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Hamming distance as a measure of spatial chaos in evolutionary games
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From a context of evolutionary dynamics, social games can be studied as complex systems that may converge
to a Nash equilibrium. Nonetheless, they can behave in an unpredictable manner when looking at the spatial
patterns formed by the agents’ strategies. This is known in the literature as spatial chaos. In this paper we
analyze the problem for a deterministic prisoner’s dilemma and a public goods game and calculate the Hamming
distance that separates two solutions that start at very similar initial conditions for both cases. The rapid growth
of this distance indicates the high sensitivity to initial conditions, which is a well-known indicator of chaotic
dynamics.
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I. INTRODUCTION

Evolutionary game theory has granted us a better knowl-
edge of social behavior, for example, understanding of
cooperation, which has a great importance in social games
like the prisoner’s dilemma (PD) [1,2] or the public goods
game (PGG) [3,4]. We think of an evolutionary game as a
dynamical problem of natural selection, where the payoff of
each agent, acting as a fitness, depends on its strategy and on
that of its neighbors. This field has attracted physicists [5]
that have included ideas from nonlinear dynamics, like the
discovery of spatial, pattern-forming chaos arising from a
simple deterministic game as in the research work of Nowak
and May [6].

The rules of the game are simple: there are cooperators, C,
and defectors, D, which play games with one neighbor. They
gain a payoff according to the payoff matrix:

C D
C R S
D T P

The game is a prisoner’s dilemma when T > R > P > S.
This is called a dilemma because even though cooperation
benefits all players in the group, defection is the preferable
strategy. This is known as tragedy of the commons [7]. But
all is not lost for cooperation, since it can prosper under
several conditions like reputation effects [8,9] and network
reciprocity [10–12].

The evolutionary mechanism used is a pairwise imitation
process where each agent copies the strategy of the one with
maximum payoff among its neighbors. This game can be
viewed as a cellular automaton, but one with 225 rules, that
is because there are 25 neighbors (with Moore neighborhood)
that affect an agent strategy at the next iteration (see Fig. 1).
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Even though the “ever-changing sequences of spatial pat-
terns” that May and Nowak saw in Ref. [6] for a parameter
regime of the game have an obvious chaotic nature, no method
has been provided to evaluate or quantify the stability of a less
obvious case.

Lyapunov’s exponents have been used broadly in the con-
text of nonlinear dynamics and chaotic systems to quantify
chaos. Some efforts to bring this chaos indicator to the context
of cellular automata are presented in Refs. [13,14]. Indeed our
PD game is basically a cellular automata as we have previ-
ously mentioned. We could use this “Lyapunov’s exponent for
cellular automata”; in fact, we tried, but no reasonable results
were obtained. We think that may be because the exponent
developed in these works does not assess chaotic behavior,
but a different measure.

To assess correctly the chaotic behavior of the spatial pat-
terns arising in the PD game we have used the Hamming
distance. This is a measure of the difference between two
ordered sets of equal length. It is defined as the number of
positions at which the corresponding symbols are different in
the two ordered sets. In the context of social games, the Ham-
ming distance has been used with various purposes. D’hulst
and Rodgers [15] use the Hamming distance to measure the
separation between strategies that are binary strings. In a
similar manner, in Ref. [16] the Hamming distance is used
in order to measure the separation between a tag which agents
use to discriminate other agents and either cooperate if their
tag is close by or defect if it is too different.

Moreover, the Hamming distance is used to assess chaotic
behavior in Refs. [17,18], where the authors calculate the dis-
tance between two initially close configurations of generalized
rock-paper-scissors models that describe stochastic network
simulations of the May and Leonard type. They find that
the Hamming distance converges to a certain value, but, if a
parameter representing the mobility is above a critical point,
after some time the distance oscillates increasing its amplitude
of oscillation until it goes to 0 or to its maximum value,
the size of the population. This means that changing only
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FIG. 1. Agent x’s strategy is affected by the payoff of all agents
in his Moore neighborhood (inside the dashed line); for example,
agent y, whose payoff depends of his own Moore neighborhood
(shaded region). Therefore, the strategy of the agent x depends on all
25 agents in his second Moore neighborhood (inside the bold line).

one species, or strategy, can drastically change the outcome.
From a final state where one species completely dominates
the population to another final state where it is another species
that wins. This shows that the system is susceptible to initial
perturbations and behaves chaotically. Our study imitates this
algorithm using the Hamming distance between two initially
close configurations.

