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Universal spectral correlations in interacting chaotic few-body quantum systems
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The emergence of random matrix spectral correlations in interacting quantum systems is a defining feature of
quantum chaos. We study such correlations in terms of the spectral form factor and its moments in interacting
chaotic few- and many-body systems, modeled by suitable random-matrix ensembles. We obtain the spectral
form factor exactly for large Hilbert space dimension. Extrapolating those results to finite Hilbert space
dimension we find a universal transition from the noninteracting to the strongly interacting case, which can be
described as a simple combination of these two limits. This transition is governed by a single scaling parameter.
In the bipartite case we derive similar results also for all moments of the spectral form factor. We confirm our
results by extensive numerical studies and demonstrate that they apply to more realistic systems given by a pair
of quantized kicked rotors as well. Ultimately we complement our analysis by a perturbative approach covering
the small-coupling regime.
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I. INTRODUCTION

Quantizing a classically chaotic systems leads to energy
spectra whose fluctuations universally coincide with those
of random matrices [1–3] which depend only on the sym-
metries of the system at hand [4–8]. This universality can
be traced back to only a few basic properties of the under-
lying ergodic dynamical system [9–12]. Random-matrix-like
spectral fluctuations henceforth have become one of the most
widely accepted definitions of quantum chaos even in the
absence of a classical limit. Spectral fluctuations are often
studied numerically on the scale of the mean level spac-
ing in terms of nearest-neighbor level spacings. In contrast,
spectral correlations on all energy scales are conveniently
probed by the spectral form factor [7], which has received a
considerable amount of attention in recent years in, e.g., high-
energy physics [13–16] and condensed-matter and many-body
systems [17–34]. In particular for the latter, random-matrix
spectral correlations have to arise from the mutual—often
local—interactions of the individual. subsystems, e.g., par-
ticles, spins, etc. To date, there is no general universal
underlying mechanism for this emergent behavior comparable
to the semiclassical periodic orbit–based picture in single-
particle systems. However, there are a few examples in which
exact results are obtained. This includes random quantum
circuits with large local Hilbert space dimension N → ∞
[22,23,25,26] or spatially homogeneous circuits or Floquet
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spin chains in the thermodynamic limit of system size L → ∞
[17–19,27]. It nevertheless remains of great interest to identify
minimal models in which spectral correlations, i.e., the spec-
tral form factor, can be obtained accurately even for finite N
and L to reveal how random-matrix behavior emerges.

One of the arguably simplest scenarios is that of just two
subsystems being coupled with each other. When both sub-
systems are individually chaotic, the level spacing distribution
shows a transition from Poissonian statistics in the uncoupled
case towards Wigner-Dyson statistics in the strong-coupling
regime following a universal scaling law [35]. The latter can
be explained in a suitable random matrix model adapted to
the bipartite setting—the so-called random matrix transition
ensemble (RMTE) [35]. Subsequently a universal transition
was observed also in the eigenstates reflected by, e.g., their
entanglement and localization properties [36–38] as well as in
the entanglement dynamics after a quench [39,40].

In this work we analyze the spectral form factor in both
the bipartite RMTE as well as in an extended version thereof.
The latter models interacting few- and many-body systems
consisting of L subsystems of size N subject to an all-to-all
interaction. We derive exact results for the spectral form factor
and, in the bipartite case, its moments as the size of the subsys-
tems N → ∞ for an arbitrary number of subsystems L. These
exact results naturally extend to large, but finite, subsystem
size N and reveal a universal dependence of the spectral form
factor on a single scaling parameter, which fully captures the
influence of N , L, and the nature of the interaction between
the subsystems. This gives rise to a universal transition of the
spectral form factor from the noninteracting to the strongly
interacting regime. In fact, the spectral form factor can be
written as a simple time-dependent convex combination of
these two limiting cases. The spectral form factor conse-
quently exhibits an intricate interplay between different time
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and associated energy scales, including the Heisenberg times
of the subsystems and the full system as well as a nontrivial
Thouless time.

We begin by deriving our results in the simplest setting
of the bipartite RMTE, which already shows most of the
phenomena indicated above. We focus on systems which lack
time-reversal or other antiunitary symmetries and model the
subsystems by random matrices from the circular unitary
ensemble CUE(N ) of dimension N . We couple them via a
random N2-dimensional diagonal matrix with tunable cou-
pling, i.e., interaction, strength. Within this framework we
derive exact expressions of the spectral form factor and all
its moments for initial times by explicitly computing the Haar
averages over the subsystems. Subsequently, we show a nat-
ural way to extend these results to larger times. This allows
for expressing the spectral form factor as a time-dependent
convex combinations of the spectral form factor of two un-
coupled CUE(N ) and that of CUE(N2). We extract a single
scaling parameter � from this expression which universally
governs the transition for times larger than the subsystems
Heisenberg times from the former uncoupled, noninteracting
result at � = 0 towards the later full random matrix result at
large �. For intermediate scaling parameter � we extract the
Thouless time as the timescale after which the spectral form
factor of the RMTE agrees with that of CUE(N2). For the
fluctuations of the spectral form factor expressed in terms of
its higher moments we find a similar expression, as they can be
written as time-dependent convex combinations of products
of moments of the spectral form factor of two uncoupled
CUE(N ) and CUE(N2). Again, for large-enough times the
moments depend exclusively on the scaling parameter � and
thus exhibit a similar universal transition. We confirm all
our analytical results by comparison with extensive numerical
studies.

To verify that the above results derived in a random matrix
model apply to physical models as well, we study the spectral
form factor and its moments in two coupled quantum kicked
rotors in the chaotic regime. There, we find good agreement
between the RMTE predictions and the numerically computed
spectral form factor and its moments. This includes in partic-
ular the universal dependence on a single scaling parameter.
Moreover, we argue that for moderately large scaling param-
eter Thouless time and Ehrenfest time, i.e., the time up to
which quantum dynamics follows classical dynamics, do not
coincide.

Having established the methods and results for the bipar-
tite case, we eventually introduce a many-body version of
the bipartite RMTE. It is built from L-independent CUE(N )
matrices modeling the subsystems, whereas an all-to-all inter-
action of tunable strength is induced by an NL-dimensional
random diagonal unitary matrix. The results obtained for the
bipartite case directly carry over to this many-body setting. In
particular, the spectral form factor is a time-dependent convex
combination of the spectral form factor of L noninteracting
CUE(N ) and of the full CUE(NL ), which at times larger than
the subsystems Heisenberg time depends on a single scaling
parameter � only. As in the bipartite case, we verify those
results by extensive numerical studies. Even though those are
limited to the few-body setting of small L we expect our
results to apply also in the many-body case of large L.

Ultimately, we complement our approach with a properly
regularized perturbative treatment of the coupling, which cap-
tures the regime of small scaling parameter and accurately
describes the spectral form factor for large times way beyond
the Heisenberg time of the full system both for the bipartite
and the extended case.

The remainder of this paper is organized as follows. In
Sec. II we review the bipartite RMTE, whereas Sec. III gives
a short introduction into the spectral form factor as the main
object of our work. Subsequently, we derive the spectral form
factor for large N in Sec. IV and establish its universal de-
pendence on a single scaling parameter in Sec. V. This allows
for computing the Thouless time in Sec. VI. We then proceed
by deriving the higher moments of the spectral form factor in
Sec. VII and apply our results to a system of coupled kicked
rotors in Sec. VIII. In Sec. IX we discuss the extended version
of the RMTE. The perturbative treatment of the coupling is
then presented in Sec. X. We finally summarize our results in
Sec. XI.

II. RANDOM MATRIX TRANSITION ENSEMBLE

In this section we review the RMTE introduced in
Ref. [35], which allows for studying universal features of
coupled bipartite chaotic quantum systems. We consider en-
sembles of Floquet systems evolving in discrete time steps
with evolution between subsequent time steps governed by
a unitary evolution operator U ∈ U(N2). The model is built
from individual subsystems A and B described by Hilbert
spaces HA � HB � CN of dimension N . Note that an exten-
sion to subsystem Hilbert spaces with different dimensions
is straightforward [38]. The dynamics of the individual sub-
systems is governed by unitary evolution operators UA,UB ∈
U(N ) and the coupling is modeled by a unitary Uc(ε) ∈
U(N2). Here ε governs the strength of the coupling with ε = 0
corresponding to the uncoupled situation Uc(0) = 1N2 . The
coupled bipartite system is described by the Hilbert space
H = HA ⊗ HB � CN2

. We denote the canonical basis for the
subsystems by |i〉 and the corresponding product basis in H
by |i j〉, i, j ∈ {1, . . . , N}.

The Floquet operator for the coupled system then reads

U = Uc(ε)(UA ⊗ UB). (1)

We focus on systems obeying no antiunitary symmetry, e.g.,
time-reversal symmetry and hence choose UA and UB inde-
pendently from the circular unitary ensemble CUE(N), i.e.,
Haar-random from U(N ). The coupling is modeled by a diag-
onal matrix with matrix elements

〈i j|Uc(ε)|mn〉 = δimδ jn exp(iεξi j ) (2)

with independent and identically distributed random phases
ξi j , i, j ∈ {1, . . . , N} with arbitrary distribution with finite first
and second moment. The first moment, i.e., the expectation
value 〈ξ 〉ξ , where 〈·〉ξ denotes the average with respect to the
distribution of the phases, merely induces an overall phase
for the Floquet operator U . We hence might assume it to
be zero in the following. In contrast the second moment, i.e.,
the variance

σ 2 = 〈ξ 2〉ξ , (3)
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as well as the real and positive coupling strength ε give rise
to an effective coupling strength σε. In principle, both pa-
rameters could be combined into a single one, but for later
convenience we keep both σ and ε. The latter governs the
strength of the coupling once the distribution of the phases
ξi j , and hence σ , is fixed. We refer to ε = 0 as the uncoupled
case as Uc(0) = 1 and to large ε ∼ 1 as the strongly coupled
case.

For a fixed realization of U from the RMTE the eigenvalues
and eigenvectors of U obey

U |ϕi j〉 = eiϕi j |ϕi j〉 (4)

with eigenphases (quasienergies) ϕi j ∈ [−π, π ). Here we in-
dex eigenphases by double indices i j, with i, j ∈ {1, . . . , N},
for later convenience, when treating the eigenphases pertur-
batively in ε. This is motivated by the uncoupled case ε = 0
for which the Floquet operator U is a tensor product and
hence the eigenvectors are products |ϑA

i ϑB
j 〉 = |ϑA

i 〉 ⊗ |ϑB
j 〉

of eigenvectors of UA and UB, with eigenphases ϑA
i and ϑB

j ,
respectively. Consequently, the eigenphases of U are of the
form ϕi j (ε = 0) = ϑA

i + ϑB
j mod 2π and are uniformly dis-

tributed in [−π, π ). In the remainder of the paper we consider
arithmetic operations on eigenphases modulo 2π but suppress
it in the notation. Our main focus is on statistical properties of
the eigenphases of the coupled system as a function of both N
and ε.

III. SPECTRAL FORM FACTOR

In this section we briefly review some basic properties of
the statistics of eigenphases and in particular of the spectral
form factor as a measure for correlations in the (quasi) energy
spectrum. For members of the RMTE introduced in the previ-
ous section the spectral density reads

ρ(ϕ) = 2π

N2

N∑
i, j=1

δ(ϕ − ϕi j ). (5)

Here the normalization is chosen such that the mean spectral
density

〈ρ(ϕ)〉ϕ = 1

2π

∫ π

−π

ρ(ϕ)dϕ = 1 (6)

is unity. Correlations in the spectrum can then be described by
the connected two-point correlation function,

r(ω) = 1

2π

∫ π

−π

ρ(ϕ − ω/2)ρ(ϕ + ω/2)dϕ − 〈ρ(ϕ)〉2
ϕ, (7)

=
⎡
⎣2π

N4

N∑
i, j,k,l=1

δ(ϕi j − ϕkl − ω)

⎤
⎦ − 1. (8)

The ensemble average of its Fourier transform finally defines
the spectral form factor as a function of discrete time t as

K (t ) = N4

2π

〈∫ π

−π

eiωt r(ω)dω

〉
, (9)

=
〈

N∑
i, j,k,l=1

ei(ϕi j−ϕkl )t

〉
− N4δt0. (10)

FIG. 1. Rescaled spectral form factor κ (τ ) for the RMTE at
N = 50 and different coupling strengths ε (see legend, increasing
from top to bottom) in log-log scale. Colored symbols correspond
to numerical data obtained from 20 000 realizations of the RMTE
with uniformly distributed phases ξi j . The asymptotic result (30) is
depicted as black lines. Dashed gray lines correspond to the Heisen-
berg time τSH of the subsystems and of the bipartite system τH .

