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Swarmalators with delayed interactions
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We investigate the effects of delayed interactions in a population of “swarmalators,” generalizations of phase
oscillators that both synchronize in time and swarm through space. We discover two steady collective states:
a state in which swarmalators are essentially motionless in a disk arranged in a pseudocrystalline order, and a
boiling state in which the swarmalators again form a disk, but now the swarmalators near the boundary perform
boiling-like convective motions. These states are reminiscent of the beating clusters seen in photoactivated
colloids and the living crystals of starfish embryos.
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I. INTRODUCTION

Swarmalators are generalizations of phase oscillators that
swarm around in space as they synchronize in time [1]. They
are intended as prototypes for the many systems in which
synchronization and swarming co-occur and interact, such
as biological microswimmers [2–8], forced colloids [9–16],
magnetic domain walls [17,18], robotic swarms [19–26], and
embryonic cells of starfish [27] and zebrafish [28].

Research on swarmalators is increasing. Tanaka et al.
began the endeavor by introducing a universal model of
chemotactic oscillators with rich dynamics [29–32]. Later
O’Keeffe et al. studied a mobile generalization of the
Kuramoto model [1]. This swarmalator model is currently
being further studied. The effects of phase noise [33], local
coupling [21,34–36], external forcing [37], geometric confine-
ment [38–40], pinning [41], mixed sign interactions [42–44],
and finite population sizes [45] have been studied. The well
posedness of weak and strong solutions to swarmalator mod-
els have also been addressed [46–48]. Reviews and potential
application of swarmalators are provided in [49,50]. Mobile
oscillators, where oscillators’ movements affect their phases
but not conversely, have also been studied [51–54].

This paper is about swarmalators with delayed interactions.
Delays are, in this context, largely unstudied, although they
occur commonly in nature and technology. In the case of
microswimmers, the interswimmer coupling is mediated by
the surrounding fluid and is therefore noninstantaneous. De-
lays are also an important factor to consider in embryonic
development. They are a well-established feature of gene
expression and are believed to play a key role in how cells,
organs, and other agglomerations attain their shapes [28]. The
authors of [28] on page 26 say the following: “Even though
cell coupling is local, involving cells which are in direct con-
tact, cells require some time to synthesize and transport the
membrane ligands and receptors to their surface. Also, cells
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need time to integrate received information to its internal gene
expression dynamics, for example, by producing transcription
factors. Each of these reaction processes takes a different time
to be completed, and these times depend on cell type and
cell state.” They continue on the following page: “This time
delay might be relevant for cell coupling because what cells
acquire at the present time is the information of surrounding
cells some time ago. Thus, inherent delays in cell coupling are
key to understanding information flow in biological tissues.”
Time delay is also relevant to robotic swarms where digital
communication comes with unavoidable lags and may affect
both communication of the spatial or internal state of robots.

In short, delays are important for a broad class of swar-
malators; in some cases delay affects the communication of
internal state of particles, and in others it affects the communi-
cation of both the internal and spatial state. Here we aim to ad-
vance our understanding of delay-coupled swarmalators theo-
retically, so we will focus on delays in just the internal state of
the original swarmalator model [1]. This model is a natural
first case study because it captures the behaviors of many
natural swarmalators [4,5,11] yet is simple enough to analyze.

II. SWARMALATORS WITH DELAY

We will introduce time delay into the swarmalator model
proposed by O’Keeffe, Hong, and Strogatz (OHS) [1].
The equations describing the dynamics of such delayed
swarmalators read1

ṙi = vi + 1

N

N∑
j �=i

[
r j − ri

|r j − ri| (1 + J cos[θ j (t − τ ) − θi(t )])

− r j − ri

|r j − ri|2
]
, (1)

θ̇i = ωi + K

N

N∑
j �=i

sin[θ j (t − τ ) − θi(t )]

|r j − ri| . (2)

1While [1] is using the notation x for positions of particles, here it
will be more convenient to use r, because we will also need to refer
to the particle radius r in the analysis.
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Here ri = (xi, yi ) is the coordinate vector of the ith particle,
θi is the phase of the ith particle, and N is the number of
particles. All the spatial coordinates are evaluated without
delay, at time t . The first coupling term in Eq. (1) represents
attraction: it causes the velocity of particle j to be directed
towards particle i and vice versa. The parameter J controls
the tendency of this attractive term to depend on internal
phases; when J = 0 the attraction is independent of internal
phases. In order for the first term to be attractive, |J| must
be less than 1. The attractive term has a magnitude that is
independent of the particle separation, i.e., it represents an
all-to-all attraction (which could also be called mean field
attraction) that is commonly used. For example, the same is
done with phases in the Kuramoto model.

The second coupling term in Eq. (1) is a short-range repul-
sion: it causes the velocity of particle i to be directed away
from particle j, but this term decays away with distance. It is
intended to prevent clumping of all particles at one point. The
form of the model is motivated in [1].

Equation (2) describes dynamics of internal phases. If θ j

is lagging behind θi, the i − j term in the sum contributes to
the velocity of θi, which tends to bring θi closer to θ j . In other
words, oscillator j “pulls” the phase of oscillator i closer to
it. This is the usual Kuramoto interaction. The parameter K
is an overall scaling factor for the strength of phase attraction
(positive K) or repulsion (negative K). Here the strength of the
interaction depends on the distance: oscillators that are closer
in physical space will experience a stronger tendency to align
or counteralign their phases with their close neighbors. Thus,
the picture is this: the phase dynamics affects the strength of
spatial attraction, while the spatial position of particles affects
the strength of phase interaction.

What we add in this work is the time delay in phase de-
pendence. The particle i at time t responds to the phase of the
particle j as it was at time τ ago, at time t − τ . In this work,
we add this effect only to the phase dynamics. Physically, the
phase represents the internal state, for example, the phase of
a gene expression cycle. Communication of such an internal
variable often takes place via chemical signals, which is a
type of interaction that is much slower than the interaction
that communicates positions of objects in physical space [28].

We investigate the role of delay in this model. OHS discov-
ered that the system can be found in one of the five collective
states in the absence of a delay. In the present paper we work
mostly in the region of (J, K ) space that in this delay-free
model corresponds to what OHS called the “active phase
wave.” The swarmalators in this state move in circles around
the center of the annulus-shaped cluster: some move clock-
wise, and some counterclockwise, while the internal phases
change as they move around the center of the annulus. It is in
this region of the (J, K ) space that we found the interesting
collective behavior induced by a delay. It is possible that other
unique behaviors take place in other regions of (J, K ) space,
but this would be a subject for a future work.

This plan of this paper is as follows. In Sec. III numerical
results are presented. Two collective states are presented in
Secs. III A and III B. Section III C describes the dynamical
phase transition between these states, as well as properties
of long-time behavior of transient oscillations. Theoretical
treatment is presented Sec. IV, in which we compare

theoretical predictions with numerical results. We summarize
in Sec. V.

III. TWO TYPES OF COLLECTIVE BEHAVIOR:
NUMERICAL RESULTS

We begin by presenting a phenomenon that occurs at suf-
ficiently large τ . The meaning of “sufficiently large” will be
made precise in Sec. III C.

