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Autoresonant generation of solitons in Bose-Einstein condensates
by modulation of the interaction strength
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The autoresonant approach to generation of solitary structures in Bose-Einstein condensates by chirped
frequency space-time modulation of the interaction strength is proposed. Both a spatially periodic case and
a finite-size trap are studied numerically within a Gross-Pitaevskii equation. Weakly nonlinear theory of the
process is developed in the spatially periodic case using Whitham’s averaged variational principle. The theory
also describes the threshold phenomenon setting the lowest bound on the amplitude of modulations of the
interaction strength for autoresonant excitation.
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I. INTRODUCTION

Magnetically or optically controlled Feshbach resonance
is an effective method to manipulate scattering length in
Bose-Einstein condensates (BECs)[1] allowing one to control
matter-wave patterns [2]. A variety of new phenomena in
soliton dynamics were observed using this approach, such
as resonant splitting of solitons [3], trapping of solitons
[4], emergence of dark solitons and trains [5,6], splitting of
solitons under a sudden quench [7], splitting two-soliton com-
plexes [8], emission of jets from a driven soliton [9], and many
others.

Modern advances in optical Feshbach resonance demon-
strated [10] precise temporal and spatial control of the
scattering length, opening a possibility to manage nonlinear
dynamics of the condensate. In this paper we present an ap-
proach based on autoresonance to generate and control dark
and bright solitons and other coherent structures in BECs
by space-time modulation of the interaction strength. Dark
solitons comprise localized dips in density of a condensate
with repulsive interaction of particles and were observed ex-
perimentally in Refs. [11,12]. In contrast, bright solitons were
observed as humps in the density of condensates with attrac-
tive interaction of particles [13,14]. The simplest model to
describe both types of solitons is the one-dimensional Gross-
Pitaevskii (GP) equation [15] for elongated condensates with
strong transverse confinement. In this case the GP equation is
similar to the nonlinear Schrödinger equation (NLS) with the
sign of the nonlinearity associates with repulsive or attractive
interactions. The NLS equation has exact analytic solutions
for both bright and dark solitons [16,17].

The autoresonance is a general phenomenon in nonlinear
systems which involves a continuous self-phase-locking of a
system with chirped frequency-driving perturbations [18]. As

*shagalov@imp.uran.ru
†lazar@mail.huji.ac.il

the driving frequency varies in time, the autoresonant system
performs evolution in its parameter space, frequently leading
to excitation of nontrivial large-amplitude states. It was shown
in Ref. [19] that the autoresonance of a driven BEC can occur
when the interaction strength oscillates in time, leading to
oscillations of the width of the condensate as its frequency
followed the slowly varying driving frequency.

The basic model for studying nonlinear dynamics of BECs
is the GP equation [15] written in the dimensionless form

iϕt + ϕxx − U(x, t )ϕ + g(x, t )|ϕ|2ϕ = 0. (1)

Here time is measured in units of inverse transverse trap-
ping frequency ω−1

⊥ and space and density in units of l⊥ =
[h̄/(2mω⊥)]1/2 and mω⊥/2π h̄|a0|, respectively, where m is
the atomic mass. In Eq. (1), g = 2a(x, t )/|a0| is the normal-
ized, space-time modulated interaction strength, where a is the
s-wave scattering length of interacting particles in the BEC.
For condensates with repulsive interactions of particles a < 0
and a > 0 for attractive interactions. We assume that the mod-
ulation of a is small compared to the unperturbed scattering
length a0 and can be controlled by the external magnetic field,
for example. The form of the longitudinal trapping potential
U (x) will be discussed in Sec. IV. A similar model appears in
nonlinear optics [20,21] with the management of the nonlinear
refractive index. Autoresonant excitation of dark GP solitons
using parametric driving via space-time modulations of the
trapping potential U (the linear term in the GP equation) was
discussed recently [22]. In contrast, in the present work we
will exploit modulations of the interaction strength g. As men-
tioned above, managing the interaction strength is a promising
recent tool for controlling BEC dynamics. We will analyze
formation of autoresonant dark and bright GP solitons using
this method, develop weakly nonlinear theory of the process,
and study excitation and control of a two-phase GP solution,
via chirped frequency standing wave-type perturbation of the
interaction strength. The presentation will be as follows. Sec-
tion II will focus on the spatially periodic domain case (for
U = 0) and illustrate in simulations the formation of traveling
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dark solitons, as well as excitation of two-phase solutions of
the GP equation. In Sec. III we will develop a weakly nonlin-
ear theory of these autoresonant excitations using Whitham’s
averaged variational approach [23]. This approach is based on
averaging the Lagrangian density associated with Eq. (1) over
the fast space-time oscillations of the driven solution to extract
the slow autoresonant evolution part of the problem via the
averaged Lagrangian. Section IV will discuss the case of a
finite BEC trap [U = U(x)]. Finally, Sec. V will present our
conclusions.