Here the bracket denotes the average over the RMTE, i.e., the
Haar averages over UA and UB as well as over the random
phases ξi j . This averaging procedure is necessary as the spec-
tral form factor is not self-averaging [41] but fluctuates wildly
for a single realization. The spectral form factor is particularly
convenient to study as Eq. (10) can be written in terms of the
Floquet operator as

K (t ) = 〈|tr(U t )|2〉 − N4δt0. (11)

For Floquet operators U drawn not from the RMTE but from
CUE(M) (in our case M = N or M = N2) the spectral form
factor reads [7]

KM (t ) = KCUE(M )(t ) = min{t, M} (12)

and is characterized by a linear ramp K (t ) = t up to t = M
and a subsequent plateau K (t ) = M for times t � M. Note
that t = tH = M corresponds to the Heisenberg time deter-
mined by the inverse mean level spacing 2π/M.

For the RMTE we compute the spectral form factor nu-
merically for N = 50 and various coupling strengths ε ∈
[0, 1]. We choose the phases ξi j entering Uc to be uniformly
distributed in [−π, π ] and average over more than 20 000
realizations. The resulting spectral form factors are depicted
in Fig. 1 as colored symbols connected by lines. There we
also introduce both the rescaled spectral form factor,

κ (τ ) = K (t )/N2, (13)

as well as rescaled time τ = t/N2, i.e., both are scaled by the
Heisenberg time tH = N2 of the bipartite system. In this unit
the Heisenberg time of the full system reads τH = 1, whereas
those of the subsystems read τSH = 1/N . For the uncoupled
case ε = 0, the evolution operator is the tensor product of
two independent CUE(N) matrices each having spectral form
factor given by Eq. (12). Using the multiplicativity of the trace
with respect to tensor products, tr(UA ⊗ UB) = tr(UA)tr(UB),
and the representation (11), the spectral form factor of the
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uncoupled system factorizes; see also Ref. [42]. Conse-
quently, the spectral form factor of the uncoupled bipartite
system is given by K (t ) = t2 for t � N and K (t ) = N2 for
t � N . That is, for times up to the Heisenberg time of the
subsystems tSH = N the spectral form factor grows quadrat-
ically and reaches a plateau at later times with the plateau
value given by N2 = dim H. This is well confirmed by the
numerical data shown in Fig. 1. In contrast, for strong cou-
pling the spectral form factor of the RMTE is expected to
reproduce the random matrix result for CUE(N2), Eq. (12),
as it is indeed the case for ε = 1. In the intermediate-coupling
regime up to a timescale tTh (the so-called Thouless time) we
observe nonuniversal behavior in the sense that K (t ) does not
follow the random matrix result (12) for CUE(N2). For times
t > tTh the spectral form factor follows the linear growth of
KN2 (t ) and the subsequent plateau. Moreover, in this regime,
the transition from the ramp regime to the plateau is not sharp
but smoothed out around t = tH (τ = 1) as a consequence of
the sum rule

∑
t [K (t ) − KN2 (t )] = 0 [7] which requires com-

pensation of the nonuniversal initial regime. An additional
interesting feature is the sharp transition from increasing to
decreasing spectral form factor at time t = tSH (τ = 1/N).

It is instructive to compare the transition of the spectral
form factor from the uncoupled to the strongly coupled case
with the corresponding transition of the level spacing dis-
tribution p(s), where s is the spacing between subsequent
normalized eigenphases, s = N2

2π
(ϕi+1 − ϕi ) after arranging

the eigenphases in increasing order. For the tensor product
of two uncoupled CUE(N) matrices the eigenphases of the
bipartite system are an uncorrelated superposition of the in-
dividual spectra and follow Poissonian statistics as N → ∞
[43]. Hence the distribution of level spacings is exponential,
p(s) = exp(−s). In contrast, for the strongly coupled case we
expect the level spacing distribution to be well described by
the Wigner surmise for CUE given by

p(s) = 32

π2
s2e− 4

π
s2
. (14)

We depict the numerically obtained level spacing distribu-
tion for the same RMTE as used for Fig. 1 in Fig. 2 for
representative values of the coupling strength. We observe a
transition of the level spacing distribution from the Poissonian
statistics at ε = 0 to the distribution (14) at ε = 0.2. For larger
coupling strength the level spacing distribution is not shown as
it coincides with ε = 0.2 and Eq. (14). The transition towards
full CUE random matrix statistics is much faster for the level
spacing distribution than for the spectral form factor, which
at short times shows significant deviations from the random
matrix result (12). On the one hand, this is not unexpected, as
the level spacing distribution describes spectral correlations
on the scale of the mean level spacing, whereas the spectral
form factor probes correlations at all energy scales. In par-
ticular correlations at the scale of the mean level spacing are
probed at late times t ≈ tH . In this time regime, the spectral
form factor approaches the random matrix result (12) already
for coupling strengths, for which also the level spacing dis-
tribution follows random matrix theory. On the other hand,
we might be led to the conclusion that the spectral form
factor is a more sensitive probe for spectral correlations in
dependence of the coupling strength. This is the case for

FIG. 2. Level spacing distribution for the RMTE at N = 50 and
different coupling strengths ε (see legend, increasing from left to
right). Colored histograms correspond to numerical data obtained
from 100 realizations of the RMTE with uniformly distributed phases
ξi j . The solid black line represents the random matrix result for the
CUE, Eq. (14), whereas the dashed black line represents Poissonian
statistics.

correlations on larger energy scales and hence governs the
short time properties, e.g., the relaxation dynamics towards
equilibrium. In contrast long time and steady-state properties
corresponding to spectral correlations on small energy scales
are less sensitive to the coupling.

IV. EXACT SPECTRAL FORM FACTOR
IN THE SEMICLASSICAL LIMIT

In the following section we provide a qualitatively ac-
curate description of the spectral form factor by deriving
its asymptotics for large N . As 1/N plays the role of an
effective Planck’s constant we refer to N → ∞ as the semi-
classical limit. We essentially follow the derivation presented
in Refs. [22,23], where a spatially extended version of the
RMTE in the form of a random quantum circuit was pre-
sented. Our objective is to evaluate the Haar average over
the subsystems UA and UB exactly in the limit N → ∞ first
and subsequently average over the random phases in the
coupling Uc. To this end we introduce some useful notation
in the following. For t > 0 we denote the product basis in
H⊗t

A by |i〉 = |i1, i2, . . . , it 〉 with is ∈ {1, . . . , N} and similar
for the product basis in H⊗t

B . For the corresponding product
basis in H⊗t = (HA ⊗ HB)⊗t , after a suitable rearrangement
of tensor factors, we write |i, j〉 = |i1, j1〉 ⊗ · · · ⊗ |it , jt 〉. Re-
garding the expansion in time, we consider the action of the
permutation group St of t elements on H⊗t

A which permutes
tensor factors and denote the action of π ∈ St on the above
product basis by

|π (i)〉 = |iπ−1(1), . . . , iπ−1(t )〉. (15)

A central role is played by the t-periodic shifts ηr ∈ St ,
defined by ηr (s) = s + r mod t for s ∈ {1, . . . , t} and r ∈
{0, . . . t − 1}.

To proceed, we rewrite Eq. (11) for t > 0 as

K (t ) = tr(U t )tr([U �]t ), (16)
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where U � denotes the complex conjugate matrix of U and
we use the invariance of the trace under taking the transpose.
Using the above notation this can be expressed as

K (t ) =
〈∑

i,j

〈i, j|U⊗t |η1(i), η1(j)〉

×
∑
k,l

〈k, l|(U �)⊗t |η1(k), η1(l)〉
〉
. (17)

Here the fourfold sum runs over all elements of the product
basis introduced above. The above expression is essentially
obtained by introducing a suitable number of resolutions of
identity in terms of the basis states |i j〉 ∈ H in the t-fold
products U t and [U �]t .

For the matrix elements of U⊗t we obtain by inserting
Eqs. (1) and (2)

〈i, j|U⊗t |η1(i), η1(j)〉

= exp

(
iε

t∑
s=1

ξis js

)
〈i|U⊗t

A |η1(i)〉〈j|U⊗t
B |η1(j)〉, (18)

〈k, l|(U �)⊗t |η1(k), η1(l)〉

= exp

(
−iε

t∑
s=1

ξksls

)
〈k|(U �

A)⊗t |η1(k)〉〈l|(U �
B)⊗t |η1(l)〉.

(19)

Hence for each term in the fourfold sum (17) the average
over the phases and the two independent CUE(N) matrices
UA and UB factorizes. We first evaluate the Haar average for
subsystem A, while subsystem B can be treated similarly.

More precisely, we aim for evaluating

f (i, k) = 〈〈i|U⊗t
A |η1(i)〉〈k|(U �)⊗t

A |η1(k)〉〉. (20)

Here the expression to be averaged over the unitary group
is a monomial in the matrix entries of UA and U �

A. The Haar
average of such monomials (with the same number of matrix
elements from UA and U �

A) can be expressed in terms of Wein-
garten functions Wg defined on the symmetric group St [44].
For a general monomial of the form 〈i|U⊗t

A |j〉〈k|(U �
A)⊗t |l〉 the

Haar average is nonzero only if k is a permutation μ of i and
l is a permutation ν of j. The average is then given by [44,45]

〈〈i|U⊗t
A |j〉〈k|(U �

A)⊗t |l〉〉 =
∑

μ,ν∈St

δi,μ(k)δj,ν(l)Wg(νμ−1), (21)

where the Kronecker δ is understood element-wise. Applied
to the situation at hand, the Haar average of the monomial
(20) is nonzero only if there are permutations μ, ν ∈ St such
that |i〉 = |μ(k)〉 and |η1(i)〉 = |νη1(k)〉 or, equivalently, |i〉 =
|η−1

1 νη1(k)〉. That is, one has

f (i, k) =
∑

μ,ν∈St

δi,μ(k)δi,η−1
1 νη1(k)Wg(νμ−1). (22)

The Weingarten functions Wg occurring in the above equa-
tions are rational functions of N which decay as N−t if π = id
and at least as N−(t+1) otherwise as N → ∞ [44–46]. This
property allows for obtaining the leading contribution to the
Haar average in the following.

As we are interested in this N → ∞ limit we might assume
t � N . Consequently, the overwhelming majority of product
states |i〉 is such that the factors are pairwise distinct, is �= ir
for s �= r. In fact, the number of such states is given by
N!/[(N − t )!] out of the total number Nt of product basis
states. Asymptotically these are all states as N!/[(N − t )!] ∼
Nt for N → ∞. For such states we can relate the permuta-
tions μ and ν by ν = η1μη−1

1 and we can write Wg(νμ−1) =
Wg(η1μη−1

1 μ−1) in Eq. (22). We therefore obtain

f (i, k) =
∑
μ∈St

δi,μ(k)Wg(η1μη−1
1 μ−1). (23)

The leading terms correspond to permutations μ for which
η1μη−1

1 μ−1 = id. These are exactly the t possible periodic
shifts ηr introduced above. The asymptotics Wg(id) ∼ N−t +
O[N−(t+1)] then implies

f (i, k) = N−t
t−1∑
r=0

δi,ηr (k) +
∑
μ∈St

δi,μ(k)O[N−(t+1)]. (24)

An analogous expression holds for the Haar average over
subsystem B.