A. Quasistatic pseudocrystal

We placed particles at random positions x within a square
with corners at (±1,±1) and assigned initial phases θ uni-
formly at random from [0, 2π ]. The square refers to the set
of initial positions, not the boundary conditions. The bound-
ary conditions are free; the particles are not confined to a
square. Following an initial complicated transient, when par-
ticles quickly organize into a nearly circular disk, the cluster
enters into a coherent, synchronized collective motion char-
acterized by decaying oscillations of the radius. Figure 1
demonstrates velocity vectors of particles at two snapshots in
time—one during expansion and another during contraction—
and Fig. 2(a) demonstrates oscillations of the system average
radius of the cluster, R(t ) = 1

N

∑N
n=1 rn(t ), where rn = |rn|.

Naturally, the system average velocity and the average speed
of particles also exhibit oscillations. Figure 2(b) depicts the
average speed |v|(t ) = 1

N

∑N
n=1 |vn|(t ). We will refer to this

collective behavior as “breathing” of the cluster. Note that
in the rest of the paper, the word “average” will refer to the
system average, as above; when the need arises to discuss
other types of averages (for example, time average), this will
be stated explicitly.

Because the oscillations during the breathing decay, this
stage of the system dynamics can be thought of as the longer
portion of the transient. At earlier times, the transient is more
complicated and does not result in breathing motion. The
dynamics at much earlier times is complex. The first few
breaths are also complicated: they are not purely radial and
can be accompanied by other types of dynamics, including
particle rearrangements and time-averaged expansion of the
cluster (this is why the speed does not go to zero at maximum
and minimum radius). Eventually, breathing motion becomes
simpler: it consists of only radial oscillations around the
infinite-time equilibrium radius value, and there are no par-
ticle rearrangements in this latter stage. In Fig. 2 this happens
around t = 80.

After the breathing transient dies down, it appears that a
static pseudocrystal is formed; the average radius R appears
to reach a final, fixed value R

∗
(the ∗ signifies the limit as t →

∞). Examples of these pseudocrystals are shown in Fig. 3
for three system sizes. We use the term “pseudocrystals” be-
cause the crystalline order is only local and approximate. Note
that the radii of these pseudocrystals depend on N ; i.e., the
radii of the three clusters in Fig. 3 are not equal (see Fig. 7),
they have been scaled in Fig. 3. But the interparticle spacing
relative to the cluster radius clearly decreases with larger N .

Plots, such as in Fig. 2, suggest that a cluster reaches a
static state. However, a careful examination of the tail of |v|(t )
demonstrates that there is some residual motion left. This is
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FIG. 1. Velocity vectors and particle positions at two instants of
time. These times are at latter stages of oscillations (see Fig. 2 for
corresponding speeds and the average radius (not maximum radius)
at these times). (N, J, K, τ ) = (100, 1, −0.75, 8).

seen on a log scale, such as in Fig. 4. Around t = 150 we
clearly see that breathing motion gives way to a different type
of motion with very small velocities. We can call it creeping
motion. The magnitude of these velocities continues to decay
with time, but much slower than during the breathing stage.
We can define the transition to this creeping motion as an
intersection of the straight-line fit on the logarithmic plot to
the envelope of |v|(t ) during breathing (red dashed line in
Fig. 4) with the function itself. There is no single defining
feature of this postbreathing velocity pattern: its character
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FIG. 2. (a) R(t ); (b) v(t ). The parameters are (N, J, K, τ ) =
(100, 1, −0.75, 8).

changes with time and with respect to parameters. The only
definite feature of this postbreathing creeping dynamics is that
it is rather disordered. We give an example of such a pattern
in Fig. 5. Additional examples can be found in Figs. 29 and
30 in Appendix B.

There is no indication, given the range of our computa-
tional capabilities, that the postbreathing creeping motion is a
finite-size effect. We come to this conclusion by measuring the
dependence of the average speed on N at three instants of time
that follow the breathing. In Fig. 6 we plot the average speed
versus N measured at three instants in time. The first, labeled
“time 1,” is immediately after the end of the breathing motion
as just defined. The second, or “time 2,” is around 500 time
units after end of the breathing motion, and the third, or “time
3,” is 1000 time units after the end of the breathing motion.
The data in Fig. 6 suggest that there is no indication (at least in
the range of N ′s that were studied) that the long-time average
speed decreases with increasing system size.

Other properties do exhibit N dependence, for example,
the radius of the cluster after breathing (creeping motion has
a negligible effect on cluster radius fluctuations). We will
denote the radius of the cluster by R (no overbar means we
refer to the radius of the cluster, i.e., the maximal r out of N
particles, not the average over N values of r); thus, the infinite
time limit of this quantity will be denoted by R∗. Figure 7
clearly demonstrates that R∗ depends on N .

So far we have discussed the spatial aspect of the dynamics.
Figure 8 depicts the dynamics of internal phases. We see
again the early transient, the longer portion of the transient
coincident with the breathing stage, followed by the long-
time behavior of uniform growth of internal phases all at the
same rate. During the longer stage of the transient the phases
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988.9714

FIG. 3. N = 100 (top), N = 500 (middle) and N = 1000
(bottom) particle systems after the breathing transient. The values
of τ were 1.5τc, where τc is a critical delay at which the long-time
behavior becomes boiling motion, as described in the next subsection
(see Fig. 16 for values of τc at different N). Here J = 1, K = −0.7.

undergo a series of plateaus followed by short and rapid col-
lective phase slips. Note that at this time all the phases are
either the same or separated by 2π . Therefore, there is not
only a synchronization of spatial motion (coherent breathing)
but also a phase synchronization. The behavior after the early
transient can be expressed as θ = �t + δθ (t ), where δθ (t ) is
an oscillatory function that decays away, leaving behind only
the uniform growth of all phases after the transient. Note that
the period of δθ (t ) is comparable to τ . The � can be positive
or negative, depending on initial condition.

A detailed example of the time evolution is shown in
Fig. 31 in Appendix B. We also show the evolution of several
quantities with increasing τ in Fig. 32 there, where it is evi-
dent that plateaus of θ (t ) become more prominent and grow
with increasing τ .
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FIG. 4. Natural logarithm of the average speed versus time. A
transition from decaying oscillatory motion to creeping motion is
very clear. Here (N, J, K, τ ) = (100, 1, −0.75, 8).

Before moving on to discuss the boiling collective state,
we present data on R∗(τ ) for two different values of N .
This is demonstrated in Fig. 9, where R∗

c is the value of R∗
at τc. Below τc the value of R∗ becomes less well defined,
since it is no longer a static surface, as we will see in the next
section. Note the collapse of the data in Fig. 9(b) unto one
universal curve when plotting the dimensionless deviation of
the radius (R∗ − R∗

c )/R∗
c vs the dimensionless deviation of the

delay (τ − τc)/τc.