II. PERIODIC BOUNDARY CONDITIONS

The case of periodic boundary conditions is usually an-
alyzed in numerical simulations of an infinite domain for a
spatially periodic driving. It is also used in 1D modeling along
the torus-like BEC (ring-trap geometry) [24,25].

We set U = 0 in this case and assume the space-time de-
pendent interaction strength

g(x, t ) = 2σ {1 + ε cos[kx − ψ (t )]}, (2)

where σ = ±1 and ε � 1 is a small parameter. In the driving
perturbation, we assume ψ (t ) = ∫

ωd (t ) dt , where the driving
frequency ωd (t ) slowly varies in time, ωd (t ) = ω0 − αt . We
also assume that k is constant and given by boundary condi-
tions (2π over the length of a circular trap, for example).

In the periodic case, when potential U = 0, the unperturbed
ground state is the spatially homogeneous solution of Eq. (1)

ϕ(x, t ) = U0e2iσU 2
0 t (3)

with constant amplitude |ϕ| = U0.
The frequency of a perturbed homogeneous state is [26,27]

ω0 = k
√

k2 − 4σU 2
0 . (4)

Condensates with repulsive interaction of particles when σ =
−1 are stable. In this case frequency (4) is known as the
Bogolubov frequency. The dark solitons are typical structures
in these condensates. In the opposite case (σ = 1) bright
solitons exists. In this case ω0 can be imaginary, leading
to modulational instability. This instability is well known in
plasma physics and nonlinear optics [28,29]. If a condensate
has length l , then the wave number of the main mode is
k = 2π/l and the condition for stability restricts the den-
sity of the condensate, U 2

0 < π2/l2. If the condensate has a
cigar-like shape with the transverse dimension l⊥, then, in
physical variables, the stability condition can be written as
the restriction on the number of particles, n < (l⊥/l )(l⊥/|a0|).
Nevertheless, the modulational instability does not prevent
existence of bright solitons as demonstrated in experiments
[13,14]. Furthermore, trains of bright solitons were formed as
the result of the modulational instability [30,31].

In the numerical simulations below, we consider the case
σ = −1 first and start from the ground state (3), switch on
the driving perturbation at t = t0 < 0, and slowly chirp the
driving frequency ωd (t ) passing ω0 at t = 0. One finds that
after passage through this resonance, the system may evolve
in two different ways. If the driving amplitude ε is small, the
nonlinear shift of the eigenfrequency destroys the resonance
and the excited wave amplitude saturates at a small level.
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FIG. 1. Space-time color map of the dark soliton generation in
periodic domain [−2π, 2π ]. Driving parameters are ε = 0.03, α =
0.0015, k = 0.5, ω0 = 0.559, and t0 = −200

However, if ε exceeds a sharp threshold εth [see Eq. (31) in
Sec. III], the phase of the excited solution locks to that of the
drive and the system remains in resonance for a long time,
resulting in excitation of a large-amplitude structure. This
continuous phase-locking (autoresonance) effect can be used
for generation of dark solitons, which are typical noninear
structures in BECs for σ = −1. The theory of the threshold
phenomenon will be developed in the next section.

The process of autoresonant generation of a dark soliton for
ε > εth is illustrated by the example in Fig. 1 in a color map
and, in more detail, in series of time frames of the amplitude
and phase of the soliton shown in Fig. 2. The soliton moves to
the right, increasing its amplitude and decreasing the velocity.
The soliton velocity was calculated by following the motion
of the minimum of the solitary structure in time. It has the
direction and approximately the value of the phase velocity
of the driving wave Vp = ωd (t )/k (see Fig. 3), illustrating
the autoresonant phase synchronization between the gener-
ated soliton and the drive. The oscillating modulations of the
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FIG. 2. Time frames of amplitude and phase of the soliton gen-

eration in Fig. 1. Dotted lines at t = 180 are dark soliton solutions
(A1) and (A2) for U0 = 0.58, κ = 0.24, and b = 0.995.
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FIG. 3. Soliton velocity in numerical simulations (full red line)
and the phase velocity of the driving wave Vp = ω(t )/k (dotted line).

soliton velocity are due to the characteristic to autoresonance
oscillations of the phase mismatch between the driving and
the driven structures (see Sec. III A for more details).

We have also compared the numerically generated solution
in Fig. 2 at t = 180 with the analytic formulas (the dotted
lines) describing dark solitons in the Appendix. One can see
a very good agreement between the two. The soliton velocity
given by Eq. (A3) is 0.595, which is also close to the velocity
0.585 found numerically at t = 180. This confirms that the
autoresonantly excited large-amplitude waves, despite being
formed on a finite support 2π/k, are close to the usual soliton
solutions. Note that the generated soliton moves to the right at
all times because κ > 0 and s > 0 [see Eq. (A3)].