Inserting those expressions for subsystem A and B into
Eq. (17) and keeping only the leading terms in 1/N we obtain

K (t ) = N−2t
∑

i,j

t−1∑
r,s=0

〈eiεθ (i,j,ηr ,ηs )〉. (25)

Here the double sums over i and j run over those states with
pairwise distinct factors, the brackets denote the remaining
average over the phases ξi j , and we define

θ (i, j, μ, ν) =
t∑

s=1

ξis js − ξi
μ−1(s) j

ν−1 (s)
. (26)

The average over the phases does not depend on i and j and
hence the sum over these states gives a factor which asymp-
totically scales as N2t and exactly cancels the prefactor N−2t .
Evaluating the average over the phases yields

〈eiεθ (i,j,ηr ,ηs )〉 = δr,s + (1 − δr,s)|χ (ε)|2t , (27)

where

χ (ε) = 〈eiεξ 〉ξ (28)

denotes the characteristic function of the distribution of the
phases ξi j . Note that for r = s the phase θ (i, j, ηr, ηs) = 0
and for r �= s all the ξi j and ξi

η−1
r (s)

j
η−1

s (s)
are different and inde-

pendent from each other. This argument can be phrased more
general by observing that the average gives |χ (ε)|2k , where
k is the number of fixed points of η−1

r ηs. In the present case,
of course, k is either zero (r �= s) or t (r = s) but for higher
moments of the spectral form factor the above observation
becomes crucial; see Sec. VII.

Combining the above results we finally obtain

K (t ) = t2|χ (ε)|2t + t[1 − |χ (ε)|2t ] (29)

as N → ∞. For finite N Eq. (29) describes the leading order
in 1/N of the spectral form factor for short times t � tSH.
As t2 = KN (t )2 as well as t = KN2 (t ) for t < N we can inter-
pret Eq. (29) as a time-dependent convex combination of the
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spectral form factor of the uncoupled system and the spectral
form factor for CUE(N2). One might hope that such a convex
combination describes the spectral form factor of the coupled
bipartite system even for times larger than the regime in which
the derivation above is valid. In this case the natural extension
of the above result yields

K (t ) = |χ (ε)|2t KN (t )2 + [1 − |χ (ε)|2t ]KN2 (t ) (30)

and extrapolates Eq. (29) to a time regime t � tSH. Here we
explicitly include the plateaus of KN (t ) and KN2 (t ) after the
respective Heisenberg times. Interestingly, a similar represen-
tation of the spectral form factor around the Thouless time,
t ≈ tTh, very recently was obtained in a different setting re-
alizing a minimal model of quantum glasses [30]. In Fig. 1
we compare Eq. (30) with the numerically obtained spectral
form factor. As we choose uniformly distributed phases there,
the characteristic function of their distribution is given by
χ (ε) = sinc(ε). We find good agreement between the asymp-
totic result (black lines) and numerical data for times up to t =
tSH (τ = τSH). Surprisingly, the extrapolation (30) provides
a reasonable description also for larger times. In particular,
it explains the cusp at τ = τSH for intermediate coupling,
as at this time the spectral form factor for CUE(N ) sharply
transitions from the ramp to the plateau. Both the quality of
this description and the time regime for which it describes
the numerical data increase for stronger coupling. Given the
accuracy with which Eq. (30) describes the spectral form
factor also for times t � tSH, we exploit the latter in order
to analyze the properties of the spectral form factor for the
RMTE in the following, even though we currently lack a more
rigorous derivation.

V. UNIVERSALITY OF THE SPECTRAL FORM FACTOR

In chaotic quantum systems universality of spectral fluc-
tuations typically refers to them being described by random
matrix theory. In case of the spectral form factor the corre-
sponding random matrix description is provided by Eq. (12).
In the situation of coupled chaotic quantum systems with tun-
able coupling strength yet another notion of universality was
introduced in Ref. [35]. There spectral fluctuations, and sub-
sequently also entanglement properties of eigenstates [36–38]
as well as the entanglement production after a quench [39,40],
was found to depend on a universal scaling parameter �(ε, N )
only. The latter is a function of both coupling strength ε and
the subsystems’ Hilbert space dimension N . In close analogy
we derive the universal dependence of the rescaled spectral
form factor κ (τ ) for times t � tSH (τ > τSH) on the scaling
parameter

� = σεN, (31)

i.e., the ratio of effective coupling strength σε, with σ 2 the
variance of the distribution of the phases ξi j entering Uc, and
effective Planck’s constant 1/N . In particular, this is indepen-
dent of the concrete form of the distribution of phases. This
scaling parameter closely resembles the universal transition
parameter obtained perturbatively in Ref. [35]. We comment
on the subtle differences in Sec. X when adapting a perturba-
tive treatment of the coupling.

FIG. 3. Rescaled spectral form factor κ (τ ) for the RMTE with
uniformly distributed phases for different � (indicated in the indi-
vidual panels) with N = 35 (blue symbols, 200 000 realizations),
N = 50 (orange symbols, 20 000 realizations), and N = 80 (green
symbols, 6000 realizations) in log-log scale with N decreasing from
top to bottom at small τ . The asymptotic result (30) is depicted as
black lines. Dashed gray lines correspond to the Heisenberg times
τSH of the subsystems and of the bipartite system τH = 1.

In order to illustrate the above notion of universality we
compute the spectral form factor numerically for the RMTE
for various ε and N but for fixed � = σεN . This is depicted
in Fig. 3, where we show numerical data for the RMTE with
uniformly distributed phases ξi j for six representative values
of � and three different system sizes respectively. Indeed,
we observe that for times τ > τSH the rescaled spectral form
factor depends only on the universal scaling parameter �. In
order to explain this universal behavior we rescale both time
and spectral form factor in Eq. (30) by N2 and obtain

κ (τ ) = |χ (ε)N2 |2τ + [1 − |χ (ε)N2 |2τ ]κCUE(N2 )(τ ) (32)

for τ � τSH. Here κCUE(N2 )(τ ) = min{τ, 1}, and we used that
the term κ2

CUE(N )(τ ) = 1 for this times. By the central limit
theorem applied to the characteristic function of the distribu-
tion of the phases one has

|χ (ε)|N2 ≈ χN (σεN ) (33)

for large N . Here χN (x) = exp(−x2/2) is the characteristic
function of the standard normal distribution N . Accordingly,
one has

|χ (ε)|2t = exp(−�2τ ). (34)

Inserting this into Eq. (32) we find that κ (τ ) depends only
on the universal scaling parameter � = εσN implying the
observed universality. In particular, this also holds in regimes
where the spectral form factor does not follow the full
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random matrix result. Hence it is specific to the bipartite set-
ting considered here and therefore goes beyond the standard
universal random matrix description of the composite system
by CUE(N2).

VI. THOULESS TIME

For sufficiently large scaling parameter the rescaled spec-
tral form factor will follow the linear ramp κ (τ ) = τ of the
CUE(N2) spectral form factor after some initial time tTh < tH
(τTh < τH ). This timescale is referred to as Thouless time (in
the context of many-body quantum systems) and its inverse
sets the energy scale below which spectral correlations follow
random matrix theory.

In order to derive the Thouless time from the spectral
form factor we define tTh to be the time after which spectral
form factor of the RMTE and CUE(N2) are close. That is,
we require the difference of the spectral form factor from
the random matrix result to be smaller than a given (small)
threshold �. The latter might be measured in absolute units, �
of order one, or alternatively in units of the Heisenberg time,
� ∼ δN2 for δ � 1. We use both approaches in the following
and begin with the latter.

In this case we define tTh to be the solution of K (t ) −
KN2 (t ) = K (t ) − t = δN2 for small δ � 1. For the asymptotic
spectral form factor (30) this reads (N2 − t )|χ (ε)|2t = δN2.
We restrict ourselves to the case tSH < tTh < tH , as, on the
one hand, this is the regime where the spectral form factor
and hence rescaled Thouless time τTh depend on the scaling
parameter � only. On the other hand, this is the regime, where
one can solve for τTh exactly. Using the universal dependence
of the spectral form factor on � and the central limit theorem
for the characteristic function of the phases ξi j yields the
rescaled equation

(1 − τ ) exp(−�2τ ) = δ. (35)

Its solution in the interval (1/N, 1) can be expressed in terms
of the 0-branch of the Lambert W function as

τTh = 1 − 1

�2
W0(δ�2e�2

). (36)

We compare the above result with numerical solutions to
K (t ) − t = δN2 in Fig. 4. In order to reduce the influence of
the small-scale fluctuations of the numerically obtained spec-
tral form factor we smooth the numerical data by means of a
moving time average over a small time window when extract-
ing tTh. Although this introduces some artifacts at small τ , the
smoothing allows for a more reliable extraction of the much
larger Thouless time tTh. We illustrate the smoothed spectral
form factor in Fig. 4(a) and indicate the numerically obtained
Thouless time for a few values of the scaling parameter �. As
demonstrated in Fig. 4(b) the numerically obtained rescaled
Thouless time (blue crosses) is qualitatively well described
by Eq. (36) (solid orange line) for large �. For smaller � the
agreement is worse, which we attribute to the fact that for this
regime the linear ramp is influenced by the deviations of the
numerically obtained spectral form factor from its CUE(N2)
counterpart around Heisenberg time τ = τH . For larger � than
what is shown in Fig. 4 the Thouless time is smaller than
the Heisenberg time of the subsystems, τTh < τSH and hence

FIG. 4. (a) Spectral form factor for different scaling parameter �

(decreasing from left to right). Connected symbols correspond to the
numerically obtained, smoothed spectral form factor, while the solid
black line depicts the random matrix result for CUE. The dashed
lines indicate the numerically extracted Thouless times. (b) Thouless
time τTh vs scaling parameter � in the regime where 1/N < τTh < 1.
Blue crosses correspond to numerical solutions κ (τ ) − τ < δ while
the solid orange line corresponds to Eq. (36) both for δ = 0.005. The
dashed green line represents Eq. (37).

does not depend on � only. Moreover, there is no closed form
expression for the Thouless time for the asymptotic spectral
form factor (29) in this case. We emphasize that the above
properties are independent from the concrete choice of the
arbitrary parameter δ.

Let us also comment on the alternative definition of the
Thouless time tTh as the solution to K (t ) − t = �, for � of
order 1, instead. Moreover consider again the regime where
tSH < tTh � tH , i.e., N2 − t ≈ N2. Solving for Thouless time
yields

tTh = 1

2 ln(|χ (ε)|) [ln(�) − 2 ln(N )] ≈ ln(N )

| ln(|χ (ε)|)| (37)

when N is large. This gives a rough qualitative approximation
to the numerically obtained Thouless time, see Fig. 4 (green
dashed line).

In few particle systems with a well-defined classical limit
the Thouless time is often thought to be equal to the so-called
Ehrenfest time tE . The latter is the time it takes for an initial,
minimal uncertainty wave packet to spread over the whole
system. It can be estimated to scale with Planck’s constant
1/N as ln(N )/K with K the Kolmogorov-Sinai entropy of
the underlying classical chaotic system given by the sum of
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positive Lyuapunov exponents. Even though both timescales
have similar scaling with N , they cannot be the same in the �

regime discussed above. The simple reason for this claim is
that tTh > tSH, whereas the Ehrenfest time for chaotic subsys-
tems has to be smaller than their respective Heisenberg times,
i.e., tE < tSH. Whether both timescales agree in the strong-
coupling regime or as N → ∞, i.e., large � when tTh < tSH

is, however, not ruled out by the above analysis.