B. The boiling state

At smaller delays, the long breathing part of the transient
gives way to a dynamic state, rather than a quasistatic crystal.
In this collective state, swarmalators at the surface of the
cluster undergo convective-like motion, while the swarmala-
tors deeper in the interior are essentially frozen, similar to

FIG. 5. Creeping particle motion for t ≈ 5000, which is approx-
imately 10 times the time at which the breathing ceased, as defined
above. Here N = 400, and the values of τ are 1.5τc (see Fig. 16
for values of τc), J = 1, and K = −0.7. The vectors have been
automatically rescaled to be visible. Thus, while the arrows appear
to have the length comparable to those in Fig. 1, this is because of
the up-scaling.
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FIG. 6. Dependence of creeping velocity on the system size.
Time 1 is immediately after the end of the breathing motion, time
2 around 500 time units after the end of the breathing motion, and
time 3 around 1000 time units after the end of the breathing motion.
The τ value was chosen to be 1.5τc (see Sec. III C and Fig. 16 for
discussion of τc). Here (J, K ) = (1,−0.7).

the quasistatic situation in the previous subsection. For this
reason, we called it the boiling state, as it looks like the surface
of the cluster is boiling. Figure 10 demonstrates two snapshots
of a cluster in such a boiling state. We again look at the time
evolution of the average radius and average speed (Fig. 11).
In contrast to the lower τ situation, the residual velocity after
the breathing now comes from the swarmalators in the boiling
layer near the surface. The type of motion in the boiling state
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FIG. 7. Cluster radius dependence on N (the effect of creeping
motion is negligible, so the cluster can be considered static, with a
well-defined radius). The τ value is chosen to be 1.5τc (see Sec. III C
and Fig. 16 for discussion of τc). Here (J, K, τ ) = (1, −0.7).

FIG. 8. Dynamics of internal phases. The different groups are
separated by 2π . Here (N, J, K, τ ) = (100, 1, −0.75, 8).

FIG. 9. (a) R∗(τ ) for two values of N . Top (black) is for N =
1000 and bottom (blue) is for N = 300. The values for τc are ≈14
and ≈10.1 for respective system sizes (see Fig. 16). Here J = 1, and
K = −0.7. (b) The data are plotted versus a rescaled variable. The
data collapse is evident. The error bars are not shown because they
are very small for this value of parameters.
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FIG. 10. Velocity vector plots at two instants of time for the
boiling state. The parameters are (N, J, K, τ ) = (100, 1, −0.75, 5).

is qualitatively different from the creeping motion, and the
value of the average velocity is also larger by at least an order
of magnitude. The dynamics of internal phases is similar to the
the phase dynamics in the higher τ collective state (Fig. 12).

C. Delay-induced transition

We presented two types of collective states that develop
after the breathing transient: the pseudocrystalline phase at
larger delay, and the boiling state at smaller delay. We will
now discuss the transition between these states and make more
precise the meaning of “larger” or “smaller” delay. Consider

FIG. 11. (a) R(t ); (b) v(t ). The parameters are (N, J, K, τ ) =
(100, 1,−0.75, 5).

the plot of the average speed versus τ in Fig. 13, collected at
t = 1500. Note that for all τ presented in this figure, t = 1500
is considerably after the breathing has given way to either
the quasistatic pseudocrystal or boiling, as described above.
For example, this transition takes place at t ≈ 80 for τ = 5,
at t ≈ 150 for τ = 8, and at t ≈ 250 for τ = 11. For this
reason, the y axis of Fig. 13 is called “Average speed long after
breathing.” Aside from fluctuations in the boiling regime and

FIG. 12. Dynamics of internal phases. The different groups are
separated by 2π . Here (N, J, K, τ ) = (100, 1, −0.75, 5).
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FIG. 13. Average speed collected at t = 1500 after the initial
condition. The parameters are (N, J, K ) = (100, 1, −0.7).

in the absence of creeping motion in the quasistatic regime,
this would have been called “Average speed at infinite times.”

There is a well-defined transition at a certain τ , which we
will call τc. It corresponds to the transition between the boiling
state at smaller τ and the quasistatic state at larger τ . Another
obvious feature of Fig. 13 are fluctuations in the average
velocity below τc. We found that time averaging the velocity
(in addition to system average) does not get rid of these fluc-
tuations. Therefore, we believe that these fluctuations result
from different initial conditions from one simulation to the
next. Moreover, setting identical (up to machine precision)
initial particle positions and internal phases still gives rise to
these types of fluctuations. We hypothesize that this is similar,
or perhaps identical, to chaotic divergence, since a different
parameter (here, τ ) will result in different trajectories xi(t )
and θi(t ) between even very nearby τ .

The critical τ can be extracted by fitting the lower-τ portion
of the graph by a straight line and extracting the τ of the x
intercept. Figure 14 presents τc thus extracted from numerical
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FIG. 14. Dependence of the critical delay on K . The other pa-
rameters are (N, J ) = (100, 1).
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FIG. 15. (a) Average speed vs τ for several N , measured at t =
1500 after the initial condition. The parameter values are (J, K ) =
(1, −0.7). For all parameters presented, t = 1500 is significantly
greater than the time at which breathing gives way to either boiling
or pseudocrystal. (b) Same data, zooming in on the range of the
y axis to demonstrate the evolution of τc with increasing N . The
values above τc do not reach all the way to zero because of the
creeping motion after the breathing, as described above (the lowest
values are ∼5 × 10−5, which is comparable to what we see in Fig. 4).

calculations versus the coupling strength K at J = 1. The
boiling regime lies below the curve. There appears to be a
minimal value of |K| below which it is impossible to induce
a pseudocrystal, no matter the value of τ . As |K| decreases,
and approaches this minimal |K|, the fluctuations grow. Both
of these observations remind us of critical phenomena.

We will now demonstrate how the transition from breath-
ing to boiling depends on the system size. First, Fig. 15 is
analogous to Fig. 13 but includes data on progressively larger
system sizes. If we restrict the range of the y axis [Fig. 15(b)],
it becomes clear that τc displays a trend towards a limiting
value. This saturation is also evident in Fig. 16.

It is important to emphasize that oscillations persist below
τc. Above τc, oscillations give way to the quasistatic pseu-
docrystal at large times. Below τc, oscillations give way to the
boiling state at large times. Thus, τc delimits two large-time
(or infinite time) behaviors after the breathing transient has
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FIG. 16. Dependence of the critical delay on the system size.
Here (J, K ) = (1, −0.70). The data were collected at t = 1500 after
the initial condition.

subsided; it does not refer to properties of breathing oscilla-
tions. Figure 33 in Appendix B demonstrates the evolution of
the average speed and the average radius across τ , from above
τc to below τc. We see that as τ crosses below τc, the boiling
layer begins to develop. As τ is progressively decreased, the
thickness of the boiling layer grows. The long-time value
of the average radius becomes less and less well defined,
since the boiling of the surface leads to increasing fluctuations
of this quantity. However, as long as the system is in the
boiling regime, the phases synchronize.

At even lower values of τ , we would encounter another
transition, τl , below which the phases no longer synchronize.
In the region of (J, K ) parameter space in which we have done
numerical investigations, we found that in this lower τ regime
the dynamical behavior resembles active phase waves. How-
ever, the situation in other regions of parameter space may be
different; most of our numerical exploration took place in the
(J, K ) region that corresponds to the active phase waves in the
absence of the delay.

Thus, the frequency ω and decay rates λ of breathing
oscillations should smoothly vary across τc; τc refers to the
large-time behavior, not to properties of breathing oscillations.
We present the numerical results for ω(τ ) and λ(τ ) in Fig. 17.

