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When a system deviates from equilibrium, it is possible to manipulate and control it to drive it towards
equilibrium within finite time ¢, even by reducing its natural relaxation timescale Ty.x. Although numerous
theoretical and experimental studies have explored these shortcut protocols, few have yielded analytical results
for the probability distribution of the work, heat, and produced entropy. In this study, we propose a two-step
protocol that captures the essential characteristics of more general protocols and provides an analytical solution
for the relevant thermodynamic probability distributions. Additionally, we present evidence that for a very short
protocol duration f; << Trelax, all protocols exhibit universal behavior for the ratio of probability distribution
functions of positive and negative work, heat, and the produced entropy.
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I. INTRODUCTION

Almost all the thermodynamic systems in nature are out
of equilibrium. Equilibrium states are, therefore, not common
but desirable. When a system is out of equilibrium and left
without any external intervention, it takes (technically) an infi-
nite time to reach an equilibrium state. The speed at which the
system approaches the final equilibrium state is characterized
by timescale 7.x. This time is an intrinsic characteristic of
any physical system and depends on various factors such as
the underlying interactions, which are encoded in the friction,
transport coefficients, external parameters (if any), and tem-
perature [1].

Technology is advancing rapidly, and one of its trends is the
creation and control of smaller devices. This miniaturization
of devices has led to increasing interest in the development of
engineered techniques that can shorten the natural timescale
for relaxation between equilibrium states. These procedures
are designed to connect the equilibrium states through a pro-
tocol that is considerably shorter than the natural equilibration
time. Such techniques were inspired by the so-called shortcut
to adiabaticity [2—4]. Since then, the term engineered swift
equilibration (ESE) has been coined to describe these proto-
cols [5]. These protocols are also known as the “shortcut to
isothermality” [6] or “swift state-to-state transformations” [7].

Several ESE protocols have been established, including
those for frictionless atom cooling in harmonic traps [3,8] and
nanosystems as micromechanical oscillators in contact with
a thermostat, both in overdamped and underdamped regimes
[5,9]. These procedures enable the creation of a nonequilib-
rium state that can be controlled and manipulated, thereby
allowing the exploration of novel physical phenomena [7].

Overall, the ESE protocols has shown great promise in
the field of nonequilibrium statistical mechanics and has
opened new avenues for research in the development of
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novel techniques for controlling and manipulating the dy-
namics of physical systems, especially nanodevices. Due to
the increased miniaturization of chips, robots, and devices,
understanding controlled dynamics has become mandatory in
modern technology. To advance our understanding of how
protocols accelerate system equilibration it is crucial to com-
prehend the stochastic thermodynamics of small systems. For
this reason, it is vital to calculate the probability distribution
functions (PDF) of work, heat and produced entropy for these
distinct processes.

In this study, we consider a Brownian particle, the sys-
tem, immersed in a viscous medium, and the environment at
temperature 7', whose particles are smaller than the Brow-
nian particle. This justifies the validity of the commonly
known overdamped regime, which is particularly applicable
to colloidal particles. The particle is subjected to a time-
dependent and externally controlled harmonic-type potential,
which allows precise manipulation and control. An experi-
mental realization of this system was made with colloidal
particles trapped by laser beams [5,10,11] and has been used
to build microscopic heat engines [12,13].

When the stiffness of the harmonic-type potential is con-
trolled through ESE protocols, the probability distributions of
the relevant thermodynamic quantities, such as the work and
heat, cannot generally be calculated analytically. Therefore,
their theoretical study is limited to numerical simulations.
In this study, we introduced a two-step protocol as a novel
approach to derive exact analytical results. Remarkably, the
analytical solution of the two-step protocol captures the es-
sential characteristics of more general protocols, exhibiting a
certain level of universality in the behavior of the work, heat,
and entropy probability distributions.

The remainder of this paper is structured as follows. In
Sec. II, inspired by the ideas presented in Ref. [5], we develop
a protocol that establishes a connection between two equilib-
rium states, theoretically reducing the equilibration time. In
Sec. III, we propose a simplified toy model called the two-step
protocol (TSP), which allows for an analytical solution of the
probability distribution functions of relevant thermodynamic

©2024 American Physical Society


https://orcid.org/0009-0009-1557-8327
https://orcid.org/0000-0002-6357-260X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.014145&domain=pdf&date_stamp=2024-01-31
https://doi.org/10.1103/PhysRevE.109.014145

DIEGO RENGIFO AND GABRIEL TELLEZ

PHYSICAL REVIEW E 109, 014145 (2024)

quantities. In Secs. III A-IIIC, we calculate the work, heat,
and produced entropy probability distributions for the TSP.
We also check the validity of the Jarzynski equality [14,15],
Crooks relation [16,17], and entropy fluctuation theorem [18]
for this specific protocol.