VII. FLUCTUATIONS OF THE SPECTRAL FORM FACTOR

The spectral form factor is meaningful only when averag-
ing over an ensemble and hence one might study its statistical
fluctuations in more detail. In this section we provide an anal-
ysis of higher moments of the spectral form factor defined as

Km(t ) = 〈|tr(U t )|2m〉 − N4mδt0, (38)

where in particular K (t ) = K1(t ). For the CUE(M) the
spectral form factor is exponentially distributed yielding
[41,47,48]

KMm = KCUE(M )m(t ) = m!KM (t )m, (39)

which motivates the definition of the rescaled moments

κm(τ ) = 1

N2

[
Km(t )

m!

]1/m

, (40)

where again τ = t/N2.
In Fig. 5 we show the second and third rescaled moments

for the RMTE used in Fig. 1. Due to the rescaling we find
similar qualitative behavior of the moments as a function of
the coupling strength ε as for the spectral form factor depicted
in Fig. 1. Note, however, that even after rescaling the moments
do not match the spectral form factor exactly. Most notably
this is the case for the uncoupled system, for which Km(t ) =
KCUE(M )m(t )2 leading to an initial quadratic growth of κm(τ )
and subsequent plateau κm(τ ) = (m!)1/m > 1 for τ � τSH. For
nonzero coupling one has saturation at large τ to the value
κm(τ ) = 1, matching the exponential distribution of the CUE
spectral form factor. Additionally an exponential distribution
is observed also for the regime of the linear ramp for suf-
ficiently strong coupling and times larger than the Thouless
time.

In order to describe higher moments of the spectral form
factor in the limit N → ∞ we extend the methods from
Sec. IV. The computation for m > 1 is similar in spirit as
for m = 1 presented there but some details are more involved.
The derivation resembles the computation of moments of the
spectral form factors in a random quantum circuit setting
with large local Hilbert space dimension [26]. In contrast to
this many-body setting, which allows for asymptotic results
in the thermodynamic limit of a large number of lattice site
(subsystems), we obtain exact results in the bipartite setting.

The starting point is the generalization of Eq. (17) for
Km(t ). This is obtained by replacing all the t-fold tensor
products by mt-fold tensor products and by considering the
representation of Smt which permutes tensor factors on the
enlarged Hilbert space (H⊗t )⊗m. By taking the m-fold tensor
product of the corresponding representation of St on H⊗t we
can represent the cyclic t-periodic shifts ηr also on the larger
Hilbert space and denote it by η⊗m

r and interpret it as an

FIG. 5. Rescaled second (a) and third (b) moments of the spectral
form factor κ (τ ) for the RMTE at N = 50 and different coupling
strengths ε (see legend, increasing from top to bottom) in log-log
scale. Colored symbols correspond to numerical data obtained from
20 000 realizations of the RMTE with uniformly distributed phases
ξi j . The asymptotic results (47) and (48) are depicted as black lines.
Dashed gray lines correspond to the Heisenberg time τSH of the
subsystems and of the bipartite system τH .

element of Smt . That is, η⊗m
r shifts the first t factors (the first

copy) periodically by r as well as the second t factors (the
second copy), etc.

This allows for rewriting the mth moment as

Km(t ) =
∑
i,j,k,l

〈〈i, j|U⊗mt |η⊗m
1 (i), η⊗m

1 (j)〉

× 〈k, l|(U �)⊗mt |η⊗m
1 (k), η⊗m

1 (l)〉〉, (41)

where the sums run over the product basis in H⊗mt . From here
one might proceed in an analogous way as for the case m = 1.
Again the averages over the two independent CUE(N) and the
phases of the coupling factorize. The leading contribution for
the CUE(N) average is again determined by the asymptotics
of the Weingarten function. The condition for a permutation
μ ∈ Smt to give rise to a term which does not vanish as
N → ∞ becomes μ = η⊗m

1 μ(η−1
1 )⊗m. A simple set of solu-

tions is given by permutations which implement t-periodic
shifts independently in each of the m copies. Another simple
set of solutions is given by permutations of the individual
copies. In fact, all the solutions to the constraint are given
by combinations of the above simple solutions as we show

014202-8



UNIVERSAL SPECTRAL CORRELATIONS IN … PHYSICAL REVIEW E 109, 014202 (2024)

in Appendix A 1. More formally, we demonstrate there that
solutions form a subgroup of Smt isomorphic to the semidirect
product Gm = Sm � 〈η1〉m. Here the second factor denotes the
m-fold direct product of the cyclic group generated by η1 and
Sm acts on that product group by permuting the factors in
the m-fold product. We identify Gm with the corresponding
subgroup of Smt . Keeping only the leading terms for the two
CUE(N) averages yields

Km(t ) = N−2mt
∑

i,j

∑
μ,ν∈Gm

〈eiεθ (i,j,μ,ν )〉. (42)

Here the phase θ (i, j, μ, ν) is given by Eq. (26) with the sum
running up to mt instead of just t . The remaining average over
the phases is again independent from the states i and j and the
sum over the states gives an factor which cancels the prefactor
N−2mt as N → ∞.

The same argument leading to Eq. (27) shows that the
average over the phases depends only on the number of fixed
points of μν−1, which is of the form kt with k ∈ {0, . . . , m}.
The average is consequently given by

〈eiεθ (i,j,μ,ν )〉 = |χ (ε)|2t (m−k). (43)

We therefore can rewrite the mth moment as

Km(t ) = m!tm
m∑

k=0

Ak (t )|χ (ε)|2t (m−k), (44)

where Ak (t ) denotes the number of permutations in Gm

with exactly kt fixed points. The prefactor originates from a
change of the summation over μ to μ′ = μν−1 after which
the sum over ν becomes trivial. The Ak (t ) are computed in
Appendix A 2 and are given by the sum

Ak (t ) =
m∑

l=k

(
m

l

)(
l

k

)
!(m − l )tm−l (t − 1)l−k, (45)

which is a polynomial in t of degree at most m. Here !x
denotes the subfactorial. Although Eq. (44) is not in a closed
form it exactly reproduces the random matrix result for the un-
coupled case as

∑
k Ak = |Gm| = m!tm. Moreover, at nonzero

coupling with |χ (ε)| < 1 and for large times all but the
term corresponding to k = m are exponentially suppressed.
As Am = 1 we hence recover the random matrix result for
CUE(N) at large time, i.e., we obtain K (t ) = m!tm. That is, we
expect the spectral form factor to be exponentially distributed
at sufficiently large times t � tTh.

A straight forward calculation shows that Eq. (44) repro-
duces Eq. (29) for m = 1. For m = 2 we obtain

K2(t ) = 2t2[1 − 2|χ (ε)|2t + |χ (ε)|4t ] + (2t2)2|χ (ε)|4t

+ 2t3[2|χ (ε)|2t − 2|χ (ε)|4t ]. (46)

This gives a good description of the rescaled second moment
for times t < tSH as it is depicted in Fig. 5(a).

Moreover, we observe that Eq. (46) is a time-dependent
convex combination of 2t2 = KN22(t ), 4t4 = KN2(t )2, and 2t3.
Again one might assume that such a convex combination
describes the second moment also for times t > tSH as it was
demonstrated for the first moment. In general this requires
us to replace monomials t l by products of moments of the
spectral form factor for CUE(N2) and CUE(N ), where the

latter should enter to even powers given the bipartite setting.
Given the exponential distribution of the CUE spectral form
factor, we can restrict ourselves to products of KN2 (t ) and
KN (t )2. For the first two monomials the obvious choice is
2t2 = 2K2

N2 (t ) and 4t4 = 4KN (t )4 as indicated above. For the
third monomial 2t3 an analogous substitution is not obvious.
We choose the replacement 2t3 = 2KN2 (t )KN (t )2. We argue
below that this is the only choice consistent with observations
from numerical data. With the above substitutions the second
moment is given by

K2(t ) = 2KN2 (t )2[1 − |χ (ε)|2t ]2 + 4KN (t )4|χ (ε)|4t

+ 4KN2 (t )KN (t )2|χ (ε)|2t [1 − |χ (ε)|2t ]. (47)

We compare this extrapolated result with the numerically ob-
tained data in Fig. 5(a). The agreement for the rescaled second
moment κ2(τ ) is quantitatively slightly worse but qualitatively
essentially similar to what we observe for the rescaled spectral
form factor, see Fig. 1 and the corresponding discussion.

In complete analogy for the third moment we obtain

K3(t ) = 6KN2 (t )3[1 − |χ (ε)|2t ]3 + 36KN (t )6|χ (ε)|6t

+ 18KN2 (t )2KN (t )2|χ (ε)|2t [1 − |χ (ε)|2t ]2

+ 36KN2 (t )KN (t )4|χ (ε)|4t [1 − |χ (ε)|2t ], (48)

where the first terms correspond to the third moment of the
spectral form factor of CUE(N2) and the second term to the
square of the third moment for CUE(N ). In Fig. 5(b) we
compare this with the numerically obtained third moment
and again find similar agreement as for the first and second
moment. Similar agreement is obtained for higher moments as
well (not shown). So far, Eqs. (47) and (48) are justified only
by their agreement with numerical data. As it is the case for
the first moment, a thorough derivation is beyond the scope of
the methods used to derive the leading contribution for finite
N and small times t < tSH.

Assuming the conjectured form of the moments of the
spectral form factor above, we find universal dependence of
the rescaled moments on the scaling parameter � for times
τ > τSH. Again, this is a consequence of the central limit
theorem applied to the characteristic function χ (ε) as in
the m = 1 case. Universality in the sense of Sec. V for the
RMTE is confirmed in Figs. 6 and 7. There we show the
second and third rescaled moment, respectively, for different
N while keeping � fixed. Both the numerical data and the
corresponding asymptotical results collapse on a single curve
for τ > τSH.

The above explanation for universality might be reversed
in order to fix the substitution t l = KN2 (t )kKN (t )l−k by requir-
ing that the extrapolated result gives rise to the numerically
observed universal dependence on �. Here only monomi-
als t l with m � l � 2m appear in Eq. (44) and the bipartite
setting requires l − k to be even. In order for the rescaled
moment to depend on τ = t/N2 and � only one needs
KN2 (t )kKN (t )l−k/N2m = τ k for τSH < τ < τH . The only con-
sistent choice is k = 2m − l , which indeed is used in Eqs. (47)
and (48). Therefore at least the substitutions required to
extrapolate Eq. (44) and its analog for higher moments is
uniquely fixed by the observed universality. To summarize,
also higher moments of the spectral form factor are given by a
time-dependent convex combination of the uncoupled case,
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FIG. 6. Rescaled second moment of the spectral form factor
κ2(τ ) for the RMTE with uniformly distributed phases for different
� (indicated in the individual panels) with N = 35 (blue symbols,
200 000 realizations), N = 50 (orange symbols, 20 000 realizations),
and N = 80 (green symbols, 6000 realizations) in log-log scale with
N decreasing from top to bottom at small τ . The asymptotic result
(47) is depicted as black lines. Dashed gray lines correspond to
the Heisenberg times τSH of the subsystems and of the bipartite
system τH .

the strongly coupled case, and terms involving products of
lower moments which at times τ > τSH depends on � only.

VIII. SPECTRAL FORM FACTOR FOR COUPLED
KICKED ROTORS

So far we considered only the RMTE tailored for dis-
cussing spectral fluctuation for coupled chaotic quantum
systems with tunable coupling strength. In this section, in
contrast, we demonstrate that the theory derived above is ca-
pable of describing spectral correlations also for more realistic
settings. In particular we will use a system of coupled kicked
rotors [49,50] to validate the predictions from the RMTE. For
the case of the level spacing distribution, the applicability of
the RMTE model and universality is well established [35].
We extend this to the spectral form factor using the large-N
asymptotics obtained in Sec. IV.

The coupled quantum kicked rotors have been studied ex-
tensively in various contexts [35–37,51–53] and have been
realized experimentally [54]. They are the quantization of the
corresponding two degree of freedom classical dynamical sys-
tem with toric phase space represented by [0, 1]4 with periodic
boundary conditions. The time-dependent, i.e., periodically
kicked, Hamiltonian of the coupled kicked rotors reads [50]

H (t ) = p2
A

2
+ p2

B

2
+ V (qA, qB)

∞∑
n=−∞

δ(t − n). (49)

FIG. 7. Same as Fig. 6 but for the third moment of the spectral
form factor. The asymptotic result (black lines) is given by Eq. (48).