We make two important remarks. First, note that in con-
trast to Fig. 9(a), the data for N = 300 and N = 1000 follow
essentially the same functional dependence, so there is no
need to rescale the variables to achieve data collapse; there is
already a data collapse as is. Second, we see that this collapse
is better for ω than for λ. One might also ask why the data
were not collected at lower τ ′s. In order to extract this pair of
parameters (for example, ω and r), we have to fit the late-time
tail of R(t ) data generated by the simulation to the functional
form Ae−λt cos (ωt + φ) + B; or, we have to subtract the B
from the data first and then make the fit with zero B. In either
case, we have to know the B from the long-time asymptote
towards which R(t ) relaxes but sufficiently below τc, that the
asymptote is noisy due to the fluctuations of the surfaces,

FIG. 17. Decay rates λ (squares) and angular frequencies ω

(circles) of breathing oscillations obtained from numerical simula-
tions. Blue open symbols, N = 300; black solid symbols, N = 1000.

as explained above. At the same time, the decay rate grows.
Thus, these parameters estimated from such a fit become less
and less accurate at lower τ . The theoretical approach laid out
next misses fluctuations, so it allows us to predict λ(τ ) and
ω(τ ) down to lower values of τ .

D. Summary of phenomenology

Before proceeding to the theoretical calculations, we
briefly summarize phenomenological findings and parameter
scans performed. We described a long breathing transient. The
important control parameter is the delay time τ . There exists
a special value of τ = τc. For τ > τc, the breathing transient
decays into quasistationary pseudocrystal. It is quasistationary
because it is accompanied by creeping motion of particles. For
τ < τc, the breathing transient decays into the boiling state,
characterized by convective, boiling-like motion of particles at
the surface. The average speed serves as the order parameter;
for τ < τc it grows linearly with |τ − τc. We investigated
the dependence of τc with K and found that |K| has to be
sufficiently large for τc to exist. We also investigated the
dependence of τc with the system size N . We investigated the
dependence of the radius of the quasistatic cluster on τ and
N . Finally, we studied the scaling of the frequency and decay
rates of breathing oscillations with τ .

IV. THEORETICAL UNDERSTANDING OF COLLECTIVE
BREATHING

A. Self-consistent solution to density profiles

Our simulations revealed for τ that on both sides of τc

the phase slips decay away at long times, and all phases
advance uniformly with rate �. We also observed that this
is accompanied by freezing out of spatial motion; i.e., all ri

reach a constant value r∗
i (aside from the creeping motion,

which we will ignore for the theory). Therefore, at large
times, Eq. (2) becomes

� = − sin (�τ )
K

N

∑
j �=i

1

|r∗
j − r∗

i |
. (3)
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Here the word “large” means t 	 relaxation time, which will
will calculate below. The sum is some constant number. On
the one hand, it seems to depend on the position of this ith os-
cillator. On the other hand, it equals a constant that is indepen-
dent of i, so this will translate to a self-consistency argument
on the density of oscillators, which we will analyze below.

To calculate the sum, we will define ρ(r) to be the equi-
librium density of swarmalators (here r = |r|), such that
ρ(r)r dr dθ is the number of swarmalators in a differential
area r dr dθ . We have assumed a radial symmetry, which
invites the use of polar variables and is the reason why ρ

is a function of only the radius. This assumption conforms
to our observations, and it is expected because there are no
symmetry-breaking fields. With the help of this density, we
can can pass into the continuum limit. After some details that
are relegated to Appendix A 1, Eq. (3) is transformed into

� = −2 sin (�τ )
K

N

∫ R

0
dr

∫ π

0

ρ(r)r dα√
r2 + l2 − 2rl cos α

. (4)

Here R is the radius of the whole cluster, and l is the radius

of ith swarmalator. The integral over α evaluates to
2K[ 4lr

(r+l )2
]

(r+l ) ,

where K is a complete elliptic integral of the first kind. It
diverges when its argument is 1, which will happen when
r = l . We depict K[ 4lr

(r+l )2 ] vs r for several l in Fig. 26, also
in Appendix A 1.

To continue further, we need to know ρ(r), which is not
given a priori. However, we can determine it self-consistently.
Note that integrals are functions of l , the radius of the ith
swarmalator. On the other hand, the left-hand side of Eq. (3)
must be independent of l: it must be the same for all swar-
malators. Therefore, ρ(r) must be a special function that will
ensure that the answer is independent on l . Before seeking
this self-consistent solution, it helps to reason physically what
we expect such a special ρ(r) to be. Equation (3) is a sum
of 1/distance between swarmalator i and all the other swar-
malators j. In the vicinity of the center of the swarm, this
sum is essentially invariant as we sample different i around
this center. Closer to the edge, essentially a large part of the
sum is missing; about a half of the swarm is missing. So, to
compensate for this, ρ must increase towards the edge if we
are to have the same value of the sum for all is.

We now seek ρ(r) self-consistently. It is useful to de-
fine ρ̃(r) = − 4RK sin (�τ )

N�
ρ(r), and further, to change variables

x = r/R and L = l/R. With all these changes, Eq. (4) be-
comes

1 =
∫ 1

0
xρ̃(x)

K
[

4Lx
(x+L)2

]
(x + L)

dx =
∫ 1

0
ρ̃(x)K(L, x) dx. (5)

Our objective is to find such ρ̃(x) that makes this true for any
L. We do this numerically, by approximating the integral by a
discrete sum, giving the following set of equations:

1 = [ρ̃(x1)K(L1, x1) + ρ̃(x2)K(L1, x2) + · · ·
+ ρ̃(xn)K(L1, xn)]�x,

1 = [ρ̃(x1)K(L2, x1) + ρ̃(x2)K(L2, x2) + · · ·
+ ρ̃(xn)K(L2, xn)]�x,

· · ·

1 = [ρ̃(x1)K(Ln, x1) + ρ̃(x2)K(Ln, x2) + · · ·
+ ρ̃(xn)K(Ln, xn)]�x. (6)

We construct a matrix of kernels K(Ln, xm)�x, then invert
this matrix, operate on the vector (1, 1, . . . , 1), and find a
vector (ρ̃(x1), ρ̃(x2), . . . . ρ̃(xnmax )). Because K diverges when
its argument in 1, the same values could not be used for L′s
and x′s. We choose xn = n

nmax
and Ln = n

nmax
+ 10−4, where

nmax is typically on the order of a thousand. The result of
this calculation with nmax = 600 is displayed in Fig. 18 in
red. The function ρ̃(x) is dimensionless and parameter-free
- it describes the functional form of the density profile.

The density increases at the edge, as expected. The diver-
gence at x = 1 appears to have an exponent very close to
1/2, i.e., to have the form (1 − x)−1/2 close to x = 1. The
function ρ̃ is not a pure power law over the entire domain
[0,1]. However, we would like to model this result by an
analytical expression in order to make tractable, analytical
predictions. We found that the function 0.3(1 − x)−1/2 ap-
proximates the whole numerical result ρ̃(x) very well; see
Fig. 18. We checked that 0.3(1 − x)−1/2 makes the integral∫ 1

0 ρ(x)K(L, x) dx very nearly a constant with respect to L
[keeping in mind that 0.3(1 − x)−1/2 is an approximation].
The total number of swarmalators inside the cluster should
be equal to N . Therefore

N = 2π

∫ R

0
ρ(r)r dr = −2π

N�

4RK sin (�τ )

∫ R

0
rρ̃(r) dr

= − Nπ�

2RK sin (�τ )
R2

∫ 1

0
xρ̃(x) dx

≈ − NRπ�

2K sin (�τ )

∫ 1

0
0.3x(1 − x)−1/2 dx.