In Ref. [18] and in our context, the Hamming distance is
the number of agents that have a different strategy in each
configuration, which we call mismatches. We have replicated
the game in Ref. [6] and have measured the Hamming distance
versus time from two relaxed configurations only differing
by one agent. For most parameter values, the Hamming dis-
tance grows to a very small constant, a periodic value, or is
0. But, for parameter values within the spatial-chaos regime
discovered by the authors, the distance grows rapidly towards
the Hamming distance that two random configurations would
have. This rapid increase of the Hamming distance is proof
of the sensitivity to the initial conditions, which affects the
spatial structure of the final state. However, the mean final
ratio between cooperators and defectors does not change from
the two configurations, so the system only presents spatial
chaos.

We have also studied a PGG, which presents a broader
regime of parameters that present spatial chaos. This game
is a prisoner’s dilemma under some parameter values, but
one that is played in groups of more than just two agents.
The agents are either cooperators or defectors. Cooperators
enrich the public goods by investing a cost of 1 unit which
is reduced from their payoff. Then, for each cooperator in the
group, each agent receives a quantity r/G, r being a parameter
called enhancement or multiplication factor and G being the
number of agents in the group, which is added to their payoff
if they are either cooperators or defectors. The dilemma is,
therefore, that defectors leech off cooperators, reducing the
global payoff. Nonetheless, cooperation can also be promoted
through reputation and network reciprocity, as in the pris-
oner’s dilemma. Additionally, cooperation can be sustained
through punishment [19,20] and reward [21]. We applied the

imitation rule to the game but this time only one random
agent is selected to change its strategy to the one of a random
neighbor if its strategy is lower than the neighbor’s. By setting
all agents in a square lattice and making them play games with
their immediate neighbors, a spatial structure appears. These
structures are not static, but evolve in time, and so we want
to measure how chaotic this pattern evolution is. Wakano and
Hauert [22] have studied the ecological PGG and have found
chaotic dynamics similar to the patterns of Ref. [6], and they
have verified the irregular dynamics qualified as spatial chaos.

For both cases, we have computed the Hamming distance
over time and normalized to the statistical Hamming distance
of two random configurations of cooperators and defectors
with the proportions matching the studied system at each time.
Our main finding indicates that the divergence of two initially
close solutions, measured using the Hamming distance, serves
as a reliable indicator of chaotic dynamics in the deterministic
game under study. Furthermore, in the case of the game ex-
hibiting a degree of stochasticity, the distance increases more
rapidly in regimes displaying spatial-chaotic behavior.

The organization of this paper is as follows. In Sec. II,
we replicate the results of Novak and May [6] and calculate
the normalized Hamming distance fitting it with the Weibull
“stretched exponential” function. In Sec. III, we explain the
model used for the public goods game and also fit the nor-
malized hamming distance. Finally, we present the main
conclusions at the end.

II. PRISONER’S DILEMMA

The game in Ref. [6] is the spatial PD. It is an agent-
based model where the authors put agents in the nodes of
a square lattice and each agent played a game with each
of its Moore neighbors. The total payoff is the sum of the
payoff gained in each game, which is R = 1 if both players
cooperate and P = 0 if both players defect, and if an agent
defects and another cooperates, the first gains T = b > 1
and the second S = 0. Even though the prisoner’s dilemma
condition T > R > P > S does not hold strictly, the conclu-
sions are the same for P = ε → 0 positive, which satisfies
the condition. The concept of dilemma strength [23–25] is a
key classification of pairwise social games. This is defined
by the risk-averting dilemma strength Dr = P − S and the
gamble-intending dilemma strength Dg = T − R. The sign of
these two values distinguishes the social games in four types
of games as seen in Fig. 2.

