE(s) = 1.
In the limit s → 0, both distributions tend to the power law

Pβ (s) ∝ sβ, (11)

where the power β = 1, 3 identifies the degree of level re-
pulsion, linear (regular) for integrable cases, and cubic for
nonintegrable (chaotic) ones, which seems to be universal in
open quantum systems [2,23,25].

To corroborate that a data set comes from a given
distribution, the well-known Anderson-Darling test can be
implemented for the spacings sk = |ϕk − ϕ1N

k |, by computing
the parameter [95]

A2 = −N −
N∑

k=1

2k − 1

N
(ln[FX(sk )] + ln[1 − FX(sN+1−k )]),

(12)

where the spacings are arranged in increasing order sk � sk+1,
and FX(s) = ∫ s

0 ds′PX(s′) is the cumulative distribution func-
tion of the probability distribution PX(s) with X=2DP,GinUE.
When the Anderson-Darling parameter is greater than a
threshold, A2 > 2.5, we can conclude with 95% of confidence
that the data set does not come from the given probability
distribution.

B. Ratio of consecutive eigenvalue spacings for complex spectra

The ratio of consecutive eigenvalue spacings was intro-
duced to study spectral fluctuations in isolated systems with
real eigenvalues [96,97]. The advantage of this measure is
that the spectra can be studied without implementing unfold-
ing procedures, which can be ambiguous in some cases. The
last measure can be extended to open systems with complex
eigenvalues. The procedure is detailed in Ref. [98], where the
complex ratio takes the form

Zk = rkeiθk = ϕ1N
k − ϕk

ϕ2N
k − ϕk

, (13)

where ϕ1N
k and ϕ2N

k are the first- and second-nearest neighbor
of an eigenvalue ϕk , respectively.

The generic results from isolated quantum systems, where
the eigenvalues of integrable quantum systems are uncorre-
lated (Poisson distribution) and those of nonintegrable ones
show level repulsion (Wigner-Dyson surmise), have an anal-
ogy in open quantum systems. In open quantum systems,
the sets of eigenvalues of integrable systems (2D Poisson
distribution) are uncorrelated in the complex plane show-
ing a flat (delocalized) distribution. However, the sets of
eigenvalues of nonintegrable systems (GinUE distribution)
shows cubic level repulsion, which manifests itself with
a suppression of the distribution at the origin and small
angles [98].

The expectation values of rk = |Zk| and cos(θk ) =
Re(Zk )/rk can be computed using the marginal distributions
from each distribution 2DP and GinUE. The following results
are obtained 〈rk〉X = 2/3, 0.74 and −〈cos(θk )〉X = 0, 0.24
with X=2DP,GinUE; which can be used as a benchmark to
validate numerical results.

V. CHAOS AND REGULARITY
IN THE OPEN DICKE MODEL

In this section we show numerical results characterizing the
complex spectrum of the Dicke Liouvillian as chaotic or regu-
lar. We choose the spectrum computed with nmax = 60, which
is the highest truncation value we achieved. For this case we
get NCES = 11 030, 9165 converged eigenstates (eigenvalues)
for the coupling strengths γ = 0.2, 1, with a tolerance value

 = 10−3 [see Figs. 2(a) and 3(a), respectively].

First we present the case γ = 1, whose isolated classical
system shows chaotic behavior [47]. To analyze this case,
we have to take into account that, in absence of dissipation
and in the superradiant phase (γ > γc), the real spectrum
of the Dicke Hamiltonian transits from regularity (Poisson
distribution) at low energies to chaos (Wigner-Dyson surmise)
at high energies [43,44]. This can be understood from the
classical Dicke Hamiltonian, where at low energies the system
can be approximated as a harmonic oscillator, while at high
energies the system develops chaotic motion [47]. As the open
system could inherit some properties of the isolated system,
we study the complex spectrum of the Dicke Liouvillian by
regions.

To study the complex spectrum of the Dicke Liouvillian we
take regions or windows of 500 consecutive eigenvalues, orga-
nized by the increasing absolute value of its eigenvalues [see
Fig. 1(b)], and apply the Anderson-Darling test [see Eq. (12)]
to the spectrum, to check if the distribution comes from the
2D Poisson or the GinUE distribution [see Eqs. (8) and (10)].
The result is shown in Fig. 4(a), where the blue solid curve is
the Anderson-Darling test for the 2D Poisson distribution and
the red dotted curve for the GinUE distribution, respectively.
From this figure, it is clear that the complex spectrum of the
Dicke Liouvillian is well determined by the GinUE distribu-
tion, confirming the chaotic behavior of the spectrum for high
coupling strengths.