Here ρ̃(x) means ρ̃(r(x)). The integral evaluates to 0.4, so

�

sin(�τ )
= − 5K

Rπ
. (7)

Therefore,

ρ(r) = 5

4

N

πR2
ρ̃(r). (8)

FIG. 18. Red (slightly higher curve at small x), ρ̃ obtained from
the solution of Eq. (6); gray, 0.3(1 − x)−1/2.
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For example, if ρ̃(x) = 0.3(1 − x)−1/2, then ρ(r) =
3
8

N
πR2 (1 − r

R )−1/2. This ρ(r) is normalized, i.e.,

2π
∫ R

0 rρ(r) dr = N . The expression for ρ in Eq. (8) is
not complete, because we do not know how R depends on N
and other parameters. So we need more information in order
to close this expression and make it self-contained. We will
attempt to use the spatial equation for this purpose. The ρ̃ is
a parameter-free, dimensionless function that is a solution to
Eq. (5). We obtained it numerically by discretizing the radial
variable and insisting that the integral in Eq. (5) should be
independent of L and always gives 1.

The radial density function is R(r) = 2πrρ(r) =
5
2

N
R2 rρ̃(r). This is expressed as a function of r that goes

between 0 and R. If we want to express it as a function of a
dimensionless variable x ≡ r

R , that goes between 0 and 1, the
answer is R(x) = 5

2 Nxρ̃(x) (see comment in Appendix A 2).
We now compare the density profile R with the data from

simulations. We performed ten simulations from τ = 17.0
to τ = 17.9 in increments of 0.1. For each value for τ , ten
simulations were performed with N = 1000 particles.

The number of particles within each radius bin were
counted [i.e., this will be approximated by 2πrρ(r)�r, where
ρ(r) is the correct continuum radial density] and plotted ver-
sus the variable x = r/R. Results over ten simulations for each
τ were averaged. The inset of Fig. 19 shows this average, one
for each value of τ (dots). The data (dots) collapse unto one
universal curve, as the theory suggests. Moreover, this curve
closely matches the theoretical R = 5

2 Nxρ̃(x), shown as a red
solid curve. The main part of Fig. 19 compares the theoretical
R(x) with the average of those 10 curves (one for each τ ). The
behavior at each end of the curve, one for small x and one for
x close to 1, is elucidated in Fig. 20.

FIG. 19. Histograms representing the radial density of particles,
as defined in this paper. Inset: Ten sets of dots, each with a unique
color. Each set represents the average over ten simulations and cor-
responds to one unique value of τ from 17.0 to 17.9. Each set of
dots represents the number of particles within a radial bin. There are
61 bins, i.e., 61 values of x; x = 0 is the center of the cluster and
x = 1 is at r = R. Fewer than ten dots appear at each x because some
of the y values repeat. The solid curve is R(x) predicted by theory.
The main plot contains only one set of dots, which is the average of
all ten. The dots are connected by a dashed line to guide the eye to
oscillations near x = 1. Simulations were done with N = 1000.

FIG. 20. (a) Same as Fig. 19, but on a log-log scale. (b) Same
data as the main part of Fig. 19, but plotted vs 1 − x and on a log-log
scale.

One obvious feature of simulation data (dots) in Fig. 19 is
the oscillatory behavior close to x = 1. This happens because
in a finite N system swarmalators organize themselves into
rings; see, for instance, Fig. 3 or Fig. 5.

Whether this ring structure remains as N grows is not
clear. Our theory, of course, assumes that at sufficiently large
N continuum theory will work. In other words, there exists
a continuum density ρ(x), such that the number of swar-
malators within a certain area �A that is much smaller than
the area of the cluster is accurately given by ρ(x)�A. This
hypothesis is supported by our numerical observations (see,
for example, Fig. 3) that the distance between swarmalators
becomes smaller relative to the radius as N increases. The two
panels in Fig. 20 demonstrate that theory matches numerical
simulations quite well. We will now use the continuum theory
to make predictions concerning the equilibrium radius and
properties of breathing oscillations.

B. Key idea

The density profile ρ̃ was obtained by going to the t →
∞ limit, when all motions cease. The system approaches
this limit through decaying oscillations: ri(t ) = r∗

i + δri(t ),
R(t ) = R∗ + δR(t ), and θi(t ) = �t + δθi(t ), where δri, δR(t ),
and δθi(t ) are decaying functions. We now introduce the key
hypothesis: the profile ρ̃ holds not only at infinite time when
oscillations have completely ceased, but even during the ma-
ture stages of these decaying oscillations. What this means
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is that rearrangements of particles cease at these latter stages
of the oscillations. We confirmed from simulations that this
is indeed the case. Therefore, the density oscillates because
the radius oscillates: the cluster overall expands and contracts,
and particles get closer and further apart like on an expanding
and contracting rubber sheet, while their relative positions and
angles remains the same, and so the functional form of the
density profile remains unchanging, i.e., ρ̃ holds true even
during these latter stages of the decaying oscillations. With
this key idea in mind, we can now derive coupled equations for
the dynamics of θi, ri, and R.

C. Reduced order model

As before, we will assume that all θ (t ) are the same
(modulo 2π ). This is supported by simulation results; see
Fig. 8 and Fig. 12, for example. Using the same procedure
for passing into the continuum description as before (see
discussion preceding Fig. 25), we have

θ̇ = K

N
sin [θ (t − τ ) − θ (t )]

∑
j �=i

1∣∣r j (t ) − ri(t )
∣∣

= 2K

N
sin [θ (t − τ ) − θ (t )]

∫ R

0
rρ(r, t ) dr

×
∫ π

0

dα√
r2 + l2 − 2rl cos α

= 2K

N
sin [θ (t − τ ) − θ (t )]

∫ R

0
rρ(r, t )

2K
[

4lr
(r+l )2

]
r + l

dr. (9)

We remind the reader that l is the radius position of ith
swarmalator, i.e., it is a constant in our integrals, while r is
the radius of jth swarmalators over which the summation (or
integration, in continuum approximation) is performed. We
now implement the key hypothesis and substitute ρ(r, t ) =
5
4

N
πR2(t ) ρ̃(r) and get

θ̇ = 5K

πR2(t )
sin [θ (t − τ ) − θ (t )]

∫ R(t )

0
rρ̃(r)

K
[

4lr
(r+l )2

]
r + l

dr

= 5K

πR(t )
sin [θ (t − τ ) − θ (t )]

∫ 1

0
xρ̃(x)

K
[

4Lx
(x+L)2

]
x + L

dx,

(10)

where L = l/R and x = r/R. But this is precisely the integral
that defines ρ̃, and it evaluates to 1 [see Eq. 5]. Therefore, our
equation becomes

θ̇ = 5K

πR(t )
sin [θ (t − τ ) − θ (t )]. (11)

This is an interesting equation, but it is not closed, as we also
need an equation for the R(t ). This closure will come from the
spatial equation

ṙi = 1

N

N∑
j �=i

[
r j − ri∣∣r j − ri

∣∣ (1 + J cos [θ (t − τ ) − θ (t )])

− r j − ri∣∣r j − ri

∣∣2

]
. (12)

The details of passing this into the continuum are provided
in Appendix A 3. The crux of this analysis is the following
equation:

l̇ = 5

2π

[
− (1 + J cos [θ (t − τ ) − θ (t )])

(
l

R

)

+ 0.3π

l

(
4

3
− 2(2 + l/R)

3

√
1 − l/R

)]
. (13)

Three assumptions went into this result: (1) circular symme-
try, (2) ρ̃ works even during the latter stages of decaying
oscillations when particle rearrangements have ceased, and (3)
all θ̇i are identical. All three assumptions are corroborated by
simulations.