In several applications, in contrast to the traveling wave
perturbations of the interaction strength discussed above,
standing spatial drivings were used to control matter-wave
patterns [2], for splitting soliton complexes [8], and in study-
ing parabolically trapped BECs [32]. At this stage, we also
apply a standing wave-type driving perturbation

g(x, t ) = 2σ {1 + ε sin(kx) sin[ψ (t )]}. (5)

This is a linear superposition of two modulations (2) with
opposite phase velocities: sin(kx) sin(ψ ) = (1/2)[cos(kx −
ψ ) − cos(kx + ψ )]. In this case, we expect formation of a
two-phase solution ϕ(θ1, θ2), θ1,2 being the phases of the two
driving traveling waves. A weakly nonlinear theory of such
excitations is presented in the second subsection of Sec. III.
Transition to autoresonance in this case also requires the driv-
ing amplitude to exceed a sharp threshold [see Eq. (51)]. This
result is in a good agreement with numerical simulations, as
shown in Fig. 4. The circles in the figure correspond to numer-
ical results such that for ε below these values the autoresonant
synchronization between the driven and driving phases was
lost (similar to the case shown in the right panel in Fig. 6
below). Autoresonant generation of two-phase solutions using
a standing wave drive (5) is illustrated by the example in
Fig. 5. Initially, formation of two small amplitude solitons
moving with opposite velocities was observed, each associ-
ated with one of the traveling waves composing the standing
wave drive. As the amplitude of the solitons increases, their
velocities decrease and one of the resulting solitons is located
near the center and another one near the boundary. The final
solution has a large amplitude and small mobility. The next
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FIG. 4. Comparison of the theoretical threshold (51) (red line)
with numerical simulations (circles) for U0 = 0.5 and α = 0.001.

section presents the theory of such single- and two-phase
autoresonant excitations.

III. WEAKLY NONLINEAR THEORY

A. Traveling wave drive and the threshold phenomenon

Here we develop a weakly nonlinear theory of the au-
toresonance via modulation of the interaction strength within
Gross-Pitaevskii (GP) equation [15] focusing on the U(x) = 0
case for the traveling wave modulation described in Sec. II.
The standing wave-type drive will be discussed in the next
subsection. We proceed from GP equation

iϕt + ϕxx + 2σ |ϕ|2ϕ = −2σε|ϕ|2ϕ cos(kx − ψ ) (6)

and seek a solution of form ϕ = U exp(iV ) governed by the
following set of real equations

Ut + VxxU + 2VxUx = 0, (7)

VtU − Uxx + V 2
x U − 2σU 3 = 2σεU 3 cos(kx − ψ ). (8)

The Lagrangian density for this problem is

L = 1

2

[
U 2

x + U 2(V 2
x + Vt

)] − σ

2
U 4 − σε

U 4

2
cos(kx − ψ ).

(9)

The Lagrangian representation suggests using Whitham’s av-
eraged variational approach [23] in analyzing our problem,
similar to the direct driving case studied previously [27]. The
first step in this direction is to assume constant frequency
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FIG. 5. Space-time color map of solitons generation on periodic
domain [−2π, 2π ] with a standing wave drive. Parameters of the
driving: ε = 0.06, α = 0.0015, k = 0.5, ω0 = 0.559, t0 = −200.
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drive, ψ = ωdt , and seek solutions of the linearized problem
of form

U = U0 + u1 cos(kx − ψ ), (10)

V = 2σU 2
0 t + v1 sin(kx − ψ ), (11)

[Note that our unperturbed solution is ϕ0 = U0 exp(2iσU 2
0 t )].

Then by linearization, Eqs. (7) and (8) yield

ωd u1 − k2U0v1 = 0, (12)

−ωdv1U0 + (
k2 − 4σU 2

0

)
u1 = 1

2εσU 3
0 , (13)

i.e.,

v1 = − εσωdU 2
0

2
(
ω2

d − ω2
0

) , (14)

u1 = k2U0

ωd
v1, (15)

where the linear resonance frequency ω0 = k
√

k2 − 4σU 2
0 .

Next, we proceed to chirped-driven problem, where ψ =∫
ωd (t ) dt , and extend Eqs. (10) and (11) to next nonlinear

order

U = U0 + u1 cos θ + [u0 + u11 cos(2θ )], (16)

V = 2σU0t + v1 sin θ + [ξ + v11 sin(2θ )]. (17)

Here u1 and v1 are small (viewed as first-order perturbations),
while all the terms in the square brackets are assumed to be
of second order in u1 and v1. In these solutions θ = kx − φ

and φ = ∫
ω(t ) dt is an additional independent variable. Fur-

thermore, all the amplitudes are now assumed to be slowly
varying functions of time. The reason for choosing the second-
order ansatz of this form is consistent with the form of the
Lagrangian density containing either different powers of U or
products of derivatives of V and powers of U . The auxiliary
phase ξ = ∫

γ (t ) dt in Eq. (17) is necessary because V is
the potential (it enters the Lagrangian density via derivatives
only [23]).