Here V (qA, qB) = VA(qA) + VB(qB) + Vc(qA, qB) is the poten-
tial energy given by the single particle potentials

Vi(qi ) = ki

4π2
cos(2πqi ) (50)

for i ∈ {A, B} and the coupling potential

Vc(qA, qB) = γ

4π2
cos(2π [qA + qB]), (51)

whose strength is given by the parameter γ . We fix the kick
strength of the subsystems as kA = 9.7 and kB = 10.5 for
which classical dynamics is fully chaotic with possible regular
islands being negligible small.

Quantization of the classical system requires the effective
Planck’s constant to be of the form h = 1/N for integer N .
Time evolution is given by a Floquet operator of the form
(1) acting on the finite-dimensional Hilbert space H = HA ⊗
HB = CN ⊗ CN � CN2

of dimension dim H = N2. The time
evolution within the individual subsystems is governed
by [55–59]

Ui = e−π iN p2
i e−2π iNVi (qi ) (52)

for i ∈ {A, B}, whereas the coupling reads

Uc = e−2πNiVc (qA,qB ) = e− iγ N
2π

cos(2π[qA+qB]). (53)

For each subsystem i ∈ {A, B} the Hilbert space Hi is spanned
by either the position eigenstates |qi,n〉 with eigenvalues
[58,59]

qi,n = 1

N

(
n + θ

q
i

) ∈ [0, 1) (54)

or by the momentum eigenstates |pi,n〉 with eigenvalues

pi,n = 1

N

(
n + θ

p
i

) ∈ [0, 1) (55)
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FIG. 8. (a) Rescaled spectral form factor κ (τ ) = K (t )/N , τ =
t/N , for a single kicked rotor with k = 9.7 at N = 50, 1000 (106, 104

realizations) in linear scale. The random matrix result (12) is depicted
as a black line. The dashed gray line correspond to the Heisenberg
time τH = 1. (b) Level spacing distribution corresponding to (a) for
105 (N = 50) and 102 (N = 1000) realizations. The black line corre-
sponds to Eq. (14). Results for k = 10.5 are not depicted as they are
similar to K = 9.7.

for n ∈ {0, . . . , N − 1}, respectively. The total Hilbert space
H of the bipartite system is spanned by the corresponding
product basis. The vector θ = (θq

A, θ
q
B, θ

p
A , θ

p
B ) ∈ [0, 1)4 of

Bloch phases determines the boundary conditions for quan-
tum states. For phases θ

q
i , θ

p
i /∈ {0, 1/2} the corresponding

subsystem exhibits no antiunitary symmetry, e.g., time-
reversal symmetry, and hence falls in the unitary symmetry
class. Note that on the one hand for this choice of phases
the evolution operator of the coupled kicked rotors does not
provide a proper quantization of the classical kicked rotor on
the torus [58]. On the other hand, it provides the most conve-
nient ensemble for averaging (see below) and was used also in
earlier studies [35–37]. We confirm that spectral fluctuations
for the individual kicked rotors are indeed well described by
the CUE(N) by comparing their spectral form factor with
the random matrix result Eq. (12). To this end we choose
the Bloch phases as independent and identically distributed
random variables uniformly distributed in [0, 1) and average
over the resulting ensemble of kicked rotors. The resulting
spectral form factor is depicted in Fig. 8(a) (colored connected
symbols) and follows the random matrix result for all times.
This is even the case for relatively small N = 50 which is
used below for the coupled system. However, for N = 50
fluctuations around the random matrix result are much larger
than for N = 1000. Additionally, we depict the corresponding
level spacing distributions p(s) in Fig. 8(b), which also follow
the random matrix result (14).

In order to compute the spectral form factor numerically
for the coupled system we again define an ensemble of cou-
pled kicked rotors at fixed coupling strength γ by taking
the four Bloch phases to be independent and identically dis-
tributed random variables uniformly distributed in [0, 1). We
depict the resulting spectral form factor for N = 50 and var-
ious coupling strengths γ in Fig. 9. Qualitatively the spectral
form factor shows similar behavior as for the RMTE. No-
table differences, however, are the period two oscillations on
top of the average behavior as well as stronger fluctuations.
The latter roughly correspond to the size of fluctuations of
the spectral form factor for a single kicked rotor at N = 50,
see Fig. 8(a). As in the case of the RMTE we contrast the

FIG. 9. Rescaled spectral form factor κ (τ ) for the coupled kicked
rotors at N = 50 and different coupling strengths γ (see legend,
increasing from top to bottom) in log-log scale. Colored symbols
correspond to numerical data obtained from 10 000 realizations av-
eraged over the Bloch phases. The asymptotic result (30) is depicted
as black lines. Dashed gray lines correspond to the Heisenberg time
τSH of the subsystems and of the bipartite system τH .

transition of the spectral form factor with that of the level
spacing distribution in Fig. 10. We find a similar transition
from the exponential distribution of the uncoupled kicked
rotors towards Eq. (14), which is again completed for smaller
coupling strength γ = 0.049 than the complete transition of
the spectral form factor towards the CUE(N2) result (12).

To compare the numerical data with the asymptotic re-
sult (30) we introduce the following statistical model for the
phases ξi j entering the coupling Uc. We consider the phases
to be of the form ξi j = cos(ηi j ) with ηi j independent and
identically distributed random variables uniformly distributed
on [−π, π ]. Hence the ξi j are distributed with density

fξ (x) = 1

π

1√
1 − x2

(56)

FIG. 10. Level spacing distribution for the couple kicked rotor
at N = 50 and different coupling strengths γ (see legend, increas-
ing from left to right). Colored histograms correspond to numerical
data obtained from 100 realizations with independent and identically
distributed uniformly distributed Bloch phases. The solid black line
represents the random matrix result for the CUE, Eq. (14), whereas
the dashed black line represents Poissonian statistics.
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FIG. 11. Rescaled spectral form factor κ (τ ) for the coupled kick
rotors for different � (indicated in the individual panels) with N = 35
(blue symbols, 10 000 realizations), N = 50 (orange symbols, 10 000
realizations), and N = 80 (green symbols, 1000 realizations) in log-
log scale with N decreasing from top to bottom at small τ . The
asymptotic result (30) is depicted as black lines. Dashed gray lines
correspond to the Heisenberg times τSH of the subsystems and of the
bipartite system τH .

for x ∈ (−1, 1). Consequently, the ξi j have mean 0 and vari-
ance σ 2 = 1/2. Their characteristic function is given by the
zeroth-order Bessel function J0. Moreover, we identify the ef-
fective coupling strength as ε = γ N/(2π ) leading to χ (ε) =
J0[γ N/(2π )] in Eq. (30). The resulting asymptotic result for
the spectral form factor is depicted in Fig. 9 by black lines.
It gives a good description of the average behavior of the
spectral form factor with slightly worse accuracy compared to
the RMTE. The asymptotic result, however, does not take the
small-scale oscillations into account. Moreover, the overall
agreement of Eq. (30) with the numerically obtained spec-
tral form factor implies universality of the latter. That is for
τ > τSH the spectral form factor of the coupled kicked rotors
depends only on the scaling parameter �. This is confirmed
in Fig. 11, where the spectral form factor is shown for fixed
values of � but different N . For higher moments of the spec-
tral form factor we obtain qualitatively similar behavior, see
Fig. 12 for the second and third moment. There we find good
agreement between Eqs. (47) and (48) and the numerically
obtained moments for the second and third moment, respec-
tively. The implied universal dependence of the second and
third moment on the scaling parameter � is confirmed in
Figs. 13 and 14.

Given the accuracy of the description by the asymptotic re-
sult Eq. (30) the Thouless time can be computed from Eq. (37)
for not to strong coupling γ < 0.05. In contrast we might
estimate the Ehrenfest time tE in the coupled kicked rotors as
follows: For weak coupling it is reasonable to assume, that the
divergence of initially nearby trajectories predominantly takes
place in the individual degrees of freedom. Hence the coupled
system has two positive Lyuapunov exponents λi ≈ ln(ki/2)
[49] each given by that of the subsystem i ∈ {A, B}, which in
the present situation are approximately equal. We confirm this
argument by a numerical estimate of the largest Lyuapunov

FIG. 12. Rescaled second (a) and third (b) moment of the spec-
tral form factor κ (τ ) for the coupled kicked rotors at N = 50 and
different coupling strengths γ (see legend, increasing from top to
bottom) in log-log scale. Colored symbols correspond to numerical
data obtained for the same ensemble as in Fig. 9. The asymptotic
results (47) and (48) are depicted as black lines. Dashed gray lines
correspond to the Heisenberg time τSH of the subsystems and of the
bipartite system, τH .

exponent of the coupled system (not shown). This yields tE ≈
ln(N )/[2 ln(kAkB/4)], which is much smaller than N . Hence
for weak-enough coupling Ehrenfest time and Thouless time
do not agree in the coupled kicked rotors for the system sizes
N considered here and Ehrenfest time provides yet another
relevant timescale. In the semiclassical limit N → ∞ at fixed
coupling also � → ∞ and the estimate Eq. (37) of the Thou-
less time is not valid anymore. Thus the above arguments still
allow for Ehrenfest and Thouless times to approach each other
in the semiclassical limit.

The presence of an underlying classical system provides
also the possibility of applying the semiclassical descrip-
tion of the spectral form factor pioneered in Refs. [9–11]
and completed in Ref. [12] based on correlated periodic or-
bits. Even though such a true semiclassical description is
not attempted here, it would be interesting to compare it
with the large-N asymptotics discussed above. For instance,
semiclassical techniques might explain systematic fluctua-
tions of the spectral form factor at small times and shed further
light on the observed universal dependence on a single scaling
parameter.
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FIG. 13. Rescaled second moment of the spectral form factor
κ2(τ ) for the coupled kicked rotors for different � (indicated in the
individual panels) with N = 35 (blue symbols, 10 000 realizations),
N = 50 (orange symbols, 10 000 realizations), and N = 80 (green
symbols, 1000 realizations) in log-log scale with N decreasing from
top to bottom at small τ . The asymptotic result (47) is depicted as
black lines. Dashed gray lines correspond to the Heisenberg times
τSH of the subsystems and of the bipartite system τH .

IX. TOWARDS MANY-BODY SYSTEMS

In the following we aim to extend our results to the
many-body setting with an arbitrary number of subsys-
tems. To this end we first introduce an extended version
of the RMTE and subsequently generalize the computa-
tion of the spectral form factor. We will again derive its
asymptotic form for large N given as a convex combination
of the uncoupled/noninteracting cases and the full random
matrix result. Moreover, we again obtain its universal de-
pendence on a single scaling parameter � which for the
extended version additionally depends on the number of
subsystems.