The settings of the game in Ref. [6] are that of a bound-
ary game, since Dr = 0. This type of game is not a good
representation of the general PD, since it has none of the
Stag-Hunt-type dilemma, but it does have the advantage of
having a single parameter representing the dilemma’s extent.
A more suited dilemma setting that also has the advantage of
having a single parameter representing the dilemma’s extent is
the donor and recipient game, presumed in the community of
theoretical biologists as the standard template representing the
PD [26]. Besides this, we have chosen to adopt the boundary
game from Nowak and May to replicate the same results at
the same parameter values and, thus, see if our tools correctly
measure spatial chaos.
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FIG. 2. Diagram representing the four types of pairwise social
games according to dilemma strength. CH stands for the chicken
game, PD stands for the prisoner’s dilemma, SH stands for the stag-
hunt game, and H stands for the harmony game.

At each iteration of the game, each agent copies the
strategy of its Moore neighbor that has the highest payoff,
including themselves. The process happens simultaneously
for all agents. Therefore, the game is deterministic, and its
rules are symmetrical. Granting that the initial conditions
have symmetry, e.g., all agents are cooperators except one
defector at the center, the spatial distribution of cooperators
and defectors will be symmetrical. Nonetheless, the generated
patterns are not fractals as Nowak and May claim. In Figs. 3
and 4 we plot cooperators in blue and defectors in red for
different population sizes N = L2, with L being the grid size.
Observing Fig. 3 that corresponds to the case L = 99, one
could think that the structure is fractal as Nowak and May
claim in Ref. [6]. However, the pattern is not fractal as we
can see in Fig. 4 for L = 999, instead we can observe near
homogeneous size clusters. Furthermore, we computed the
box counting dimension of the boundary between cooperators
and defectors and it is 2 for both Figs. 3 and 4.

FIG. 3. Color map of the prisoner’s dilemma with a Moore
neighborhood, R = 1, P = S = 0, and 1.8 < T < 2. We have rep-
resented cooperators in blue and defectors in red for a grid size
of L = 99 and fixed boundary conditions after relaxation of the
prisoner’s dilemma. The box counting dimension of the boundary
between the region of cooperators and defectors is 2.

FIG. 4. Color map of the prisoner’s dilemma with a Moore
neighborhood, R = 1, P = S = 0, and 1.8 < T < 2. We have rep-
resented cooperators in blue and defectors in red for a grid size of
L = 999 and fixed boundary conditions after relaxation of the pris-
oner’s dilemma. The box counting dimension of the frontier between
defectors and cooperators is 2. We do not see clusters of the same
strategy at different scales because all clusters have a similar size. In
other words, the boundary is not fractal.

In Fig. 5 we show the proportion of cooperators for the
last 50 generations after relaxation of a deterministic PD
game with a Moore neighborhood and L = 999 in function of
the temptation payoff T . We can see that the 1.8 < T � 2.0
regime presents a different behavior than the rest of the pa-
rameter scan, a chaotic one. There is a sudden transition to
chaos due to the discrete nature of the temptation payoff T ;
i.e., although T is a real number, the system is only altered
at some thresholds by the nature of the game rules, and not
continuously. Assuming that two neighboring agents, denoted
as i and j, employ different strategies, if agent j, for instance,
alters its strategy to align with that of agent i, it is inferred