Equation (13) gives the instantaneous radial velocity of a
particle located at distance l from the center. Setting l = R
gives the velocity of a particle on the edge, i.e., it gives Ṙ.
Thus, we finally arrive at two coupled equations for dynamics
of R and θ [we reproduce here Eq. (11) for completeness]:

θ̇ = 5K

πR(t )
sin [θ (t − τ ) − θ (t )], (14)

Ṙ = 5

2π

[
−(1 + J cos [θ (t − τ ) − θ (t )]) + 2

5

π

R

]
. (15)

Equations (14) and (15) are two coupled equations for θ (t )
and R(t ). We will study their dynamics soon, but, first, we
analyze the t → ∞ state, i.e., R = R∗, the constant value into
which the radius settles, and θ = �t . These will be functions
of J , K , and τ as we wanted. The following must be true in
this static limit:

R∗ = −5K

π

sin (�τ )

�
, (16)

R∗ = 2π/5

1 + J cos (�τ )
. (17)

We have already encountered the first of these; see Eq. (7).
Combining the two, we get

1 + J cos (�τ ) = −2π2

25

�/K

sin (�τ )
. (18)

The solution �(τ ) is plotted in Fig. 21(a). The resulting R∗(τ ),
obtained through Eq. (16), is shown in Fig. 21(b). The obvious
feature of these plots is the multivaluedness of solutions. At
a certain critical value of τ , which we call τl , the � that
solves Eq. (18) is zero. For τ > τl , there is nonzero � that
satisfies Eq. (18). This is shown by the leftmost, black curves
in Fig. 21. Eventually at τ somewhat above τl another solution
appears. This is shown by the blue curves in Fig. 21: in fact,
this family of roots comes in pairs. At a τ larger still, yet
another family of roots appears, and so on. For τ < τl a real
solution to Eq. (18) does not exist. This means that � remains
zero for τ < τc, a fact that can be verified by the numerical
solution to Eqs. (14) and (15). In this case, the steady-state
condition of Eq. (14) simply says 0 = 0, and equilibrium
radius is determined only from Eq. (15) [or from Eq. (17)],
giving R∗

l = 2π/5
1+J . The expression for τl can be obtained, for

instance, by combining this result with Eq. (18) with � = 0,
giving τl = − 2π2

25
1

K (1+J ) .
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FIG. 21. (a) �(τ ); (b) R∗(τ ). Multiple curves represent multiple
solutions to Eqs. (16) and (17). The parameters are J = 1, K = −0.7.

Above τl , our continuum theory predicts a well-defined
value of R∗. This is different from simulations, where R∗ is
only truly well defined above τc - which is greater than τl ,
although one can meaningfully talk about a time-averaged
value of the radius of the cluster even below τc. Recall that τc

denotes a transition between two types of long-time behaviors:
from boiling to quasistatic pseudocrystal. On the other hand,
a quantity such as τl in the context of the original model with
2N equations would represent a transition from synchronized
swarmalators with a nonzero average θ̇ to unsynchronized
with a zero average θ̇ . The τl that we found is the estimate
of this type of transition τ based on the assumptions that lead
us to a two-equation approximation. On the other hand, the
concept of τc does not exist in the continuum theory, because
this theory is oblivious to surface fluctuations.

The shape of R∗(τ ) in the first branch of Fig. 21 strongly
resembles the shape of R∗(τ ) obtained from simulations (see
Fig. 9). We now would like to compare the two predictions.
Note that the theoretical prediction is independent of N , while
in presenting simulation results we observed the data collapse
over different system sizes when instead of plotting R∗ vs τ

we plotted the dimensionless (R∗ − R∗
c )/R∗

c vs (τ − τc)/τc.
The equilibrium radius only truly makes sense above τc. This
justifies why the rescaling had to be done with respect to τc,
rather than τl . On the other hand, τc does not exist in the
continuum theory, while the cluster radius is a function that
is a constant ( 2π/5

1+J ) below τl , and grows above τl . For this

FIG. 22. Dots represent the simulation data [same data as in
Fig. 9(b)]. Solid line is the theoretical prediction. Here τ0 is τc for
simulation results and τl = − 2π2

25
1

K (1+J ) for continuum theory. Sim-

ilarly, R∗
0 is R∗

c for simulation results and R∗
l = 2π/5

1+J for continuum
theory. The difference between the two predictions disappears if the
theoretical y values are multiplied by a factor ≈1.09, as shown in the
inset. The parameters are (J = 1, K = −0.7).

reason, we rescaled the x axis of the theoretical prediction by
τl and the y axis by (2π/5)/(1 + J ), and this was then com-
pared with the dimensionless simulation data. This is shown
in Fig. 22. While there is about a 9% difference between the
predictions of the continuum theory with simulations, they
in fact appear to match in functional form. This is seen in
the inset of Fig. 22, where we multiplied the value of the
analytical function by 1.09.

We now turn attention to relaxational dynamics of
breathing oscillations predicted by Eqs. (14) and (15).
Figure 23 depicts some examples of the evolution of θ and
R in time. Solving these delayed equations numerically—as
in solving the full dynamical equations—requires prehis-
tory conditions. However, in contrast to the simulations

FIG. 23. Evolution of θ (t ) and R(t ) with increasing τ , as pre-
dicted by the continuum theory. Here (J = 1, K = −0.7), which
gives τl ≈ 0.564. The values of τ were chosen to be the same fraction
of τl as in Fig. 32, which depicts simulation results (this assumes that
τl in Fig. 32 is 1.65; see caption of that figure). The evaluation time
(638) in these figures was chosen to be the same fraction of τl as in
Fig. 32, ≈1131.3τl .
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of dynamics from the full set of equations, here a con-
stant initial condition would predict no evolution: θ (−τ ) −
θ (0) = 0 results in θ̇ = 0 and Ṙ = 0 at t = 0. Our the-
ory is meant to produce oscillations at large times, after
rearrangements have ceased. Therefore, we chose prehis-
tory that simulates complex, random-like behavior at earlier
times (we see from simulations that early transient is com-
plex). To this extent, we used the following prehistory
for −τ < t < 0: θ (t ) = 0.01

∑100
n=1 an sin (nt − n2), R(t ) =

0.01
∑100

n=1 an cos (nt − n2), where an were a set of random
numbers between 0 and 1. The phase offsets were used to
eliminate spikes when t is an integer multiple of 2π . This is
the type of prehistory that was used in producing Fig. 23.

The stepwise shape of θ (t ) as well as the shape of R(t )
is qualitatively the same as simulations (see Fig. 32 below).
We see that as τ increases, the period of decaying oscilla-
tions increases, and the decay rate decreases. These qualitative
observations also match simulations. As time grows, both
δθ (t ) and δR(t ) evolve to a more pure harmonic, i.e., higher
harmonics decay away quicker.

In presenting simulation results, we focused on the dy-
namical properties of long-time relaxations towards the
equilibrium. There are only two: frequency and decay rate.
To extract these from Eqs. (14) and (15) we linearize them
by setting θ (t ) = �t + δθ and R(t ) = R∗ + δR. The resulting
linear equations for δθ and δR are

d

dt
δθ = [δθ (t − τ ) − δθ (t )]

(
5K cos (�τ )

πR∗

)

+ δR(t )

(
5K

π (R∗)2 sin (�τ )

)
, (19)

d

dt
δR = − 5

2π
J sin (�τ )[δθ (t − τ ) − δθ (t )] − 1

(R∗)2 δR.