A natural extension of the bipartite RMTE (1) is given by

U = Uc(ε)(U1 ⊗ U2 ⊗ · · · ⊗ UL ) (57)

FIG. 14. Same as Fig. 13 but for the third moment of the spectral
form factor. The asymptotic result (black lines) is given by Eq. (48).

built from L local subsystems, each of which is modeled by an
independent unitary from the CUE(N ). We keep the form of
the coupling Uc(ε) as a diagonal matrix with random phases,
whose matrix elements in the computational basis read

〈I|Uc(ε)|J〉 = δIJ exp(iεξI ), (58)

where we use multi-indices I = (i1, i2, . . . , iL ) for notational
convenience. The ξI are again independent and identically dis-
tributed random variables with mean zero and finite variance
σ 2. We refer to Uc(ε) and ε as interaction and interaction
strength in the following. In contrast to the random phase
circuit of Ref. [23] we do not impose any spatial locality struc-
ture on the interaction and hence one might think of it as mod-
eling an all-to-all or long-range interaction. Nevertheless, the
tensor-product structure of the subsystems induces a notion of
locality in Hilbert space, which for the extended RMTE is the
tensor product H = (CN )⊗L = CNL

and is of dimension NL.
As is the case in the bipartite setting, we label the eigen-

phases defined by the eigenvalue equation

U |�I〉 = eiϕI |�I〉 (59)

by multi-indices as well for later convenience. This is again
motivated by the noninteracting case ε = 0, where eigenstates
|�I〉 = |�I〉 = |ϑ (1)

i1
〉 ⊗ · · · ⊗ |ϑ (L)

iL
〉 are of product form and

the eigenphases are the corresponding sums of individual
eigenphases ϕI (ε = 0) = ϑI = ϑ

(1)
i1

+ . . . + ϑ
(L)
iL

.
Taking the dimensionality of the underlying Hilbert space

into account, the spectral form factor can now be written as

K (t ) = 〈|tr(U t )|2〉 − N2Lδt0 (60)

and can be computed in the semiclassical limit N → ∞ by
the same techniques as described in Sec. IV. More precisely
the averages over the L independent CUE(N ) and the phases
factorizes. Each individual average over the local Haar ran-
dom unitaries Ui in leading order yields Eq. (24). The spectral
form factor then becomes

K (t ) = N−Lt
∑

I

t∑
r1,...,rL=0

〈eiεθ (I,(ηr1 ,...,ηrL ))〉, (61)

where we introduce the integer matrix I = (ins)ns = [i(n)
s ]ns ∈

{1, . . . , L} × {1, . . . , t}. That is the first (upper) index n labels
the subsystem and the second (lower) index s labels time. That
is I labels the canonical product basis in H⊗t . We denote the
columns of this matrix by Is = [i(n)

s ]n. Moreover, as in the
bipartite case, we can restrict the sum in Eq. (61) to those I
for which all entries within a row are pairwise distinct as these
includes asymptotically all states in the product basis as N →
∞. For L-tuples of permutations μ = (μ1, . . . , μL ) ∈ SL

t we
write μ(I ) = [i(n)

μ−1
n (s)]ns for the matrix with permuted entries

and μ(I )s for its columns. That is μ permutes the entries in
the nth row by the permutation μn. With this notation the
generalization of Eq. (26) reads

θ (I,μ) =
t∑

s=1

ξIs − ξμ(I )s
. (62)

Repeating the argument which leads to Eq. (27) we find

〈eiεθ (I,(ηr1 ,...,ηrL ))〉 = δr1,...,rL + (1 − δr1,...,rL )|χ (ε)|2t , (63)
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where δr1,...,rL = 1 when r1 = r2 = · · · = rL and 0 otherwise.
Inserting this into Eq. (61) and noting that the sum over I runs
asymptotically over NLt states, which cancels the prefactor,
we arrive at

K (t ) = |χ (ε)|2t t L + [1 − |χ (ε)|2t ]t . (64)

Again this is exact as N → ∞ and gives the leading contribu-
tion for t < tSH at large but finite N . In the same fashion as for
the bipartite case the above naturally extends to

K (t ) = |χ (ε)|2t KN (t )L + [1 − |χ (ε)|2t ]KNL (t ), (65)

where we again explicitly include the plateaus of KN (t ) = N
for t > tSH = N and KNL = NL for t > tH = NL, i.e., after the
respective Heisenberg times. The above reduces to Eq. (30) in
the bipartite case L = 2 and shows qualitatively very similar
behavior. In fact, in the noninteracting case, where |χ (ε)| = 1,
Eq. (65) reduces to the factorized spectral form factor K (t ) =
KN (t )L of L independent CUE(N ) matrices. Again, this is a
consequence of Eq. (60) and the multiplicativity of the trace,
tr(

⊗
i Ui ) = ∏

i tr(Ui ), see also Ref. [42]. For not-too-large in-
teraction, the initial growth K (t ) ∼ tL is still governed by this
factorized behavior. This coincides with what is observed in
typical many-body systems including those with short-range
interactions. In contrast, at late times all the terms |χ (ε)|2t

have decayed and the spectral form factor is given by the full
random matrix result K (t ) ∼ KNL (t ). To summarize, Eq. (65)
signals a competition between the locality in the system’s
Hilbert space induced by the tensor product structure and
the global interaction. This is encoded in the spectral form
factor being again a time-dependent convex combination of
the two limiting cases of the noninteracting and the strongly
interacting system.

Before discussing and comparing the extrapolated result
with numerical data let us again introduce the rescaled spectral
form factor by measuring both spectral form factor and time
in units of Heisenberg time tH = NL. This reads

κ (τ ) = K (t )/NL, (66)

where τ = t/NL. Consequently, the Heisenberg time of the
full system again reads τH = 1, whereas the Heisenberg times
of the subsystems become τSH = NL−1. After rescaling and
for times τ > τSH the remaining N dependence is again im-
plicitly contained in the factors |χ (ε)|2t for which we might
repeat the application of the central limit theorem. In par-
ticular Eq. (34) is valid also in the extended setting but the
universal scaling parameter now becomes

� = σεNL/2, (67)

which reduces to Eq. (31) in the bipartite case L = 2.
As our arguments rely on N being large, numerical inves-

tigations are limited to only a few subsystems. That is, the
validity of the extrapolated result can only be confirmed for
few-body systems. However, as none of our arguments relies
on L being small, we expect our results to apply also in the
many-body setting of large L as long as N is sufficiently large.
In Fig. 15 we depict the rescaled spectral form factor for few-
particle systems with L = 3, 4 as well as the corresponding
data for a bipartite system for comparison. We find qualitative
similar behavior for all L except for the initial growth of the

FIG. 15. Rescaled spectral form factor κ (τ ) for the extended
RMTE with uniformly distributed phases for different � (indicated
in the individual panels) with (N, L) = (10, 4) (blue symbols, 4000
realizations), (N, L) = (20, 3) (orange symbols, 4000 realizations),
and (N, L) = (80, 2) (green symbols, 6000 realizations) in log-
log scale with N increasing from top to bottom at small τ . The
asymptotic result (65) is depicted as black lines. Dashed gray lines
correspond to the Heisenberg times τSH of the subsystems and of the
full system τH .

spectral form factor as κ (τ ) ∼ τ L. Otherwise the discussion
from the bipartite case also applies for the extended random
matrix transition ensemble. In particular we observe the same
universal dependence of the spectral form factor on the scaling
parameter �.

Given the universal dependence on � the Thouless time
tTh for intermediate interaction strength, i.e., such that tSH <

tTh < tH is still described by Eq. (36). In contrast, adapting the
arguments leading to Eq. (37) to the extended RMTE yields

tTh = L ln(N )

2| ln[|χ (ε)|]| . (68)

Hence we find the Thouless time to scale linear with system
size, i.e., the number of subsystems. This is notably different
from the scaling observed in chaotic systems with local inter-
actions. For instance, logarithmic scaling is found both in the
large-N case [23] and in qubit systems [17,23], whereas the
presence of U(1) symmetry yields quadratic scaling [60,61].
Moreover, also exponential [62] as well as subdiffusive scal-
ing [63] has been ovserved. In contrast dual unitary quantum
circuits even exhibit zero Thouless time in the thermodynamic
limit [18,19].

Using similar arguments as above and in Sec. VII also the
moments of the spectral form factor in the extended RMTE
could in principle be obtained. We do not attempt to give an
exact description even for short times but nevertheless provide
a sketch of the derivation which yields some qualitative as-
pects of the moments, which we complement by numerical re-
sults. When deriving the moments of the SFF in the extended
RMTE the average over the independent CUE(N ) matrices
proceeds in the same way as in Sec. VII. In contrast, the
average over the phases ξI is more involved. First, we note that
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the moments of the spectral form factor asympotically read

Km(t ) = N−Lmt
∑

I

∑
μ∈GL

m

〈eiεθ (I,μ)〉 (69)

as N → ∞. Here I now labels the product basis in H⊗mt

and the sum in Eq. (62) runs up to mt , with the action of
a permutation μ = (μ1, . . . , μL ) ∈ SL

mt defined as in the
case of the spectral form factor, i.e., m = 1. Similarly, for
asymptotically all states I the average over the phases does
not depend on the state and the corresponding sum gives a
factor NLmt thereby canceling the prefactor in Eq. (69). We
are thus left with computing the sum over μ.

To this end for μ ∈ GL
m we denote by c(μ) the number of

points x on which all the μi agree, i.e, μ1(x) = . . . = μL(x).
The average over the phases than gives

〈eiεθ (I,μ)〉 = |χ (ε)|2(tm−c(μ)) (70)

independent from asymptotically all states I. Equivalently to
the above definition, c(μ) is the number of common fixed
points of the L − 1 permutations μ−1

1 μ2, . . . , μ
−1
1 μ2. A sim-

ilar argument as in the bipartite case implies that c(μ) = kt
with k ∈ {0, 1, . . . , m}. We denote by Ak (t ) the number of
(L − 1)-tuples of permutations, i.e., elements of GL−1

m , with
exactly kt common fixed points. By a change of variables
the sum over μ1 trivializes and gives a total factor of |Gm| =
m!tm. The spectral form factor therefor can be rewritten as

Km(t ) = m!tm
m∑

k=0

Ak (t )|χ (ε)|2t (m−k) (71)

just as in the bipartite case. The combinatorical factors Ak (t )
are polynomials of degree at most m(L − 1). Their computa-
tion is considerably more involved than in the bipartite case
and is not attempted here.

However, some qualitative features of the moments of
the spectral form factor can still be read off from Eq. (71).
First, one has

∑
k Ak (t ) = |Gm|L−1 = (m!tm)L−1 which in the

noninteracting case, |χ (ε)| = 1, implies Km(t ) = (m!tm)L,
i.e., the expected factorization of the moments Km(t ) =
[KN,m(t )]L. For small interaction we therefore expect an ini-
tial growth Km(t ) ∝ tmL. Second, in the interacting case all
terms with k �= m decay exponentially and for t � tTh only the
term for m = k survives. As the latter is given by Am(t ) = 1
the spectral form factor reduces to the random matrix result
Km(t ) = KNL,m(t ) = m!tm and hence yields an exponential
distribution. Additionally, when viewing the combinatorical
factors Ak (t ) as a polynomial in t the coefficients will depend
on L, which will lead to the moments of the spectral form
factor to depend both on � and L also for times t > tSH.

We confirm the above considerations numerically in
Fig. 16 for the second and third rescaled moment,

κm(τ ) = 1

NL

[
Km(t )

m!

]1/m

. (72)

For comparison we also show the bipartite case there. In gen-
eral the rescaled moments follow the same phenomenology as
the spectral form factor. The most notable difference is the
failure of the universal dependence on � between systems
with different numbers of subsystems L. In fact for rescaled

FIG. 16. Same as Fig. 15 but for the rescaled second (m = 2, left)
and third (m = 3, right) moment of the spectral form factor κm(τ ).
The asymptotic results (47) and (48) are depicted as black lines for
the bipartite system. Dashed gray lines correspond to the Heisenberg
times τSH of the subsystems and of the full system τH .

times τSH < τ � τTh the moments do depend also on L with
larger L leading to larger κm(τ ). Only for times approximately
larger than the Thouless time, τ � τTh the moments follow the
exponential distribution of the CUE(NL ) moments expressed
as κm(τ ) = min{τ, 1} independently from L.