FIG. 5. Proportion of cooperators for the last 50 iterations after
relaxation of a deterministic prisoner’s dilemma game with Moore
neighborhood and a population size of 999 × 999 as a function of
the temptation payoff parameter T . We can distinguish 14 regions
corresponding with shifts at the values of the temptation payoff
that induce a change in the game. At 1.8 < T � 2 the dynamics is
chaotic. As we can see, the line is bold; i.e., there is a large number
of possible states with different proportions of cooperators, whereas
for the other regions only a few periodic states are present.
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that the payoff for agent i, denoted as PIi, surpasses that
of any neighbors of agent j. Assume that the agent i has
x neighboring cooperators and that the neighbor of agent j
with maximum payoff besides agent i, which we will call
agent k with payoff �k , has y neighboring cooperators. The
thresholds are given by the possible values of y/x. This is
because �k = y if agent k is a cooperator or �k = yT if it
is a defector. Likewise �i = xT if agent x is a defector or
�i = x if it is a cooperator, so �i > �k is held by T > y/x
or T < x/y. The value of T has to be greater than 1 for the
game to be a prisoner’s dilemma, and x, y � 9 since there
are only nine agents that play each game. Therefore, there
are 27 thresholds, but, in fact, in Fig. 5 defectors completely
dominate the game for values beyond T > 2, so we would
only see 15 different regimes. We only see 14 regimes in Fig. 5
since there is no change in the frequency between thresholds
7/6 and 6/5 for unknown reasons.

A. Hamming distance

The Hamming distance between two configurations s and
s′ of cooperators and defectors is

H (t ) =
N∑

i

|si − s′
i|, (1)

where si and s′
i are the strategies of agent i in the configuration

s or s′, which can be 0, a defector, or 1, a cooperator.
We calculate the final Hamming distance that separates two

configurations that began under the same initial conditions,
where there is a random 50%–50% cooperator-defector set-
ting, with only one random agent’s strategy changed from one
configuration to the other. We normalize this distance to the
statistical Hamming distance, which is the Hamming distance
that separates two random configurations with proportions of
cooperators pC (t ) and defectors pD(t ), which can be calcu-
lated as

Hstat (t ) = pC (t )pD(t ) + pD(t )pC (t ) = 2pC (t )[1 − pC (t )].
(2)

The normalized Hamming distance in our context is ex-
pressed as H ′(t ) = H (t )/Hstat (t ). It is essential to distinguish
this normalization method from the conventional approach
applied to the Hamming distance, which typically involves
normalization based on the size of the set.

We have seen that the final normalized distance is 0 (or
close to 0) for all values except for the parameter regime
specified by Novak and May in Ref. [6], where it is close to
1. This indicates that this parameter regime presents spatial
chaos, whereas the others do not. In Fig. 6 we plot H ′(t ) and
it grows as a sigmoidlike curve. For larger population sizes, it
takes more time to reach the maximum value of the distance,
but it gets closer to Hstat for large times. This happens because
Hstat grows as the population size increases, but the growing
rate of the Hamming distance is not altered by the population
size, as seen in Fig. 7, where all curves have a similar growing
rate. Discrepancies in the growing rate are due to the random
initial conditions and the choice of the first mismatch, i.e., the
first agent that is different in both configurations, which is also
randomly chosen.

FIG. 6. Normalized Hamming distance of the two solutions ver-
sus time (number of generations). Multiple curves are shown with
different colors, representing the different grid size L values. The
curves grow in a sigmoidlike curve towards 1. They are normalized
to the statistical Hamming distance, which depends on L. The larger
L is, the longer it takes for the normalized Hamming distance to
reach 1.

We have fitted these curves to a sigmoid function. We have
chosen the Weibull “stretched exponential” function [27], of
the form

F (t ; k, a) = 1 − e−(t/a)k
, (3)

where a sets the timescale, and k indicates how abruptly the
curve grows. We chose this fit since it is sigmoidlike, it starts
at the origin, and it has only two relevant parameters.

Figure 8 shows that a grows linearly with L with a slope of
0.56 ± 0.05 and the intercept is 0 ± 30. It is reasonable that
a grows linearly with L, since the mismatches can propagate
at a velocity limited by the range of action of an agent, i.e.,
the distance at which an agent can affect another agent. We
can see in Fig. 1 that this distance is two agents in each
direction, so the time it takes a mismatch to propagate to the
whole population should be no less than 0.5L iterations. Since
the slope is near this maximum of velocity, it shows that the
propagation of mismatches is very fast and uninterrupted. As
we see in Fig. 9, the value of k is independent of L; all values
are around 2.45 ± 0.4.