The next step is to replace ψ = φ + � in the driving part
of the Lagrangian density and substitute the above ansatz into
the Lagrangian density (9) and average it over φ ∈ [0, 2π ] and
x ∈ [0, 2π/k]. This averaging and all algebra here and below
are done via Mathematica. The resulting averaged Lagrangian
density is

� = A + γ

2
U 2

0 − 3

16
σu4

1 + Bv2
1 + Cv1u1 + Du2

1

+ Eu2
1v

2
1 + F − σεU 3

0 u1 cos �, (18)

where

A = 1

4

[−2U0u1(2σU0u1 + ωv1) + k2
(
u2

1 + U 2
0 v2

1

)]
,

B = k2U0

4
(2u0 + u11),

C = −1

4
(2ωu0 + ωu11 − 4k2U0v11),

D = 1

4
(γ − 12σu0U0 − 6σU0u11 − ωv11),

E = 3

16
k2,

F = γ u0U0 − 2σu2
0U 2

0 + (
k2 − σU 2

0

)
u2

11

−ωU0u11v11 + k2U 2
0 v2

11.

Note that the term A in � is quadratic in the ampli-
tudes and thus describes the linear part of the prob-
lem. Furthermore, the averaged Lagrangian density � =
�tr (u1, v1, u0, u11, v11; ω, γ ,�) is a function of all five slowly
varying amplitudes and two phases φ and ξ entering via their
time derivatives ω = dφ/dt and γ = dξ/dt and the phase
mismatch � = ψ − φ in the driving term.

The next step is taking variations with respect to
second-order amplitudes u11, v11, resulting in two equa-
tions ∂�tr/∂u11 = 0 and ∂�tr/∂v11 = 0. To lowest significant
order in solving these equations, we replace v1 by its lin-
ear approximation v10 = ω0

k2U0
u1 [see Eq. (15)], where being

interested in the vicinity of the resonance we also replaced
ωd by the linear resonance frequency ω0. The resulting
solutions are

u11 = − 1

4U0
+ 2σU0

k2
u2

1, (19)

v11 = −ω0
(
k2 − 2σU 2

0

)
2k4U 2

0

u2
1. (20)

Similarly, variations with respect to u0 and ξ yield equa-
tions ∂�tr/∂u0 = 0 and d (∂�tr/∂γ )/dt = 0, and correspond-
ing solutions

u0 = − u2
1

4U0
, γ = 2σu2

1. (21)

Furthermore, the variation with respect to φ yields the
equation

d

dt

(
∂�tr

∂ω

)
= ∂�tr

∂�
(22)

or

du1

dt
= σε

k2U 3
0

ω0
sin �. (23)

The last two reduction steps are varying with respect to
v1 and u1. As before, in all these developments, we re-
place v1 by v10 and ω by ω0 in higher than first-order
terms. Then the variation with respect to v1 yields the
expression

v1 = ω

k2U0
u1 + ω0

(
5k2 − 24σU 2

0

)
8k4U 3

0

u3
1. (24)

Finally, the variation with respect to u1 after substitu-
tion of the last expression for v1 results in the following
equation:

ω2
0 − ω2 = −8σ

(
k2 − 3σU 2

0

)
u2

1 + εσ
2k2U 3

0

u1
cos �. (25)

This allows us to approximate ω near the Bogolubov fre-
quency

ω ≈ ω0 + 4σ
(
k2 − 3σU 2

0

)
ω0

u2
1 − εσ

k2U 3
0

ω0u1
cos � (26)
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FIG. 6. Amplitude u1 of weakly nonlinear oscillations of U (left
panel) and phase mismatch � (right panel) vs time for ε 5% below
(red lines) and 5% above (blue lines) the threshold value of 0.021.
The parameters are σ = −1, U0 = 0.5, α = 0.0015, k = 0.5.

and write the equation describing the evolution of the phase
mismatch

d�

dt
= ωd − ω = −αt − σNu2

1 + εσ
k2U 3

0

ω0u1
cos �, (27)

where

N = 4
(
k2 − 3σU 2

0

)
ω0

= k2

ω0
+ 3

ω0

k2
. (28)

Equations (23) and (27) comprise a complete set describing
the autoresonance in the problem. These equations can be put
in a more concise form by introducing slow dimensionless
time τ = t/

√|α| and introducing a new complex variable
� = Aei�, where A =

√|N |
|α|1/4 u1 :

i
d�

dt
+ [−sgn(α)τ + σ |�|2]� = μ, (29)

where

μ = ε
k2U 3

0

√|N |
ω0|α|3/4

. (30)