The last affirmation is corroborated by plotting the spac-
ing distribution of the eigenvalues contained in two selected
windows with mean value |λ| = 18.9, 63.5 in Figs. 4(b1)
and 4(b2), respectively. In both panels we can see that the
eigenvalues contained in each window follow the GinUE
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FIG. 4. (a) Anderson-Darling test for the complex spectrum with positive parity of the Dicke Liouvillian and the coupling strength γ = 1
(NCES = 9165), which was computed numerically for the truncation value nmax = 60. The test was computed taking moving windows of the
eigenvalue absolute value |λk | (500 consecutive eigenvalues). The blue solid (red dotted) curve represents the Anderson-Darling parameter
computed for the 2D Poisson (GinUE) distribution [see Eq. (12)]. The black dashed vertical lines represent the mean value of the eigenvalue
absolute value of selected windows. The green dashed horizontal line represents the Anderson-Darling threshold, A2 = 2.5. (b1, b2) Spacing
distribution (bars) for the eigenvalues contained in the windows selected in panel (a), identified with black dashed vertical lines. The blue solid
(red dashed) curve represents the 2D Poisson (GinUE) distribution [see Eqs. (8) and (10)]. (c1, c2) Complex ratio of consecutive eigenvalue
spacings [red dots, see Eq. (13)] for the eigenvalues contained in the same windows selected in panel (a). (d, e1, e2, f1, f2) The same as
their corresponding panels (a, b1, b2, c1, c2), for the coupling strength γ = 0.2 (NCES = 11030). The Liouvillian parameters in all panels are
ω = ω0 = j = κ = 1 and the tolerance value was chosen as 
 = 10−3.

distribution [see Eq. (10)], since the Anderson-Darling param-
eter does not cross the threshold A2 = 2.5. Furthermore, we
compute the complex ratio of consecutive eigenvalue spac-
ings for the eigenvalues contained in the same windows [see
Eq. (13)], and plot them in Figs. 4(c1) and 4(c2). We can
see in both panels that the point distribution is avoided at
the origin as expected, and it looks fuzzy for small angles.
The same panels show the numerical expectation values 〈rk〉
and −〈cos(θk )〉 for each set of eigenvalues, which seem to
agree with the theoretical expectation values from the GinUE
distribution. The deviations are attributed to the low quantity
of eigenvalues contained in each window, which must be
suppressed when the system size increases; or instead, when
the windows are wider containing more eigenvalues.

For the second case γ = 0.2, the isolated classical system
shows regular motion [47]. For the real spectrum of the Dicke
Hamiltonian with coupling strengths in the normal phase (γ <

γc), the spectral fluctuations are generally regular (Poisson
distribution) [43]. Nevertheless, we follow the same method
of studying the complex spectrum of the Dicke Liouvillian
taking regions organized by the increasing eigenvalue abso-
lute value [see Fig. 1(a)].

We take the same moving windows of 500 consecutive
eigenvalues and apply the same procedure described above for
the case γ = 1. In Fig. 4(d) we show the Anderson-Darling
test. For low eigenvalue absolute values the complex spectrum

follows the 2D Poisson distribution, confirming the regular
behavior of the spectrum. However, there is a transition region
where this integrability breaks around |λ| ∼ 25. After this
value, there are some fluctuations until the chaotic behavior of
the spectrum seems to be reached at values around |λ| ≈ 65.
This suggests that the low coupling strength in the system does
not guarantee the regularity of the system for the full complex
spectrum.