(20)

Next, we seek solutions in the form(
δθ

δR

)
=

(
δθ0

δR0

)
e−μt . (21)

Substituting this ansatz into Eqs. (19) and (20) gives the fol-
lowing equation for eigenvalue μ:

det

⎛
⎝(eμτ − 1)

( 5K cos (�τ )
πR∗

) + μ 5K sin (�τ )
π (R∗ )2

−(eμτ − 1)
(

5J
2π

sin (�τ )
) − 1

(R∗ )2 + μ

⎞
⎠ = 0. (22)

The solutions are generally complex. When we set
μ = λ + iω, substitute into the above equation, compute the
determinant, and separate the real and imaginary parts, we get
a pair of equations for two variables r and ω. Each equa-
tion can be represented graphically as a zero contour of a
function of two variables λ and ω. The solutions take place at
the intersection of the two sets of contours. There is an infinite
number of solutions, and we performed a numerical search
for the solution with the lowest real part, which dominates at
large times. For τ sufficiently close to τl the μ with the lowest
real part is real and the motion becomes overdamped. Above
such τ , the μ gains an imaginary part, and we get a complex
conjugate pair of solutions.

In presenting dynamical properties of oscillations (for ex-
ample, ω and λ) we observed that unlike the static properties,
it was not necessary to perform rescaling of variables: the data
for various N already collapse. This suggest that in comparing
theory with simulations we will also not perform rescaling for
the theoretical functions, such as λ(τ ) or ω(τ ). With this idea
in mind, we now compare these theoretical predictions with
simulation results. This comparison is shown in Fig. 24. The
theory (solid lines) predicts the scaling of both ω(τ ) and λ(τ )
very well. In the case of ωs, it predicts the actual values, while
there is an overall multiplicative factor of about 1.3 for decay
rates.

Comparing between the predictions of the reduced-order
theory and full simulations we see a very good match in the
scaling of λ(τ ) and �(τ ) at large τ . We remind the reader
that it was not possible to obtain simulation results for suf-
ficiently low τ , and the reason for this is explained at the
end of Sec. III C. However, we can compare the values of
τl , where phase synchronization first appears. The value of τl

from the continuum theory is ≈0.564 for (J = 1, K = −0.7).
The value of τl from simulations for the same J and K was
found to be between 1.6 and 1.7 for N = 300 and N = 400,
and between 1.7 and 1.8 for N = 100. As τ is lowered signif-
icantly below τc, the thickness of the boiling layer grows (see
Fig. 33). In this regime there is a strong variation of velocity
vectors between even nearest-neighbor particles. Therefore,
we expect the continuum theory to break down for τ signifi-
cantly below τc. Notice that there is still a good match below,
but close to, τc.

V. DISCUSSION AND SUMMARY

We presented a study on the role of time delay in interact-
ing swarmalators, although a recent work has studied delays in
Vicsek-type models [55]. Two long-time collective states due
to delay were discovered. In the first state, swarmalators settle
into a quasistatic cluster in a pseudocrystalline arrangement.

FIG. 24. The numerical data (squares and circles) are exactly
the same as in Fig. 17. The solid lines are theoretical predictions:
decay rate λ (lower, red) and angular frequency ω (upper, blue).
Inset: Theoretical λ and ω at low τ > τl , plotted on a linear scale.
The transition to overdamped solutions, where eigenvalues are purely
real (i.e., ω = 0) is clearly seen at τ ≈ 0.62. The values of τc are
10.11 ± 0.24 for N = 300 (blue open symbols) and 14.03 ± 0.4
(black solid symbols).
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It is quasistatic because particles execute creeping motions
with very small velocities. In the second state that happens
at lower values of time delay, the swarmalators close to the
surface perform boiling-like convective motions. The tran-
sient that leads into both of these states has an early-time
component and a much longer stage that involves collective
oscillations of the whole cluster, which give the cluster the
breathing-like effect. Throughout most of this longer phase of
the transient particles have already finished rearrangements,
and internal phases of swarmalators have already synchro-
nized. We have not thoroughly mapped the (J, K ) parameter
space, so other collective phenomena caused by the delay are
possible.

We also proposed a phenomenological continuum theory,
based on the idea that particle rearrangements complete at
fairly early times, so particles have settled into fixed relative
positions during the latter stages of breathing oscillations.
Therefore, the infinite time equilibrium density profile, which
we were able to calculate using this continuum theory, also
holds throughout these latter stages of the breathing. This
allowed us to calculate frequency and decay rates of breathing,
which match numerical results well. This ansatz is confirmed
with simulations, but it would need to be put on a firmer
theoretical understanding in future work. The other two as-
sumptions are circular symmetry and phase synchronization
at early stages of the breathing. The existence of early phase
synchronization especially also needs to be understood more
fully in the future. However, all three assumptions are cor-
roborated with numerical simulations. While the phase slips
appear to take place simultaneously for all swarmalators,
there are tiny differences in which particles experience the
slips first. It would also be interesting to understand if there
is a relationship between local structural properties and dy-
namics of phase slips. Finally, the creeping motion in the
quasistatic pseudocrystal reminds us of glassy phenomena.
Exploring the role of frustration and aging on swarmala-
tor phenomena would be a tantalizing avenue of future
research.

An earlier version of this work was a part of an under-
graduate senior project by one of the coauthors, Nicholas
Blum [56]. Some of the figures from this senior project are
reproduced here.
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APPENDIX A: CALCULATIONAL DETAILS

1. Passing of Eq. (3) into the continuum

Consider two swarmalators: swarmalator i, located at ra-
dius l , and swarmalator j, located at radius r and angle α.
Because of radial symmetry, the sum will not depend on the
angle of swarmalator i, so it is convenient to place it at zero
angle relative to an arbitrary x axis. The situation is illustrated
in the schematic in Fig. 25. With such a setup, and the use of
the density ρ(r), the sum in Eq. (3), which we will call s here,

FIG. 25. Geometry for evaluating Eq. (3).

becomes

s = 2
∫ R

0
dr

∫ π

0

ρ(r)r dα√
r2 + l2 − 2rl cos α

. (A1)

We also depict the K discussed below Eq. (4) in Fig. 26.

2. Comment concerning the radial probability density R(x)

Since r = xR, it might at first seem that a factor
R is missing from the denominator in the expression of
R(x) = 5

2 Nxρ̃(x). But, in fact, it is this form that normalizes
to N . In other words,∫ 1

0
R(x) dx = 5

2
N

∫ R

0

r

R
ρ̃(r)

dr

R

= 5

2

N

R2

∫ R

0
rρ̃(r) dr

= 5

4

N

πR2

∫ R

0
2πrρ̃(r) dr

=
∫ R

0
2πrρ(r) dr = N.

We used Eq. (8) in going from ρ̃(r) to ρ(r). Thus, dr
R in

the integration measure is what required the correct definition
of R(x) not to have the R in the denominator. In doing the
analysis of data, we also normalize the histogram binned by
radii, so that

∑
i Ri�x = N .