This single-parameter equation is characteristic of autoreso-
nant phenomena and yields a sharp threshold μth = 0.41 [18]
for transition to autoresonance when starting from � = 0 at
sufficiently large negative times. This can be transformed to
the threshold on the driving amplitude

εth = 0.41
ω0|α|3/4

k2U 3
0

√|Ntr|
= 0.41

|α|3/4

U 3
0

√
k6

ω3
0
+ 3 k2

ω0

. (31)

We illustrate this transition to autoresonance for the trav-
eling wave drive in the case U0 = 0.5, k = 0.5, σ = −1,
and α = −0.003 (εth = 0.021) in Fig. 6 showing the evolu-
tion of u1 (left panel) and � (right panel) for ε being 5%
below (red lines) and 5% above (blue lines) the threshold.
One can see a continuing growth of u1 and phase locking
of � near zero above the threshold. Figure 7 shows the
space-time evolution of the weakly nonlinear solution for

FIG. 7. Solution U in space-time from Eq. (16). The upper
panel shows growing amplitude traveling dark soliton for parameters
σ = −1, U0 = 0.5, k = 0.5, α = 0.0015, ε = 0.03. The lower panel
illustrates growing amplitude bright soliton for parameters σ = 1,
U0 = 0.5, k = 1.05, α = −0.0015, ε = 0.01. In both panels the x
axis is over the periodicity interval of 2π/k.

U [see Eq. (16)]. The upper panel shows a growing am-
plitude traveling dark soliton for the same parameters as in
the full simulations illustrated in Fig. 1 (σ = −1, U0 = 0.5,
k = 0.5, α = 0.0015, ε = 0.03). The lower panel illustrates a
growing amplitude bright soliton for parameters σ = 1,U0 =
0.5, k = 1.05, α = −0.0015, ε = 0.01. Note that the sign of
the driving frequency chirp rate was reversed in the latter case
because of the change of sign of the nonlinear term in the
GP equation.

B. Standing wave drive

Here we analyze the case of the standing wave drive, i.e.,
discuss the driven GP equation of the form

iϕt + ϕxx + 2σ |ϕ|2ϕ = −2σε|ϕ|2ϕ sin(kx) sin ψ. (32)

As before, we seek a solution ϕ = U exp(iV ) governed by the
following set of real equations:

Ut + VxxU + 2VxUx = 0, (33)

VtU − Uxx + V 2
x U − 2σU 3 = 2σεU 3 sin(kx) sin ψ. (34)

The Lagrangian density for this problem is

L = 1

2

[
U 2

x + U 2(V 2
x + Vt )

] − σ

2
U 4 − σε

U 4

2
sin(kx) sin ψ.

(35)

The analysis below is very similar to that for the traveling
wave drive. Despite increased algebraic complexity it will
pass all the steps described above, relying again on the Math-
ematica package, but only the main details will be presented
below. We start by assuming a constant frequency drive ψ =
ωdt and consider the linearized problem with solutions of the
form

U = U0 + u1 sin(kx) sin ψ, (36)

V = 2σU 2
0 t + v1 sin(kx) cos ψ, (37)
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yielding linear amplitudes [compare to Eqs. (14) and (15) in
the traveling wave case]

v1 = −2εσωdU 2
0

ω2
d − ω2

0

, (38)

u1 = k2U0

ωd
v1. (39)

We observe that these linear solutions are a superposition
of two independent traveling waves propagating in opposite
directions and driven by the corresponding traveling wave
components comprising the drive:

U = U0 + u1

2
(cos θ1 − cos θ2), (40)

V = 2σU 2
0 t + v1

2
(sin θ1 + sin θ2), (41)

where θ1 = kx − φ and θ2 = kx + φ, where φ is a new inde-
pendent variable. These solutions suggest the following higher
order extension:

U =U0 + u1

2
(cos θ1 − cos θ2) + [u0 + u11 cos(2θ1)

+ u22 cos(2θ2) + u+
12 cos(θ1 + θ2) + u−

12 cos(θ1 − θ2)],

(42)

V = 2σU0t + v1

2
(sin θ1 + sin θ2) + [ξ + v11 sin(2θ1)

+ v22 sin(2θ2) + v+
12 cos(θ1 + θ2) + v−

12 sin(θ1 − θ2)],

(43)

where ξ = ∫
γ dt , all the terms in square parentheses are

of second order in u1 and v1, while all the amplitudes are
assumed to be slowly varying functions of time. The reason
for choosing the second-order ansatz of this form is consistent
with the form of the Lagrangian as described in the previous
subsection.