X. REGULARIZED PERTURBATION THEORY

In this section we consider the spectral form factor of the
extended RMTE at weak interaction strength and small �

by using the conventional Rayleigh-Schrödinger perturbation
theory. In fact, it turns out that instead of � the universal
behavior of the spectral form factor is governed by a so-called
transition parameter � [35], which naturally arises in the per-
turbative approach. However, in the perturbative regime, both
parameters agree in leading order. The perturbative approach,
despite being restricted to weak interactions, covers arbitrary
long times and has been applied successfully for, e.g., the
entanglement dynamics after a quench [39] as well as static
properties [35–38]. The approach is based on the pertuba-
tive expansion of the eigenphases ϕI . In fact knowledge of
the eigenphases is sufficient for computing the spectral form

014202-15



FELIX FRITZSCH AND MAXIMILIAN F. I. KIELER PHYSICAL REVIEW E 109, 014202 (2024)

factor as Eq. (60) for t > 0 can be written as

K (t ) =
〈∑

I,K

ei(ϕI −ϕK )t

〉
(73)

by computing the trace in the eigenbasis of the interacting sys-
tem. For later analytical treatment it is convenient to rewrite
this in terms of the rescaled spectral form factor, Eq. (66), via

κ (t ) = 1 + 1

NL

〈∑
I �=K

cos(�ϕI,Kt )

〉
. (74)

Here we denote the differences of eigenphases by �ϕI,K =
ϕI − ϕK .

To obtain the perturbative expansion of the eigenphases
and their differences we write Uc(ε) = exp(iεV ) with V the
Hermitian diagonal matrix with entries 〈I|V |J〉 = δIJξI in the
canonical product basis. In second order in ε we obtain [37]

ϕI = ϑI + ε〈�I |V |�I〉 + ε2
∑
I �=J

|〈�I |V |�J〉2|
ϑI − ϑJ

, (75)

where, as introduced above, |�I〉 and ϑI are the eigenvectors
and eigenphases of the noninteracting system. Therefore, the
phase differences �ϕI,K read

�ϕI,K = �ϑI,K + εT (1)
I,K + 2ε2 |〈�I |V |�K〉|2

�ϑI,K
+ ε2T (2)

I,K .

(76)

Here �θI,K = ϑI − ϑK denotes the unperturbed level differ-
ence. Moreover, the two terms

T (1)
I,K = 〈�I |V |�I〉 − 〈�K |V |�K〉, (77)

T (2)
I,K =

∑
I �=J �=K

( |〈�I |V |�J〉|2
�ϑI,J

− |〈�K |V |�J〉|2
�ϑK,J

)
, (78)

do not contribute to the phase difference after performing
the average over the extended RMTE. More precisely, this is
justified as the first-order term T (1)

I,K introduces just an overall
phase shift [39] which does not contribute to the spectral form
factor. The second-order term T (2)

I,K contains only contributions
which do not connect both level simultaneously, such that
each yields a random and small background which can also
be neglected on averaging [39].

For further analytical treatment it is convenient to rescale
both the phase differences and the matrix elements of the
interaction V . In particular we write �θI,K = DsI,K , where
D = 2π/NL is the mean level spacing, such that sI,K has
unit mean spacing. Moreover, we rewrite the matrix elements
|〈�I |V |�I〉|2 = ν2wI,K where ν2 is the mean of the square
modulus of the off diagonal of the interaction in the eigenbasis
|�I〉 of the noninteracting system. Inserting these substitu-
tions into the perturbative expansion (76) yields

�ϕI,K = DsI,K

(
1 + 2�wI,K

s2
I,K

)
. (79)

Here

� = ε2ν2

D2
(80)

denotes so-called transition parameter, which originally was
introduced in the bipartite RMTE [35] and universally governs
the transition of eigenstate properties in the bipartite case
[35–38]. For the extended RMTE the transition parameter
reads

� = NL

4π2
[1 − |χ (ε)|2], (81)

for large N ; see Appendix B for details. Here χ (ε) again
denotes the characteristic function of the distribution of the
phases ξI . Expanding the latter up to second order in ε and
minding that we assume the distribution of the phases ξI to
have zero mean we obtain

� = σ 2ε2NL

4π2
= �2

4π2
. (82)

This clarifies the connection between the transition parameter
�, which naturally arises in the above argumentation, and
the scaling parameter � for small interaction strength ε. In
the following we base our discussion on � nevertheless but
given the above relation between the two parameters proper-
ties depending on � translate to a dependence on � and vice
versa. For uniformly distributed phases used for numerical
computations one has � = NLε2/12.

Coming back to the evaluation of Eq. (74) we proceed by
replacing the sum over the eigenphases

∑
I �=K (·) by an integral∫

ds
∫

dw(·)R(s,w) over random variables s ∈ (−∞,∞) and
w ∈ [0,∞) with distribution

R(s,w) =
∑
I,K

δ(s − sI,K )δ(w − wI,K ). (83)

The ensemble average over the RMTE now reduces to an
average over the above probability distribution. Assuming
independence of eigenvectors and eigenphases for the nonin-
teracting extended RMTE, i.e., for the L-fold tensor product
of independent CUE(N ) the distribution factorizes as [35]

〈R(s,w)〉 = R(s)e−w. (84)

Here the matrix element distribution follows uncorrelated
Poissonian statistics and the two-point level distribution R(s)
for the uncoupled case is given by R(s) = 1 in the limit N →
∞ [6]. Note that R(s) is conceptually similar to r(ω) defined
by Eq. (7) as N → ∞ after proper rescaling. However, in this
limit only the nonconnected part is nonzero. Furthermore we
emphasize that R(s) = 1 at finite N fails to capture correla-
tions in the spectrum of the noninteracting RMTE on energy
scales larger than the mean level spacing of the subsystems.
Consequently, the perturbative approach fails to capture the
initial dynamics of the spectral form factor K (t ) ∼ tL for
times t < tTh. This regime, however, is well described by
Eq. (30), whereas the perturbative approach describes times
t > tTh, which are not accurately captured by Eq. (30). We
henceforth focus only on the latter time regime in the remain-
der of the section.

To evaluate the integral over the random variables s and
w introduced above, we note that the integral diverges due to
the singular behavior of Eq. (79) as s → 0. Physically, this is
caused by the breakdown of nondegenerate perturbation the-
ory, leading to Eq. (76) in case of degenerate levels. For almost
degeneracies in the spectrum of the noninteracting RMTE
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FIG. 17. Rescaled spectral form factor κ (τ̃ ) for the RMTE for
various combinations of N , L (see legend) and ε corresponding to
three different values of � = 0.001, 0.005, 0.010 (top to bottom).
Thin colored lines correspond to numerical data obtained from 2000
realizations of the RMTE with uniformly distributed phases ξI . We
show those data for times t > tH and perform an additional moving
time average. The perturbative result (90) is depicted as thick black
lines. Vertical dashed gray lines correspond to the Heisenberg times
for the different system sizes.

degenerate perturbation theory within an effective two-level
systems suggests the regularization [37,39,64]

�ϕI,K = D
√

s2 + 4�w. (85)

This renders the integrals finite as it removes the singularity at
s = 0, while coinciding with Eq. (79) at large spacing s.

Putting all the above together we end up writing the second
term in Eq. (74) as

I = 1

NL

〈∑
I �=K

cos (�ϕI,K )

〉
, (86)

=
∫ ∞

−∞
ds

∫ ∞

0
dw cos(Dt

√
s2 + 4�w)e−w. (87)

We evaluate this integrals in Appendix C. The details of the
computation suggest the introduction of a rescaled time vari-
able τpert given by [39]

τpert =
√

�Dt, (88)

which differs from the variable τ . In terms of this perturba-
tively rescaled time variable the final result reads

I = −2π
√

�τperte
−τ 2

pert . (89)

Hence we obtain the spectral form factor as

κ (τpert ) = 1 − 2π
√

�τperte
−τ 2

pert . (90)

This universally depends on the transition parameter � only
and captures the spectral form factor for physical times t >

tSH, corresponding to τpert > σεN−L/2. It gives an accurate
description of numerical data for weak interactions and hence
small transition parameters as it is confirmed by Fig. 17 for

different combination of N , L, and ε all leading to the same
transition parameter. We find good agreement for essentially
arbitrary long times, i.e., multiples of Heisenberg time, at very
small transition parameter. In contrast, the data shown for
the largest transition parameter indicate the breakdown of the
validity of the perturbative approach. Despite Eq. (90) becom-
ing less accurate for larger � the numerical data nevertheless
confirm the universal dependence of the spectral form factor
on �. This is even the case for surprisingly small N = 10 with
deviations being of the expected order 1/N .

Given the connection between the transition parameter �

and the scaling parameter � highlighted in Eq (82) this further
confirms the universal dependence of the spectral form factor
also on � obtained by complementary methods. Moreover, we
might write the perturbative result also in terms of � and τ ,
which yields

κ (τ ) = 1 − �2τe−(�τ )2
. (91)

for τ > N−L+1 and allows for a comparison with Eq. (65).
Noting that the latter, extrapolated result fails to capture the
spectral form factor at long times for small � we can only
hope for both approaches to coincide for times τ = τSH + δτ

for small δτ . This covers the times in which the spectral form
factor starts to drop again for times slightly larger than the
subsystems’ Heisenberg times. Indeed, the linearization of
both approaches agree in leading order in �, i.e.,

κ (τ ) ≈ 1 − �2δτ, (92)

indicating that both approaches are compatible in the regime
where both apply.

Ultimately, let us briefly comment on the extension of the
perturbative approach to higher moments of the spectral form
factor in the bipartite or extended RMTE. Doing so for the
mth moment requires us to evaluate an expression similar to
Eq. (73) but with a 2m fold sum and with sums and differences
of 2m eigenphases in the exponent. While the perturbative ex-
pansion (75) as well as the subsequent substitutions still apply,
replacing the sums with integrals over appropriate random
variables becomes more involved. For instance, the relevant
probability density for the second moment reads

〈R(s1,w1)R(s2,w2)〉
= R3(s1, s2)e−w1−w2 + δ(s1 − s2)δ(w1 − w2)R2(s1)e−w1 ,

(93)

where Rk (s) = 1 is the k-point function of the level density.
We do not attempt to solve the resulting integrals here.

XI. CONCLUSIONS

We study spectral correlations in bipartite and few-body
chaotic quantum systems in terms of the spectral form factor
and its dependence on the interaction between the subsystems.
We find universal dependence of the spectral form factor
and, in the bipartite case, its higher moments on a universal
scaling parameter �. This is derived for the extended random
matrix transition ensemble which is tailored to describe the
spectral properties of interacting chaotic few-body systems,
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for which the scaling parameter combines all the details of
the system, i.e., system size, number of subsystems, as well
as strength and statistics of the interaction. The RMTE allows
for computing the spectral form factor exactly in the semiclas-
sical limit for times smaller than the subsystems’ Heisenberg
times. These results permit an extrapolation to larger times as
a time-dependent convex combination of the noninteracting
and the strongly interacting limit. For sufficently large N the
extrapolated result is in good agreement with numerically
obtained data and gives insight in the origin of the observed
universality. Interestingly, N = 10 seems to be large enough
for our description to apply in the few-body setting. A more
rigorous derivation of the spectral form factor for times larger
than the subsystems’ Heisenberg times is out of scope of the
large-N asymptotics exploited here but might be accessible
by supersymmetric field-theoretic methods [65,66]. Obtaining
exact finite-N results would be of great interest, in particular
in the many-body setting, for which our extrapolated results
in the extended RMTE provide a first step.

In principle, the methods presented here should be applica-
ble also to bipartite or multipartite systems with time-reversal
symmetry, for which, e.g., the subsystems are modeled by
the circular orthogonal ensemble. Also different statistical
models for the coupling might be treatable. Ultimately, the
large-N analysis might apply also to different observables, i.e.,
eigenstate entanglement or entangling power.

We complement the large-N analysis with a perturbative
treatment of the coupling in the extended RMTE using reg-
ularized Rayleigh-Schödinger perturbation theory. We find
universal dependence of the spectral form factor on a transi-
tion parameter �. It coincides with � in the regime where both
the large-N asymptotics and the perturbative approach apply.
For small transition parameters, e.g., for small couplings, the
perturbative result describes numerical data well for all times
larger than the Heisenberg time of the subsystems. In partic-
ular the perturbative approach captures deviations from the
full random matrix spectral form factor for times larger than
the coupled system’s Heisenberg times in the regime of the
plateau. An extension of the perturbative approach to higher
moments might shed more light on the spectral form factor at
small coupling but is not attempted here.