As in the previous case, we plot the spacing distribution of
the eigenvalues contained in two selected windows with mean
value |λ| = 18.2, 64.5 in Figs. 4(e1) and 4(e2), respectively.
Here, we can see that the eigenvalues contained in the first
window follow the 2D Poisson distribution, while the second
one seems to follow the GinUE distribution [see Eqs. (8) and
(10)]. For the first window, the Anderson-Darling parameter
does not cross the threshold A2 = 2.5, while for the second
window it is in the limit. Moreover, we plot in Figs. 4(f1) and
4(f2) the complex ratio of consecutive eigenvalue spacings for
the eigenvalues contained in the corresponding windows. We
can see in Fig. 4(f1) that the point distribution is delocalized
over the complex plane as expected, while in Fig. 4(f2) the
point distribution seems to be avoided at small angles, but
not at all at the origin. We compute for both cases, the nu-
merical expectation values 〈rk〉 and −〈cos(θk )〉 for each set of
eigenvalues. The first case seems to agree with the theoretical
expectation values from the 2D Poisson distribution, while the
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FIG. 5. The same as Fig. 4 for the system size j = 3 (N = 6 atoms). For this system size and the truncation value nmax = 60 were
obtained NCES = 36 989, 59 001 converged eigenstates (eigenvalues) for the coupling strengths γ = 1, 0.2 and the moving windows contain
1500 consecutive eigenvalues.

second one with the GinUE distribution. The same deviations
are attributed to the low quantity of eigenvalues contained in
each window.

Now, we make the previous analysis increasing the system
size to corroborate our statements. We take the system size
j = 3 (N = 6 atoms) with the same truncation value nmax =
60, obtaining NCES = 59 001, 36 989 converged eigenstates
(eigenvalues) for the coupling strengths γ = 0.2, 1, with a
tolerance value 
 = 10−3.

In Fig. 5 we show the results, first for the coupling strength
γ = 1 and then for γ = 0.2. To perform the Anderson-
Darling test, we take moving windows of 1500 consecutive
eigenvalues. For the case γ = 1, we can see in Fig. 5(a)
that the chaotic behavior of the complex spectrum of the
Dicke Liouvillian is again confirmed, where the deviations
of the Anderson-Darling parameter computed for the GinUE
distribution decrease, showing an almost constant curve. Fur-
thermore, in Figs. 5(b1) and 5(b2) we plot the spacing
distribution of the eigenvalues contained in two selected win-
dows with mean value |λ| = 20.2, 54.2, respectively. We see
that not only the spacing distributions follow the GinUE distri-
bution, but also the ratio of consecutive eigenvalue spacings,
plotted in Figs. 5(c1) and 5(c2) for both windows, shows
clearer the avoided regions at the origin and at small angles
as expected. In the same way, we see that the agreement of
the numerical expectation values 〈rk〉 and −〈cos(θk )〉 with the
theoretical ones improves as we have argued.

Taking the same moving windows of 1500 consecutive
eigenvalues for the case γ = 0.2, we can see in Fig. 5(d) the
Anderson-Darling test, which confirms the regular behavior of
the complex spectrum of the Dicke Liouvillian at low eigen-
value absolute values. Furthermore, the transition to chaos
is confirmed at high eigenvalue absolute values. This is an

interesting feature of the open system, since the transition to
chaos is developed slowly until the system behaves chaotic.

For the eigenvalues contained in two selected windows
with mean value |λ| = 20.3, 76.5, we plot in Figs. 5(e1)
and 5(e2) the spacing distribution. The first window follows
the 2D Poisson distribution, while the second one follows
the GinUE distribution, confirmed by the Anderson-Darling
parameter. Moreover, the ratio of consecutive eigenvalue spac-
ings for both windows is plotted in Figs. 5(f1) and 5(f2),
showing the complete delocalization of the point distribution
in the complex plane for the first window and the avoided
regions at the origin and at small angles for the second one.
As a matter of fact, we also see a better agreement of the
numerical expectation values 〈rk〉 and −〈cos(θk )〉 with the
theoretical ones.

VI. SUMMARY AND CONCLUSIONS

We implemented a convergence criterion for the eigen-
states and eigenvalues of the Dicke Liouvillian based on the
eigenstate wave functions spread over the Liouville basis. The
onset of chaos in the open Dicke model was successfully char-
acterized by applying the standard spectral analysis proposed
for open quantum systems.

For the high coupling strength case (γ = 1), we detected
the GinUE distribution for the eigenvalue spacings, typical for
chaotic open quantum systems for all range of the eigenvalue
absolute value of the complex spectrum. However, for the
low coupling strength case (γ = 0.2), we identified a richer
structure, since at low eigenvalue absolute values we detected
the 2D Poisson distribution for the eigenvalue spacings, typ-
ical for regular open quantum systems. Nevertheless, there
is a regime where this integrability is broken and the onset
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of chaos arises in the system, implying that low coupling
strengths do not guarantee the regularity of the system for all
the spectrum.