The next step is to write ψ = φ + �, to substitute the
ansatz (42) and (43) in the Lagrangian density L, and to
average L over φ ∈ [0, 2π ] and x ∈ [0, 2π/k]. This yields the
averaged Lagrangian density

�(u1, v1, u0, u11, u22, u+
12, u−

12, v11, v22, v
+
12, v

−
12; ω, γ ,�)

(44)

as a function of 11 slowly varying amplitudes and two
phases φ and ξ entering via their time derivatives ω = dφ/dt
and γ = dξ/dt and the phase mismatch � = ψ − φ in the
driving term. Similar to the traveling wave drive, taking vari-
ations using � with respect to all higher order amplitudes
u0, u11, u22, u+

12, u−
12, v11, v22, v

+
12, v

−
12 and ξ yield solutions

u0 = −u2
1/(8U0),

γ = σu2
1,

u11 = u2
1

( − 1 + 8σU 2
0 /k2

)
/(16U0),

u22 = u11,

u+
12 = −u2

1/(8U0),

u−
12 = −u+

12,

v11 = −ω0
(
k2 − 2σU 2

0

)
u2

1/
(
8k4U 2

0

)
,

v22 = −v11,

v+
12 = 0,

v−
12 = (

k2 − 2σU 2
0

)
u2

1/
(
4ω0U

2
0

)
. (45)

In finding these second-order solutions, we again replaced v1

by its linear approximation v10 = ω0
k2U0

u1.
The next step is taking variation with respect to φ yielding

the same result as for the traveling drive case [see Eq. (23)]

du1

dt
= σε

k2U 3
0

ω0
sin �. (46)

Next, as in the traveling drive case, we take variations with
respect to v1 and find

v1 = ω

k2U0
u1 + ω0

(
11k2 − 24σU 2

0

)
32k4U 3

0

u3
1, (47)

which differs from the traveling drive case [see Eq. (24)] by
the coefficient in the nonlinear term. Finally, the variation
with respect to u1 and substitution of v1 from Eq. (47) yields
[compare to Eq. (24) for the traveling wave drive]

ω2 − ω2
0 = −3

( − σk2 + 2U 2
0

)
u2

1 − ε
2σk2U 3

0

u1
cos �. (48)

As before, this result allows to obtain the evolution equa-
tion for the phase mismatch

d�

dt
= −αt − σNu2

1 + εσ
k2U 3

0

ω0u1
cos �, (49)

where the nonlinear coefficient

N = 3
(
k2 − 2σU 2

0

)
2ω0

= 3

4

(
k2

ω0
+ ω0

k2

)
. (50)

Equations (46) and (49) comprise a full set for completing
the solution of the weakly nonlinear problem and, as for the
traveling drive, yield the threshold on the driving amplitude
for transition to Feshbach autoresonance in the problem:

εth = 0.41
|α|3/4

k2U 3
0

√|N | = 0.41
|α|3/4

U 3
0

√
3
4

(
k6

ω3
0
+ k2

ω0

) . (51)

We illustrate evolution of u1 and � in the case of a stand-
ing wave drive in Fig. 8 for two sets of parameters: σ =
−1, U0 = 0.5, k = 0.5, α = 0.0015 (blue solid lines) and
σ = 1, U0 = 0.5, k = 1.05, α = −0.0015, (dotted red lines)
and ε = 1.05εth in both cases( εth = 0.039 and 0.046 for
σ = −1 and σ = 1, respectively). Note that in σ = 1 case
in simulations, we start from a modulationally stable ground
state (short-length or low-density condensates). One observes
growing amplitude excitation (we are above the threshold in
both cases) and phase locking of the phase mismatch near
zero, indicating synchronization of the excitation with the
drive. Figure 9 illustrates formation of a growing amplitude
autoresonant solution U (x, t ) in the weakly nonlinear model
[see Eq. (42)] in the two cases shown in Fig. 8, σ = −1 (upper
panel) and +1 (lower panel).
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FIG. 8. Amplitude u1 (left panel) of oscillations of U and phase
mismatch � vs time for two sets of parameters: (blue lines) σ = −1,
U0 = 0.5, k = 0.5, α = 0.0015, ε = 0.041 (εth = 0.039) and (red
dotted lines) σ = 1, U0 = 0.5, k = 1.05, α = −0.0015, ε = 0.049
(εth = 0.046).