Finally, a comprehensive comparison with more general
protocols is presented and reveals similar features in the ratio
P4(A)/Ps(—A) of the probability distributions, where A is the
work, heat, or produced entropy. These relations differ from
the usual fluctuation theorems [14-20], as both P4(A) and
P4(—A) refer to the probability distribution of the forward
process.

II. ESE PROTOCOL

In this section, we review the concepts underlying ESE
protocols [5,7]. The central idea behind the ESE protocols is
to construct a customized time-dependent protocol A(¢) for the
externally controlled parameter. This protocol is specifically
designed to guide the system from the initial equilibrium state
characterized by A; to the desired final equilibrium state char-
acterized by A ; within a finite time interval #; which is shorter
than the system’s equilibration time typ,x. Let us consider a
Brownian particle in a thermal environment at temperature
T, and trapped in a harmonic potential with time-dependent
stiffness, given by

Ux,t) = $k(t)x*. (1)

Here, x is the position of the particle, and protocol A() is
essentially characterized by the stiffness k(¢). Initially, the
particle is in thermal equilibrium at temperature 7 with the
stiffness k;. As the stiffness varies in time, the system evolves
out of equilibrium. The goal is to design a protocol for the
stiffness k(z), such that the system reaches a final thermal
equilibrium state with stiffness ky at time ¢;. However, there
are infinite possible protocols that can achieve this transfor-
mation; therefore, constraints can be imposed to obtain the
desired solution. Since the goal is to reduce the equilibration
time through external control, the problem falls within the
realm of the optimization theory [21,22].

A solution to this problem was presented in Ref. [5], where
both experimental and theoretical results were obtained in
the overdamped limit, that is, the acceleration term in the
Langevin equation was neglected. Hereafter, we assume that
the overdamped limit is valid. In this limit, the corresponding
Langevin equation is given by

%= —%x+@§(t), 2)

where £(¢) is Gaussian white noise with zero average and the
autocorrelation function (£(1)&(t')) = 8(t —t’). Here, B =
1/(kgT) and y are the inverse temperature and friction co-
efficient, respectively, and D is the diffusion constant D =
kBT/)/.

From the Langevin equation, we infer that the natural
timescale is given by Treax = ¥ /ky. It is useful to use a set of
dimensionless variables associated with this timescale and the
final stiffness & of the protocol as follows: f =t/ Trelax, X(F) =
x(t)//DTrelax, and k(7) = k(t)/ks. The natural energy scale is
kgT and is given by U = U/(kgT) = (1/2)k(f)[%(F)]>. With

this set of units, the reduced Langevin equation reads
dx
dr

where (7)) = /T (t)  satisfies (E(F)) =0 and
(E(D)E(f")) = 8(f —1'). Using these units, it is clear that there
are only two parameters for our problem: the initial stiffness
with respect to the final stiffness, k=k /ky¢, and the target
duration of the protocol compared to the relaxation timescale,
ff = t7/Trelax- Henceforth, we use these dedimensionalized
units and remove the tilde to lighten the notation.

The system is in an equilibrium state at the beginning
t; = 0. As aresult, the position probability distributions can be
described by Gaussian distributions, which are characterized
by

= —k(Ox(@) + V2E (D), ©)

(x(0)) =0, )
1
of = (x*(0)) = = )
1
of = (X°(ty)) = 5 =1. (6)

As is well-known [23], the Langevin equation can be mapped
to a Fokker-Planck equation
oP 2

O _ D ko + 2L ™
ot ax WHIT G0

for the probability density function P(x,t) of position. To
solve this equation, we performed a Fourier transform

G(p,t) = / ” P(x, 1)e " dx, (8)

[ee]

leading to an equation of the form
a A ad A
—(InG) = —k(t)p—(nG) — p*. ©)
dt ap

The combination In(G) is the cumulant generating function
whose Taylor series is

o0 . n

G =Y a0 =2 (10)

n=0 n:
where x,(t) denotes the cumulants of P(x,t). The average
value and variance correspond to n = 1 and n = 2, respec-
tively. The insertion of this expansion leads to the derivation of
a set of ordinary differential equations governing the time evo-
lution of all the cumulants for the position. Notably, the only
nontrivial equation corresponds to n = 2 (x2(¢t) = (x()?)),

x2(t) + 2k(1) 2 (1) = 2. (11)

The essence of ESE protocols is to propose a particular
functional form for the variance x, such that it satisfies the
initial Eq. (5) and the final conditions in Eq. (6): x2(0) = 1/k;
and x»(tf) = 1/k; = 1. Subsequently, the appropriate stiff-
ness, k(¢) can be extracted from Eq. (11). Thus, the process
of determining the appropriate stiffness was performed in a
reverse-engineered manner.