We verified that the GHS conjecture is valid for the open
Dicke model, confirming its universality for this infinite-
dimensional system, when the spectral analysis of the Dicke
Liouvillian is done by regions of its eigenvalues. We think that
these studies are a first step to characterize the phenomenon
of chaos in the open Dicke model. The analysis shown in
this work can be extended adding other kinds of dissipative
channels, as collective atomic decay or temperature effects.
We think also, that the methods developed in this work could
be extended to other open quantum systems with infinite Li-
ouville space.
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APPENDIX A: DIAGONALIZATION OF THE DICKE
LIOUVILLIAN

1. Matrix Representation of the Dicke Liouvillian

The way to diagonalize a Liouvillian is using the tetradic
notation [99], where a matrix representation of the system can
be obtained using an arbitrary basis of the form

|k, l〉〉 = |k〉〈l|, (A1)

where |•〉〉 denotes a vector in the Liouville space composed
by all the projectors of the Hilbert-space states |•〉. For an
N-dimensional basis of the Hilbert space, there will be an N2-
dimensional basis of the Liouville space.

Using the last procedure, the matrix representation of the
Dicke Liouvillian takes the form

LD
k′l ′,kl = 〈〈k′, l ′|L̂D|k, l〉〉 = Tr{|l ′〉〈k′|L̂D|k〉〈l|}

=
∑

i

〈i|l ′〉〈k′|L̂D|k〉〈l|i〉 = LD,γ

k′l ′,kl + LD,κ
k′l ′,kl , (A2)

where

LD,γ

k′l ′,kl = −i〈〈k′, l ′|[ĤD, ρ̂]|k, l〉〉
= −i(〈k′|ĤD|k〉δl,l ′ − 〈l|ĤD|l ′〉δk′,k ), (A3)

and

LD,κ
k′l ′,kl = κ〈〈k′, l ′|(2âρ̂â† − {â†â, ρ̂})|k, l〉〉

= 2κ〈k′|â|k〉〈l|â†|l ′〉+
− κ (〈k′|â†â|k〉δl,l ′ + 〈l|â†â|l ′〉δk′,k ). (A4)

2. Fock Basis and Liouville Basis

The standard way to diagonalize the Dicke Hamiltonian
is using the Fock basis, which is composed by Dicke states
| j, mz〉 (with mz = − j,− j + 1, . . . , j − 1, j) for the atomic
subspace and Fock states |n〉 (with n = 0, 1, . . . ,∞) for the
bosonic subspace in tensor product

| f 〉 = |n; j, mz〉 = |n〉 ⊗ | j, mz〉, (A5)

where the index f (n, mz ) = (2 j + 1)n + mz + j + 1 reorders
the elements of the basis with one value. As was mentioned
previously, the Fock basis is infinite; nevertheless, a truncation
finite value nmax of the bosonic subspace (maximum number
of photons) is selected to solve the system numerically.

The Fock basis can be used to generate the diagonalization
basis of the Dicke Liouvillian or Liouville basis

| f ′, f 〉〉 = | f ′〉〈 f | = |n′; j, m′
z〉〈n; j, mz|, (A6)

with m′
z, mz = − j,− j + 1, . . . , j − 1, j and n′, n =

0, 1, . . . ,∞. Thus, the matrix elements of the Dicke
Liouvillian are given by

〈 f ′|ĤD| f 〉 =(ωn + ω0mz )δn′,nδm′
z,mz

+ γ√
N

(
√

n + 1δn′,n+1 + √
nδn′,n−1)

× (
C+

mz
δm′

z,mz+1 + C−
mz

δm′
z,mz−1

)
, (A7)

with C±
mz

= √
j( j + 1) − mz(mz ± 1), and

〈 f ′|â| f 〉 = √
nδn′,n−1δm′

z,mz , (A8)

〈 f ′|â†| f 〉 = √
n + 1δn′,n+1δm′

z,mz , (A9)

〈 f ′|â†â| f 〉 = nδn′,nδm′
z,mz , (A10)

〈 f ′|ââ†| f 〉 = (n + 1)δn′,nδm′
z,mz . (A11)