IV. FINITE TRAP

In this section we demonstrate in simulations that large-
amplitude soliton-like structures can be generated via autores-
onance in a finite domain case using a well-type potential
U(x). Let us proceed from a standard harmonic potential
1
2 mω2

‖x2, which in the dimensionless form of Eq. (1) becomes
U(x) = γ 2x2 where γ = ω‖/2ω⊥. In numerical simulations
in this section, it is convenient to make additional rescaling
of variables: t = γ −1t ′, x = γ −1/2x′ and ϕ = γ 1/2ϕ′, which
preserves the form of Eq. (1), but reduces γ to unity. In
what follows, we will use an elongated well-type potential:
U = 0 for −L < x < L and U = (x − L)2 at x > L, U =
(x + L)2 for x < −L, which yields the harmonic potential
for L = 0. The ground state in potential U(x) is inhomo-
geneous and comprises the eigenfunction of the stationary
equation

ϕ0,xx − U(x)ϕ0 + 2σ |ϕ0|2ϕ0 = �ϕ0, (52)

as follows from Eq. (1) after substitution ϕ = φ0(x) exp(i�t )
in the unperturbed case, ε = 0. This is a nonlinear eigen-
state parametrized by its amplitude ϕ0(0). The autoresonant
driving will be applied to these states in the following. We
consider case σ = −1 first. The autoresonant generation of a
soliton-like structure in simulations in this case in a finite trap

FIG. 9. Solution U in space-time in a weakly nonlinear model
[see Eq. (42)] for the standing wave drive. The parameters are the
same two sets as in Fig. 8: σ = −1 (the upper panel) and σ = 1 (the
lower panel).
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FIG. 10. Color map of generation of the dark soliton in the finite
trap with L = 2, σ = −1, parameters of the ground state, ϕ(0) =
0.5, � = −0.602, and driving parameters, ε = 0.16, α = 0.0015,
k = 0.5, ω0 = 0.7, t0 = −100.

for parameters L = 2, σ = −1, ϕ(0) = 0.5, � = −0.602, and
driving parameters ε = 0.16, α = 0.0015, k = 0.5, ω0 = 0.7,
t0 = −100 is illustrated by the space-time color map and in
a series of time frames in Figs. 10 and 11. The initial ground
state used in the simulations is shown in Fig. 11 by dotted
lines. Initially a nucleated soliton has a small amplitude and
oscillates in the trap many times increasing its amplitude. The
final large-amplitude soliton also oscillates around the center
of the trap. We observed that the width of the excited soliton is
less than the width of the ground state and that the amplitude
and phase of the excited waveform is similar to that of a dark
soliton. We have also found in simulations that these excita-
tions can be generated only if the trap is sufficiently wide,
L > 0.25 in our case. The width of our elongated potential
can be estimated as

√
2 + 2L. On the other hand, the width

of a large-amplitude (b ≈ 1) soliton is 1/ϕ0(0). For ϕ0(0) =
0.5, used in the simulations, both widths are comparable for
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FIG. 11. Time frames of amplitude and phase of the soliton
shown in Fig. 10. The dotted lines represent the amplitude of the
ground state ϕ0(x). The arrows show the direction of motion of the
solitons.
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FIG. 12. Comparison of the soliton oscillation frequency (red
squares) with the driving frequency (solid line) at parameters of
Fig. 10.

L ≈ 0.25. Thus, we conclude that the autoresonant genera-
tion of dark solitons is possible in potentials having widths
larger than that of the soliton. Using the physical parame-
ters, the soliton width is

√
2ξh, where ξh = (8πa0|ϕ0|2)−1 is

the healing length. Our simulations demonstrate a qualitative
agreement with basic formulas describing dark solitons in the
Appendix. At each time, the soliton has κ ≈ 0 and changes
sign s according to the direction motion in agreement with
Eq. (A3). One can see in Fig. 10 that the period of oscillations
of the soliton inside the trap increases with time. This effect
is due to the autoresonant synchronization with the drive as
the driving frequency decreases in time (α > 0). We illustrate
this synchronization in Fig. 12. One can see that the soliton
oscillation frequency in the trap follows that of the drive
for t < 120. Later, the frequencies start deviating, and above
t = 150 the synchronization is lost. In this off-resonance
stage, the soliton freely oscillates around the center of
the trap.

The problem of the modulational instability for σ = 1
restricts the selection of the initial state for achieving autores-
onant excitation. This state must be stable for a time longer
than the typical autoresonant excitation time ∼1/

√
α. We

focus on the simplest initial state with ϕ0(x) > 0 and having
a single maximum ϕm = ϕ0(0) at the center of the trap. For
example, a steady bright soliton [16] ϕ0(x) = ϕm/ cosh(ϕmx),
� = ϕm for L → ∞, is the initial state of this type. It is
modulationally stable for all amplitudes. For finite L such a
solution can be found numerically. For a given amplitude ϕm