FIG. 7. Hamming distance of the the two solutions versus time
(number of generations). Different colors represent different values
of the grid size L. The larger the grid size is, the longer it takes for
the Hamming distance to reach Hstat .
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FIG. 8. Parameter a from the Weibull “stretched exponential”
function F (t ; k, a) = 1 − e−(t/a)k

fitted to the normalized Hamming
distance of the solutions for the prisoner’s dilemma versus grid size
L. It shows a linear regression (dashed blue line) where a grows
proportionally to L. Error bars, derived from the fitting, are smaller
than the marker size.

III. PUBLIC GOODS GAME

A. Model and initial results

We have studied the PGG by means of an agent-based
model of N total agents where each one is a node on a square
lattice that plays 5 games with G = 5 von Neumann second-
nearest neighbors, those agents at a Manhattan distance of two
nodes, which form crosslike patterns like that of Fig. 10. In
each game g = 1, . . . , G, cooperators gain a payoff �

g
C and

defectors gain a payoff �
g
D that depends on the number of

cooperators Ng
C among their neighbors:

�
g
C = r

G
Ng

C − 1, �
g
D = r

G
Ng

C . (4)

The accumulated payoff � = ∑G
g �g of each agent, cal-

culated as the sum of the payoff gained in each game played,
determines how likely it is that each agent survives and re-
produces. The evolutionary mechanism we have adopted is
a pairwise imitation process in which, through Monte Carlo
simulations, an agent is randomly chosen to adopt the strategy
of a random nearest neighbor if its payoff is lower than the
neighbor’s. Cooperation is chosen if there is a tie in payoffs.

FIG. 9. Parameter k from the Weibull “stretched exponential”
function F (t ; k, a) = 1 − e−(t/a)k

fitted to the normalized Hamming
distance of the solutions for the prisoner’s dilemma versus grid size
L. All points have similar values of k ≈ 2.4 ± 0.4. Error bars are
derived from the fitting.

i

FIG. 10. Von Neumann neighborhood at a distance 2 of agent i.
The individual i plays 5 games with agents in crosslike patterns like
the one shaded.

Once N iterations have passed, all agents have had the pos-
sibility on average to adopt a neighbor’s strategy. Hence, our
Monte Carlo step (MCS), which accounts for one generation,
will be N iterations.

We have started every simulation with each agent strategy
chosen at random with the same probability of being cooper-
ators or defectors.

After running the simulation through a relaxation time of
2000 generations, we present the proportion of cooperators
and defectors versus the multiplication factor r in Fig. 11. In
this figure, we see a series of shifts discontinuously increasing
cooperation proportion, and we see horizontal steps where
the proportion remains constant. We are able to predict the
r values for which the proportion of cooperators shifts by
calculating the payoffs of the surrounding cooperators and
defectors in the shown configurations.

We can get the r value of the first shift by calculating the
payoff of the white-marked cooperator and the defector below
it. The payoff of this cooperator is

�C = 1
5 (5r + 4r + 2 × 3r + r) − 5 = 16

5 r − 5, (5)

FIG. 11. Proportion of cooperators (in blue) and defectors (in
red) after running a simulation of the public goods game starting with
a random strategy in each of the N = 90 000 agents for a relaxation
time of 2000 generations. We can see a series of steps matching the
values of r and that, for the given configurations, the surrounding co-
operators have greater payoff than the surrounded defectors. For the
first configuration, this holds strictly for the white-marked cooperator
and the defector below it at the first shift at r = 25/7 ≈ 3.57.
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The payoff of the defector is

�D = 1
5 (4r + 2 × 2r + r + 0) = 9

5 r. (6)

The shifts in Fig. 11 occur when there is a change in the
behavior of the system. The shifts are met when �C = �D,
since cooperation gets more profitable. For the first con-
figuration this shift occurs at r � 25/7 ≈ 3.57. The rest of
the shifts occur at r � 25/6 = 4.16̂, r � 25/5 = 5, and r �
25/3 = 8.3̂, all well in accordance with the figure. The last
shift has not been plotted on the figure because it is barely
visible, but at this point cooperators completely dominate the
game.