3. Liouville Basis with Well-Defined Parity

The Fock basis | f 〉 is an eigenbasis of the parity operator,
�̂ = exp[iπ (â†â + Ĵz + jÎ)],

�̂| f 〉 = p| f 〉, (A12)

with eigenvalues p = (−1)(n+mz+ j) = ±1, and allows us to
select a basis with well-defined parity in the Hilbert space. The
last feature allows us in the same way to select a basis with
well-defined parity in the Liouville space, when the parity su-
peroperator P̂ acts over the Liouville basis | f ′, f 〉〉 = | f ′〉〈 f |

P̂| f ′, f 〉〉 = �̂| f ′〉〈 f |�̂† = P| f ′, f 〉〉, (A13)

with eigenvalues P = (−1)(n′+m′
z−n−mz ) = ±1.

APPENDIX B: CONVERGENCE CRITERION OF
EIGENSTATES OF THE DICKE LIOUVILLIAN

1. Eigenstates of the Dicke Hamiltonian

The eigenstates of the Dicke Hamiltonian can be expanded
in an arbitrary basis. Typically the Fock basis [see Eq. (A5)]
is used to diagonalize the Dicke Hamiltonian, and the eigen-
states of the system, ĤD|Ek〉 = Ek|Ek〉, have the following
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representation:

|Ek〉 =
DH∑
f =1

ck
f | f 〉 =

nmax∑
n=0

j∑
mz=− j

ck
n,mz

|n; j, mz〉, (B1)

where nmax is a truncation value of the bosonic subspace
or maximum number of photons, ck

f = 〈 f |Ek〉 or ck
n,mz

=
〈n; j, mz|Ek〉 are the eigenstate wave function components,
and the eigenstates are arranged in increasing order of their
real eigenvalues Ek � Ek+1, Ek ∈ R.

The probability to have n photons in the eigenstate |Ek〉 is
given by

pk
n =

j∑
mz=− j

|〈n; j, mz|Ek〉|2 =
j∑

mz=− j

∣∣ck
n,mz

∣∣2
, (B2)

and when this probability is evaluated for all the values n =
0, 1, . . . , nmax, it can be interpreted as a projection of the
eigenstate wave function over the Fock basis. In this way, an
eigenstate is considered well converged, when the projection
of its wave function expanded over the Fock basis has zero
probability for the maximum number of photons nmax (trunca-
tion value) [93]

pk
nmax

=
j∑

mz=− j

∣∣ck
nmax,mz

∣∣2 � δ, (B3)

where δ is a tolerance value. The last statement can be
interpreted alternatively as the eigenstate wave function is
contained in the truncated Hilbert space, that is, all coeffi-
cients contributing to the wave function are contained inside
the truncated Hilbert space. See a more detailed explanation
of this eigenstate convergence method in Ref. [93].

2. Eigenstates of the Dicke Liouvillian

The convergence criterion explained above, which is valid
for eigenstates of the Dicke Hamiltonian, can be extended for
the eigenstates of the Dicke Liouvillian. By considering the
Liouville basis [see Eq. (A6)] as the projectors of the Fock
basis, we can diagonalize the Dicke Liouvillian, and the eigen-
states of the open system, L̂D|λk〉〉 = λk|λk〉〉, take the form

|λk〉〉 =
DH∑

f ′, f =1

ck
f ′, f | f ′, f 〉〉 =

DH∑
f ′=1

DH∑
f =1

ck
f ′, f | f ′〉〈 f |

=
nmax∑

n′,n=0

j∑
m′

z,mz=− j

ck
n′,m′

z,n,mz
|n′; j, m′

z〉〈n; j, mz|, (B4)

where nmax is the same truncation value of the isolated
bosonic subspace, ck

f ′, f = 〈〈 f ′, f |λk〉〉 are the eigenstate wave
function components, and the eigenstates are arranged in
increasing order of their complex-eigenvalue absolute values
|λk| � |λk+1|, λk ∈ C.