FIG. 26. K[ 4lr
(r+l )2 ] as a function of r for l = 0.2 (left, blue), 0.5

(middle, orange), and 0.8 (right, green).
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FIG. 27. Geometry for evaluating Eq. (A2).

3. Passing Eq. (A2) into the continuum

The starting point is the spatial equation

ṙi = 1

N

N∑
j �=i

[
r j − ri∣∣r j − ri

∣∣ (1 + J cos [θ (t − τ ) − θ (t )])

− r j − ri∣∣r j − ri

∣∣2

]
. (A2)

We are going to assume that all phases synchronize. Con-
sider the first term. Here we are adding unit vectors pointing
from the ith particle to all other particles. Because of circular
symmetry, for each particle above, there is another symmetric
partner on the opposite side; see Fig. 27.

Thus, for each ith particle, all vectors will point towards
the center of the cluster. Going into the continuum limit, the

FIG. 28. Il (r) for l = 0.2 (bottom,blue), 0.5 (middle, orange) and
0.8 (top, green).

first sum becomes

− [2(1 + J cos [θ (t − τ ) − θ (t )])
∫ R

0
rρ(r) dr

×
∫ π

0
cos [ϕ(α)] dα]R̂. (A3)

We can find cos [ϕ(α)] using a combination of laws
of sines and cosines. From the law of sines we have
sin ϕ = r sin α

d , so 1 − cos2 ϕ = r2 sin2 α
d2 . Thus cos [ϕ(α)] =√

1 − r2 sin2 α
r2+l2−2rl cos α

= l−r cos α√
r2+l2−2rl cos α

. From this, the inner in-

tegral over α is
∫ π

0
l−r cos α√

r2+l2−2rl cos α
dα. This integral can be

evaluated as

Il (r) =
∫ π

0

l − r cos α√
r2 + l2 − 2rl cos α

dα

=
∣∣∣∣ (r − l )

l
E

[
− 4rl

(r − l )2

]
− (r + l )

l
K

[
− 4rl

(r − l )2

]∣∣∣∣,
(A4)

where E is a complete elliptic integral of the second kind.
We plot Il (r) for several l in Fig. 28. Note that although Il (r)
quantity is not defined at r = l , the limit of r → l from both
sides exists and equals 2. Thus, the first term in Eq. (A2)
equals

−
[

2(1 + J cos [θ (t − τ ) − θ (t )])
∫ R

0
rρ(r)

×
∣∣∣∣ (r − l )

l
E

[
− 4rl

(r − l )2

]
− (r + l )

l
K

[
− 4rl

(r − l )2

]∣∣∣∣ dr

]
R̂.

We now turn our attention to the second term. The inner in-
tegral in this term would be 2

∫ π

0
l−r cos α

r2+l2−2rl cos α
dα. It evaluates

to 2π/l when r < l and 0 when r > l . In the second case, the
repulsive force from particles “to the right” of the ith particle,
and the repulsive force from particles “to the left” of the ith
particle add up to zero (see Fig. 27). This is similar to the
electric (or gravitational) field inside a hollow shell. A particle
inside a shell of charge (or mass) experiences no net force. But
a particle outside a sphere of charge (or mass) does experience
a net force. So the second term in the spatial equation becomes
[ 2π

l

∫ l
0 rρ(r) dr]R̂. All together, the spatial equation gives

l̇ = 1

N

[
− 2(1 + J cos [θ (t − τ ) − θ (t )])

∫ R

0
rρ(r)

×
∣∣∣∣ (r − l )

l
E

[
− 4rl

(r − l )2

]
− (r + l )

l
K

[
− 4rl

(r − l )2

]∣∣∣∣ dr

+ 2π

l

∫ l

0
rρ(r) dr

]
, (A5)

and no dynamics in the angular direction. Particle motion is
purely in the radial direction due to the circular symmetry.
This can be expected to be true only in the continuum limit;
in the discrete case, there might not be an exact cancellation
of the two vectors (in Fig. 27), which would allow for some
angular motion. We now substitute for ρ(r) = 5

4
N

πR2 ρ̃(r) [see
Eq. (8)], using ρ̃ = 0.3(1 − r/R)−1/2, which, as we saw, is
a good model of the numerical solution. The first integral
cannot be expressed in terms of elementary functions, but it
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FIG. 29. Examples of creeping motion for N = 100. In all examples, breathing ended between t = 250 and t = 300. Here τ = 1.5τc with
J = 1 and K = −0.7.

is very closely approximated by 5
4

N
π

l
R . The second integral

evaluates to 5
4

N
π

× 0.3( 4
3 − 2(2+l/R)

3

√
1 − l/R). Therefore,

l̇ = 5

2π

[
− (1 + J cos [θ (t − τ ) − θ (t )])

(
l

R

)

+ 0.3π

l

(
4

3
− 2(2 + l/R)

3

√
1 − l/R

)]
. (A6)

APPENDIX B: ADDITIONAL PLOTS

Figures 29 and 30 provide more examples of the creeping
motion that takes place after the breathing transient. Figure 29
is for N = 100, and Fig. 30 is for N = 400. The lengths
of arrows that represent particle velocity vectors have been
up-scaled to be visible; of course, these velocities are very
small in comparison to velocities during the breathing stage.
We see that in some cases the velocity patterns are localized,

FIG. 30. Examples of creeping motion for N = 400. In all examples, breathing ended between t = 500 and t = 600. Here τ = 1.5τc with
J = 1 and K = −0.7.
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FIG. 31. (a) |v|(t ) on a logarithmic scale. (b) |v|(t ) on a linear scale and in a shorter time window that shows only the early transient, the
onset of breathing, and breathing in their latter stages. (c) R(t ). (d) Kuramoto order parameter. (e) θ (t ) for each swarmalator. (f) Snapshots of
particle positions and velocity vectors at three instants of time. Here J = 1, K = −0.7, N = 400, τ = 1.3τc.
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FIG. 32. Evolution of θ (t ) and R(t ) with increasing τ , as predicted by the simulations. Here K = −0.7 and N = 400. For this (N, K ),
τc = 11.2 ± 0.26, so the first graph is at τ = 2τc. The value of τl is between 1.6 and 1.7.

but not always. It may be that localization is more common at
later times and occurs near the edge, but we have not done a
systematic study to conclude this definitively.

Next, we present an example of the dynamics for τ above
τc in Fig. 31. The two long vertical red lines are placed at two
subsequent dips in the Kutamoto order parameter. These dips
happen at the time when the phases slip. When this happens,
there is a window of time when the phases of swarmalators
are not all the same, before they all resynchronize. The details

of this process can be a subject of study in the future. We also
show several patterns: two during the late stages of breathing
[we placed two short red lines in v(t ) and R(t ) graphs at
approximately these instants of time] and one postbreathing.
The next plot, in Fig. 32, demonstrates how the dynamics as
predicted by simulations evolves with τ .

The last plot, Fig. 33, demonstrates how the long-time
behavior that takes places after breathing oscillations evolves
with τ , as it is lowered from above to below τc.
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FIG. 33. Evolution of particle dynamics with decreasing τ . The boiling surface appears around τc, and its width grows as τ is progressively
decreased. Clusters for τ below τl are not shown. Here N = 400, J = 1, K = −0.7.
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[19] A. Barciś, M. Barciś, and C. Bettstetter, in 2019 International
Symposium on Multi-Robot and Multi-Agent Systems (MRS)
(IEEE, New York, 2019), pp. 98–104.
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