Finally, we confirm that the large-N results accurately
describe spectral correlations also in more realistic physical
systems. Within the paradigmatic coupled kicked rotors we
study the spectral form factor and its moments and find them
well described by the results obtained in the RMTE. More-
over, the presence of an underlying classical system allows
for comparing Thouless time, i.e., the time after which the
spectral form factor follows the linear ramp obtained for
CUE(N2), and Ehrenfest time, i.e., the time it takes for an
initially localized wave packet to spread over the system. At
least for small coupling and finite N we clearly demonstrate
that both times are different.

The underlying classical system of the coupled kicked
rotors further yields the possibility to explore spectral cor-
relations by genuine semiclassical methods, e.g., in terms
of correlated periodic orbits. This might give further insight
into the observed phenomena, such as the universal depen-
dence on �, but is far beyond the scope of the present
paper.
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APPENDIX A: LEADING CONTRIBUTIONS TO
MOMENTS OF THE SPECTRAL FORM FACTOR

In this Appendix we characterize the permutations μ ∈ Smt

which determine the mth moment of the spectral form factor
as N → ∞. Moreover, we use this characterization to derive
Eq. (45).

1. Contributing permutations

We first aim to find those permutations μ which when
evaluating the Haar average over the subsystems UA and UB

in terms of Weingarten functions give rise to a nonvanishing
contribution. That is, we identify those μ ∈ Smt which are
invariant under conjugation by η⊗m

1 as argued in Sec. VII, i.e.,
the solutions to

μη⊗m
1 = η⊗m

1 μ. (A1)

To this end we introduce the following characteriza-
tion of η⊗m

1 ∈ Smt . Each x ∈ {0, 1, . . . , mt − 1} has a unique
representation x = s + nt with s ∈ {0, 1, . . . , t − 1} and n ∈
{0, 1, . . . , m − 1}. This yields η⊗m

1 (x) = η1(s) + nt = [(s +
1) mod t] + nt . Using this representation we show how the
group Gm = Sm � 〈η1〉m is embedded in Smt and that each
elements μ ∈ Gm solves Eq. (A1). Subsequently, we argue
why these are indeed all solutions.

An element μ ∈ Gm is of the form μ =
(ρ, ηr0 , ηr2 , . . . , ηrm−1 ) with ρ ∈ Sm and ri ∈ {0, 1, . . . , t − 1}.
We define the action of μ on x = s + nt by

μ(x) = ηrn (s) + ρ(n)t, (A2)

which allows to interpret μ as an element of Smt . More pre-
cisely, the above construction gives rise to an injective group
homomorphism Gm → Smt and hence Gm can be identified
with a subgroup of Smt . Moreover μ ∈ Gm solves Eq. (A1)
as

μη⊗m
1 (x) = μ(η1(s) + nt ), (A3)

= ηrnη1(s) + ρ(n)t, (A4)

= η1ηrn (s) + ρ(n)t, (A5)

= η⊗m
1 (ηrn (s) + ρ(n)t ), (A6)

= η⊗m
1 μ(x). (A7)

Now let us assume μ ∈ Smt is a solution to Eq. (A1).
We aim for showing that μ ∈ Gm. To this end write μ(0) =
μ(0 + 0t ) = r0 + k0t as introduced above. Equation (A1)
then implies μ(s) = [(r0 + s) mod t] + k0t = ηr0 (s) + k0t
for all s ∈ {0, 1, . . . , t − 1}. That is, the value of μ(s + 0t )
is fixed by μ(0 + 0t ). Similarly the values of μ(s + nt )
are fixed by μ(nt ) = rn + knt = ηrn (0) + knt . As μ is a
bijection all kn are pairwise distinct and hence define ρ ∈ Sm

via ρ(n) = kn. Combining the above arguments yields
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μ = (ρ, ηr0 , . . . , ηrm−1 ) ∈ Gm and, consequently, Gm exhausts
all solutions to Eq. (A1).

2. Counting fixed points

As argued in Sec. IV and Sec. VII the average over the
phases, Eq. (43), is determined by the number of fixed points
of μ = (ρ, ηr0 , . . . , ηrm−1 ) ∈ Gm. It is easy to see that x =
s + nt ∈ {0, 1, . . . , mt − 1} is a fixed point of μ if and only
if ρ(n) = n and rn = 0. The latter implies that all x′ = s′ + nt
are fixed points as well and hence fixed points of μ come
in multiples of t . We aim for counting the number of per-
mutations in Gm with exactly kt fixed points. To this end
denote by Bl the number of permutations in Sm with exactly l
fixed points and by Cl

k (t ) the number of permutations μ =
(ρ, ηr0 , . . . , ηrm−1 ) with kt fixed points under the constraint
that ρ ∈ Sm has exactly l fixed points. Using this definitions
allows for writing

Ak (t ) =
m∑

l=k

BlC
l
k (t ), (A8)

and we are left with computing Cl
k (t ) and Bl . The latter is

the well-known combinatorical problem of counting so-called
partial derangements. That is, Bl is the number of possibilities
to rearrange m objects while keeping l of them in their original
place. It is given by

Bl =
(

m

l

)
!(m − l ), (A9)

where !x denotes the subfactorial. To compute Cl
k (t ) assume

that for μ = (ρ, ηr0 , . . . , ηrm−1 ) the permutation ρ ∈ Sm has
exactly l fixed points. For each n ∈ {0, 1, . . . , m − 1} which
is not a fixed point of ρ there are tm−l choices for the rn.
Among the l fixed points n one needs to choose k with rn = 0
for which there are

(l
k

)
choices. This guarantees, that μ has

at least kt fixed points. In order for μ to have no additional
fixed points rn must be different from zero for the remaining
l − k fixed points of ρ. There are (t − 1)l−k possible choices.
Combining the above counting arguments yields

Cl
k (t ) =

(
l

k

)
tm−l (t − 1)l−k . (A10)

Inserting Bl , Eq. (A9), and Cl
k (t ), Eq. (A10) into Eq. (A8),

proves the validity of Eq. (45).

APPENDIX B: DERIVATION OF THE
TRANSITION PARAMETER

In Sec. X we introduced the transition parameter �. In
the following we provide a detailed computation leading to
Eq. (81). For convenience we repeat the definition [35]

� = ε2ν2

D2
, (B1)

where D = 2π
NL is the mean level spacing of U . By ν2 we de-

note the mean value of the modulus squared of the off diagonal
entries of the perturbation operator V in the product eigenbasis
of the noninteracting system. In leading order in ε, computing
the product ν̃2 = ε2ν2 from this definition is equivalent to

computing the mean value of the modulus squared of the off
diagonal entries of the interaction Uc(ε). The difference in the
computation is essentially the order in which one does the
RMTE average and the expansion of the exponential Uc(ε) =
exp(iεV ). The resulting transition parameters are related by
Eqs. (81) and (82).

To compute ν̃2 let WIJ denote the unitary matrix which
diagonalizes the uncoupled system. In this basis the matrix
elements of the interaction Uc read

zIM =
∑
J,K

W ∗
KI (Uc)KJWJM, (B2)

where the sums run over all NL product states. This yields

ν̃2 =
〈∑

I,M |zIM |2 − ∑
I |zII |2

N2L − NL

〉
, (B3)

= NL − 〈d〉
N2L − NL

, (B4)

where the brackets denote the average over the extended
RMTE. In the first line we wrote the mean over off-diagonal
elements as the sum over all matrix elements and subtracted
the diagonal part. The second line follows from the normal-
ization of the rows (or columns) of unitary matrices. The NL

normalized rows yield the first term and we are left with
computing the average of the diagonal term d only. Using
Eq. (B2) the latter is written explicitly as

d =
∑
K,M

(Uc)KK (U∗
c )MM

∑
I

|WIK |2|WIM |2. (B5)

We now perform the average over the L-independent sub-
sytems. The eigenbasis W of the unperturbed system U0 =
U1 ⊗ . . . ⊗ UL, is itself a CUE matrix of the same structure
W = w1 ⊗ . . . ⊗ wL, and hence its matrix elements can be
written as products

|WIK |2 = |wi1k1 |2 · · · |wiLkL |2. (B6)

Due to this factorization, we can restrict to expressions of the
form

t j = |wi j k j |2|wi j m j |2 (B7)

when performing the average over the jth subsystem. The
latter corresponds to the Haar average over the unitaries w j

and yields the second moment of the CUE(N), which reads
[67]

〈t j〉 = δk j mj + 1

N (N + 1)
. (B8)

Hence we obtain for the averaged diagonal contribution

〈d〉 =
∑
K,M

〈(Uc)KK (U ∗
c )MM〉ξ

× NL

[
δk1m1 + 1

N (N + 1)
· · · δkLmL + 1

N (N + 1)

]
(B9)

with only the average over the phases ξI left.
To perform this remaining average, we note that each pair

of states K, M contributes to the above sum as

1

(N + 1)L
〈exp(iε[ξK − ξM])〉ξ 2�K,M , (B10)
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where �K,M = ∑L
i=1 δkimi is the number of subsystems for

which the factors of the product states labeled by K and M
agree. Similarly as described in the main text in Sec. IV the
average over the phases reads

〈exp(iε[ξK − ξM])〉ξ = (1 − δKM )|χ (ε)|2 + δKM (B11)

due to the ξI being independent and identically distributed
random variables and where again δKM is understood element
wise. As the average over the phases depends on �K,M only,
evaluating the sum over K, M in Eq. (B9) can be achieved
by counting the number of pairs K, M which yield the same
value of �K,M . To this end, let Dj denote the number of pairs
for which �K,M = j. This allows us to write

〈d〉 = DL2L

(N + 1)L
+ |χ (ε)|2

(N + 1)L

L−1∑
j=0

Dj2
j . (B12)

A standard combinatorical argument gives

Dj = NL

(
L

j

)
(N − 1)L− j (B13)

and the sum in Eq. (B12) can be written as

L−1∑
j=0

Dj2
j = NL(N + 1)L − (2N )L (B14)

by means of the binomial theorem. Inserting this into
Eq. (B12) and the resulting expression for 〈d〉 into Eq. (B9)
we obtain

ν̃2 = 1

(NL − 1)

[
1 −

(
2

N + 1

)L
]

[1 − |χ (ε)|2]. (B15)

Consequently, this gives the transition parameter as

� = NL

4π2
[1 − |χ (ε)|2], (B16)

where we neglected subleading terms in 1/N and which cor-
responds to Eq. (81) in the main text.

APPENDIX C: CALCULATION OF THE
PERTURBATION INTEGRAL

The integral (87) can be solved using multiple substi-
tutions. First, we replace z = s/

√
� and thus unravel the

integration variables and system parameters. This motivates
the introduction of the rescaled time τpert = D

√
�t , Eq. (88).

The integral then reads

I =
√

�

∫ ∞

−∞
dz

∫ ∞

0
dw cos(τpert

√
z2 + 4w)e−w. (C1)

By further substituting w = y2 and introducing polar coordi-
nates r = z2 + y2 and y = r sin(θ ) we obtain

I =
√

�

2

∫ ∞

−∞
dz

∫ ∞

0
dy y cos(τpert

√
z2 + y2)e−y2/4, (C2)

=
√

�

2

∫ ∞

0
dr

∫ π

0
dθ

[
r2 sin(θ )e−r2 sin(θ )2/4

× e−iτpertr + eiτpertr

2

]
(C3)

=
√

�

4

∫ ∞

−∞
dr

∫ π

0
dθ [r2 sin(θ )e−r2 sin(θ )2/4eiτpertr]. (C4)

The integral over r takes the form of a Fourier transform and
yields

I = −
√

π�

∫ π

0
dθ e−τpert/ sin2(θ ) (C5)

×
[

2τ 2
pert

sin4(θ )
− 1

sin2(θ )

]

= −2π
√

�τperte
−τ 2

pert . (C6)

This is the expression (89) as stated in the main text.
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