In the PGG cooperation, there is a Nash equilibrium for
r � 5. The Nash equilibrium occurs when no agent can in-
crease its payoff when changing strategy if the others keep
theirs unchanged. Nonetheless since the payoff of each agent
is affected by the strategies of its neighbors, a change of
one’s strategy can lower the payoff of its neighbors more
than what it lowers one’s own payoff, making Nash equilib-
rium an insufficient condition to eliminate all defectors. For
a cooperative Nash equilibrium with r � 5, even a defector
surrounded by cooperators would have a greater payoff if
it were a cooperator, but since its surrounding cooperators
have a lesser payoff, it cannot adopt the cooperation strategy
given our evolutionary model and, therefore, the frequency
is lower than 1 (see Fig. 11). This holds until r = 8.3̂ as
the theoretical study predicts, when cooperators have more
payoff than the isolated defector. We have not plotted this
shift because it can hardly be appreciated at the current scale
and the computational times for all defectors to be gone are
long.

B. Hamming distance

We wanted to know how fast two solutions for the pub-
lic goods game that differed only on one agent’s strategy
at the beginning would separate calculating their Hamming
distance, so we could get an idea of when the system presents
spatial chaos. The election of the agent subjected to adopt a
new strategy is chosen at random by the Monte Carlo simula-
tion. This stochasticity could be manifest in the growth of the
Hamming distance. We try to minimize this effect by setting
all random interactions to be a set of predetermined values, the
same for both configurations, but different at each iteration.

We fit the normalized Hamming distance with the Weibull
stretched exponential function as in the previous section. In
Fig. 12, we plot the normalized Hamming distance for dif-
ferent r values. We see two slightly separated regimes. Those
in 25/7 < r < 25/6, which have lesser a values, and those
in 25/6 < r < 5, with larger a as fitted in Fig. 13. This is
well observed in Fig. 14. However, the value of k seems to
be independent of r as can be seen in Fig. 15. All curves have
similar k values of 3 ± 1. In Ref. [18], Bazeia et al. refer to
the time it takes for the Hamming distance to reach 1/4 of
the maximum, which is similar to the value of a, and they
compared it to the Lyapunov time, but never developed further
investigation.

In Fig. 16, we see that for r = 5, a is broadly larger than
in the other regimes. However, the Hamming distance still
grows towards Hstat, even though we did not expect spatial

FIG. 12. Normalized Hamming distance between the solutions
for the public goods game versus time (number of generations).
Multiple curves are shown with different colors, representing the
different r values. The curves grow in a sigmoidlike curve towards 1.
They are normalized to the statistical Hamming distance, which de-
pends on r; so curves ranging from 25/7 � r < 25/6 are normalized
to a different value than those at 25/6 � r < 5. There is a distinction
between the two regimes, the curves of the first one (blue ones) reach
their midpoint after those of the second regime (orange ones).

chaos for this parameter value because of the sparse density of
defectors. This could be a sign that the Hamming distance also
tracks the randomness of the Monte Carlo simulations. Since
we set all random interactions at the beginning, the agent that
adopts a new strategy is the same for the two solutions, but
since one solution initially differs from the other, the out-
comes become different and diverse, diverging more at each
iteration. However, we get a much larger a value, meaning
that it takes much more time for the Hamming distance to
reach its maximum, so we perceive this as a sign that the