it decreases its width and the eigenvalue � conserving the
soliton-like shape. In the previous section, such a soliton was
generated autoresonantly from the homogeneous ground state
which was modulationally stable for the sufficiently small
length of the condensate. In a finite trap, such a scenario of
soliton generation is impossible because of a rapid destruction
of the homogeneous initial state, which is not a stationary
solution of Eq. (52). The autoresonant excitation of the con-
densate in simulations with a soliton-type initial state is shown
in Fig. 13 for σ = 1 in a finite trap with L = 1. The parameters
of the ground state are ϕ(0) = 1.0, � = 0.883 and the driving
parameters are ε = 0.08, α = −0.0015, k = 0.5, ω0 = 0.67,
t0 = −100. The soliton oscillates between the boundaries of
the trap with the increasing frequency, following the driv-
ing frequency due to the autoresonant synchronization (see
Fig. 14).
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FIG. 13. Color map of autoresonant excitation of the condensate
at σ = 1 in the finite trap with L = 1. Parameters of the ground
state: ϕ(0) = 1.0, � = 0.883. Driving parameters: ε = 0.08, α =
−0.0015, k = 0.5, ω0 = 0.67, t0 = −100.

V. CONCLUSIONS

We have shown that a special type of space-time periodic
modulations of the interaction strength allows one to gener-
ate and control large-amplitude solitons and other nonlinear
structures of GP equation. Two simplest types of modulations,
a traveling wave-like [see Eq. (2)] and a standing wave spa-
tial pattern [see Eq. (5)], were analyzed subject to periodic
boundary conditions or on a finite domain (a potential well-
like trap). In both cases, the modulations of the interaction
strength had small amplitudes and were frequency linearly
chirped in time, crossing the Bogolubov frequency ω0 of the
ground state of the BEC. The Whitham’s averaged variational
principle [23] was used in developing a weakly nonlinear
theory of the passage through ω0 in the system and in finding
the thresholds on the driving amplitudes of the modulations
yielding autoresonant phase-locking. These thresholds scale
with the chirp rate α as ∼|α|3/4 [see Eqs. (31) and (51)],
which was confirmed in simulations in the periodic case.
These numerical simulations demonstrated a continuous self-
preservation (autoresonance) of the phase locking between
the excited structure and the driving modulations after pas-
sage through resonance, resulting in the adiabatic excitation
of large-amplitude solitary structures. In particular, we ob-
served formation of traveling dark solitons moving with the
velocity close to that of the traveling driving wave. For stable
condensates (σ = −1) one period of excited waveform can
be extended periodically to elongated condensates forming a
multisoliton train. In the case of a standing wave-type driving
perturbation, two-phase nonlinear waveforms were generated,
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FIG. 14. Comparison of the soliton oscillation frequency (red
squares) with the driving frequency (solid line) for parameters of
Fig. 13.
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which, in the final stage, slowed and became localized near
the center and the boundary of the interval of computation.
We have demonstrated numerically in Sec. IV that solitons
also can be generated in a finite trap if its size is larger than
the soliton width. In this case we have observed emergence of
large-amplitude dark solitons near the center of the trap (see
Fig. 10). Large-amplitude bright solitons oscillating between
the walls of the trap (see Fig. 13) were also generated using
autoresonance with a standing wave drive. We have illustrated
excitation of solitons for one special type of nonperiodic
boundary conditions. The autoresonant generation of solitons
and soliton trains for more general boundary conditions is an
attractive goal for future studies.

In summary, we have shown that passage through Bogol-
ubov resonance using chirped frequency space-time modula-
tions of the interaction strength yields (if above a threshold)
autoresonant synchronization between the excited growing
amplitude structure and the drive. The main advantage of this
promising technique is that large-amplitude solitary structures
can be excited by small driving perturbations of the inter-
action strength if the chirp rate of the driving frequency is
sufficiently small. As a result, one can adiabatically generate
nearly pure solitons with predefined parameters in contrast to
other methods using large perturbations (e.g., phase or density
“engineering” approaches [33,34]). The autoresonance using
the management of the interaction strength via Feshbach res-
onance opens the possibility of formation of other nonlinear
coherent structures in BECs (e.g., multiphase solutions [35]),

which seems to be an important task for future research. A
proximity to the Feshbach resonance may lead to increased
dissipation in the chirped-driven system. It was shown pre-
viously [36,37] that a sufficiently small dissipation in other
applications did not destroy the autoresonant synchronization,
but modified the threshold for transition to autoresonance. The
study of this effect in BECs driven by oscillating interaction
strength is also an important goal for the future.

APPENDIX: DARK SOLITONS

We write the dark soliton solution [17] in the following
form:

ϕs(x, t ) = Aei(�+�N ), (A1)

where in the phase

� = −(κ2 + 2U 2
0 )t + κx,

�N = −tan−1{μ tanh[bU0(x − V t )]},
μ = sb /

√
1 − b2, s = ±1, 0 < b < 1, and the soliton shape

and the velocity are

A = U0

√
1 − b2/cosh2[bU0(x − V t )], (A2)

V = 2κ + 2sU0

√
1 − b2. (A3)

Parameter s defines the sign of the nonlinear shift of the
soliton phase �N (−∞) − �N (+∞).
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