Analogous to the isolated system, we can define an exten-
sion of Eq. (B2) for the eigenstate |λk〉〉 of the open system,

such that, we have two weight distributions

Pk
1,n′ =

nmax∑
n=0

j∑
m′

z,mz=− j

∣∣ck
n′,m′

z,n,mz

∣∣2
, (B5)

Pk
2,n =

nmax∑
n′=0

j∑
m′

z,mz=− j

∣∣ck
n′,m′

z,n,mz

∣∣2
, (B6)

which can be interpreted as projections of the eigenstate wave
function over the Liouville basis for all the values n′, n =
0, 1, . . . , nmax. For this case, an eigenstate is considered well
converged, when both projections of its wave function ex-
panded over the Liouville basis have zero contribution for
the truncation value nmax. Evaluating Eqs. (B5) and (B6) in
n′, n = nmax, we get the expressions (6) and (7) shown in the
main text.

3. Robustness of the Eigenstate Convergence Criterion

For the well-defined parity Liouville basis, the dimension
of the Liouville space DL,P (which defines the number of
eigenstates NES) is given by

NES = DL,P=±1

=
{
D2

H/2 if (−1)nmax = −1,(
D2

H ± 1
)
/2 if (−1)nmax = 1,

(B7)
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FIG. 6. (a) Number of converged eigenstates NCES with positive
parity of the Dicke Liouvillian for two coupling strength values γ =
0.2 (black dots) and γ = 1 (black squares), which were computed
numerically for the truncation values nmax = 10, 20, 30, 40, 50, 60.
The blue solid (red dashed) curve depicts an analytical fit of the black
dots (squares). (b) Ratio of the number of converged eigenstates NCES

to the total number of eigenstates NES for the same coupling strength
values γ = 0.2 (blue solid curve) and γ = 1 (red dashed curve).
The black dashed (dotted) horizontal line represents the asymptotic
value of the last ratios in the limit nmax → ∞ [see Eq. (B9)]. The
Liouvillian parameters in both panels are ω = ω0 = j = κ = 1 and
the tolerance value was chosen as 
 = 10−3.
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where DH = (2 j + 1)(nmax + 1) is the dimension of the
Hilbert space of the isolated system.

In Fig. 6(a) we show the number of well-converged
eigenstates NCES selected under the eigenstate conver-
gence criterion [see Eqs. (6) and (7)] with a tolerance
value 
 = 10−3, for all the same truncation values nmax =
10, 20, 30, 40, 50, 60 shown in the main text. By fitting the
numerical results, we find a quadratic behavior for the number
of converged eigenstates,

NCES = A1nmax + A2n2
max, (B8)

where A1 = −11.49,−15.60 and A2 = 3.28, 2.77 identify the
fitting values for each coupling strength γ = 0.2, 1.

Using the last analytical expressions, we can find their
asymptotic value in the limit nmax → ∞ for the ratio of con-
verged eigenstates to the total number of eigenstates obtained
in each implementation,

lim
nmax→∞

NCES

NES
= 2A2

(2 j + 1)2
. (B9)

For the parameters A2 = 3.28, 2.77 we find the asymptotic
values 0.729 and 0.616, respectively. In Fig. 6(b) we show the
ratio NCES/NES as a function of the truncation value nmax, with
their corresponding asymptotic value for the cases γ = 0.2, 1.
We see in this figure that the fraction of converged eigenstates

is bounded for both cases, tending asymptotically to a constant
value in the limit nmax → ∞.

APPENDIX C: UNFOLDING OF COMPLEX SPECTRA

The unfolding of complex spectra is needed to remove
system specific structures from it, in the same way as occurs
in the real spectra, and can be implemented in different ways
[2,26,27,100]. Following the method presented in Ref. [26],
the spectral density of states can be separated in an average
(system specific) and a fluctuating (universal) part

ν(ϕk ) =
N∑

l=1

δ(2)(ϕk − ϕk,l ) = νa(ϕk ) + νf(ϕk ), (C1)

where the averaged spectral density of states is approximated
by a sum of Gaussian functions near each complex eigenvalue
ϕk ∈ C of a set with N elements

νa(ϕk ) ≈ 1

2πσ 2N

N∑
l=1

e−|ϕk−ϕk,l |2/(2σ 2 ), (C2)

where σ = 4.5S, S = N−1 ∑N
k=1 sk , and the spacings sk =

|ϕk − ϕ1N
k | are scaled as

s̃k =
√

νa(ϕk )

S̃
sk, (C3)

with S̃ = N−1 ∑N
k=1

√
νa(ϕk )sk .
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