FIG. 13. Normalized Hamming distance between the solutions
for the public goods game versus time (number of generations).
Different colors represent the different r values. The curves grow
towards 1 in a sigmoidlike form. They are normalized to the sta-
tistical Hamming distance, which depends on r, so the two curves
are normalized to a different value. They are fitted with the Weibull
stretched exponential function F (t ; k, a) = 1 − e−(t/a)k

. The r = 4
curves (blue and left ones), representing the regime 25/7 � r <

25/6, have a lower value for the a parameter than the curves with
r = 4.65 (orange and right ones), meaning that, for this parameter,
the system is more sensitive.
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FIG. 14. Value of the fitted parameter a in the Weibull stretched
exponential function F (t ; k, a) = 1 − e−(t/a)k

fitted to the normalized
Hamming distance of two solutions for the public goods game for
different r values. Notice the rightmost point at r = 5 and a � 3600.
We can see the shift between the three regimes 25/7 � r < 25/6 ≈
4.17, 25/6 � r < 5, and r � 5. Error bars, derived from the fitting,
are smaller than the marker size.

FIG. 15. Value of the fitted parameter k in the Weibull stretched
exponential function F (t ; k, a) = 1 − e−(t/a)k

fitted to the normalized
Hamming distance of two solutions for the public goods game with
different r values. All points exhibit comparable values of k, ap-
proximately around k ≈ 3.2, and are indistinguishable across various
regimes. Error bars are derived from the fitting.

FIG. 16. Normalized Hamming distance between the solutions
for the public goods game versus time (number of generations). The
curve grows in a sigmoidlike curve towards 1. It is normalized to
the statistical Hamming distance and it is fitted with the Weibull
stretched exponential function F (t ; k, a) = 1 − e−(t/a)k

. This curve
for r = 5 is plotted separated from the previous ones because it spans
farther into the x axis since the value of a is far greater, meaning the
system is less unstable for this parameter value.

system is less unstable. This gives us the idea that a system
with this parameter value is less spatially chaotic, if chaotic at
all.

IV. CONCLUSIONS

We have studied the public goods game to see how two
relaxed, almost identical configurations diverged in their spa-
tial configuration through the means of the Hamming distance
in order to categorize if there was spatial chaos. Under the
study of a well-known spatial chaos example, the game of
Nowak and May [6], we have seen that the Hamming distance
grows as a sigmoidlike curve towards the statistical Hamming
distance that two random configurations would have for those
cases where spatial chaos was observed, and the distance is
0 or close to 0 for the cases where the system falls into a
fixed point or periodic solutions. The settings of the pris-
oner’s dilemma game were that of a boundary game where
Dr = 0, which is not the general case for PD, but we used it
nonetheless since we wanted to replicate the same results as
in Ref. [6]. We have no reason to think the main conclusions
will not hold for a more general case.

For the public goods game, the Hamming distance grows
towards the statistical value for all the studied parameter val-
ues, even for those for which we did not expect the system
to be spatially chaotic, that is, with r > 5. This behavior
may be explained due to the randomness of the Monte Carlo
simulation, making the instability test less precise even though
we have tried to minimize this by setting the same random
values in both configurations. Moreover, the algorithm is not
completely useless since the distance grows much slower for
those cases. Therefore, our tool gives a broad idea of how
unstable the spatial configurations are, even though it is not
completely efficient in discerning a spatially chaotic behavior
in a model with some sort of stochasticity; therefore, further
research should be done.

Our study does not replicate the evolution of the Hamming
distance equally as in the case of Ref. [18], where initial
perturbation changes which species would win, changing
drastically the frequency of the species value. In contrary, our
case keeps the same values of strategy frequencies on average.
This means that the models studied do not behave chaotically
concerning frequencies since they converge to an equilibrium,
although they do present spatial chaos, and our studies have
provided a way to discern it.

While our examination has been limited to the spatial
prisoner’s dilemma and the spatial public goods game on a
square lattice, we posit that the Hamming distance can be
applied to assess instability across different lattice geometries
in networks. Furthermore, we believe it can be extended to
evaluate instability in other game scenarios.
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