To ensure a smooth transition to equilibrium, two addi-
tional conditions can be optionally imposed on x(¢), given by

x2(0) = xa(ts) = 0. (12)
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We have four conditions that must be satisfied; hence, we
need four parameters for adjustment. In addition, we aim to
optimize the work done on the system during the process by
adding a fifth parameter that allows us to tune it in such a way
that the work is minimized. Based on this consideration, we
propose a solution in the form of a fourth-degree polynomial

for xa,

K2(1) = Ag + At + Ast? + Az’ + Agr*. (13)

Finding the parameters A; using the boundary conditions
Egs. (5), (6), and (12), the variance is given by
o) 1 Ak (352
=———C@s
XM= T kg
where s = t/t; is the reduced time and Ak = ks — k;. Substi-
tuting this in Eq. (11), the function k(¢) must be

)= €t t(s =35 +25)

—257) + Agt{(s* — 25" +5Y), (14)

EA_k(S — 52

ty ki

, (5
1= 253s% —25%) + (52 — 2% +5%) ()

k(l) =k;

where € = Akt
The stochastic work [24,25] done on the system during the

time interval from ¢ = 0 to ¢ is given by
[ dk(t’'
W:—/ x(t')? @)
2 Jo dr’
Computing the average of this quantity and substituting
Eq. (15), we obtain

dr’. (16)

wy = tm(f) ¢ LK
—_— n —_— —_——— ,
2\ &) T "
= AF + (W), (a7
where 71 has the expression
1 [F8Rk (s — 2) + (25 — 65 + 453)]
- ds, (18)

]7:

1= 2£3s? = 25%) +€(s2 = 257 + 5%)

AF = %ln(kf /k;) is the free-energy difference between the
final and initial states, and (W) is the irreversible work.
The average work can be interpreted as a function of € and
numerical methods can be used to determine the value of
€ that minimizes the average work. It is worth noting that
the irreversible work (W) exhibits an inverse relationship
with the duration of the protocol ;. This inverse relation is
consistent with our expectation for a process aimed at ac-
celerating equilibration. The external control exerted on the
system requires additional work to achieve equilibrium within
a shorter timeframe; however, this additional work should be
optimized to achieve an efficient process.

Since the choice of the functional form of x, is arbi-
trary, there exists an infinite number of solutions to the fast
equilibration problem. Once we propose a form for y»(t),
it is possible to find the corresponding protocol k(z) using
Eq. (11). For example, in Ref. [5], a polynomial of degree
3 was proposed for the inverse of y,(¢), and the corre-
sponding experimental realization using optical tweezers was
performed. The experimental results proved that their protocol
shortened the relaxation time by two orders of magnitude.
To make a comparison, we use the same values reported in

k(t)/ks
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FIG. 1. Time evolution of three different protocols for control-
ling the stiffness parameter k in a harmonic oscillator. The protocol
given by Eq. (15); the protocol proposed by Martinez et al. [5]; and
the TSP protocol defined in Eq. (23). The common parameters for all
protocols are k; = 1/2, k; =1, and t; = 1/30. The value of k,, for

the TSP protocol is obtained by solving Eq. (26).

Ref. [5], which in dedimensionalized units are k; = k/2 =
1/2 and t; = 1/30, see Fig. 1. The average work for protocol
k(t) defined in Eq. (15), optimizing € to minimize the aver-
age work yields (W) = 6.52, whereas the result published in

Ref. [5] yields (W) = 6.71.
For example, for a variance of the form

1
0®) =0 + ct)?, (19)

the protocol is
c

(I+ct2 l1+ect

where ¢ = [—j(,/k,'/kf — 1) and the time interval ¢ € (0, 5).
This protocol has the peculiarity of minimizing average work,

as shown in Refs. [21,26]. Another example is a linear re-
lationship for the variance x,(¢) that satisfies the boundary

conditions in Eqs. (5) and (6)

(20)

kop @)=

1)\ ¢

1

1
)= — —— =)=, 21
x2(t) s (kf k,-)tf (21)
whose protocol k. (¢) is of the form for ¢ € (0, ¢y),
2-(; — 2y
kp(t) = ———~- (22)
20+ (& —2)b)

Both protocols are discontinuous at# = 0 and ¢ = #; and they
will be called optimal and linear, respectively. Studying the
energetics [24] of these protocols, as well as almost all other
protocols, can only be achieved through numerical simula-
tions [27]. This raises the question of whether it is possible
to design a protocol for obtaining analytical solutions for
the PDF of work, heat, and produced entropy. The following

section addresses this question.
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III. TWO-STEP PROTOCOL

In this section, we propose a new fast thermalization pro-
tocol that provides analytical solutions for the PDF of the
relevant thermodynamic quantities. After careful examination
of Fig. 1, it is evident that the stiffness must be significantly
greater than the initial and final values of k. This is due to the
fact that to accelerate the equilibration process, the stiffness
must be increased to reduce the characteristic timescale evo-
lution of the system. Therefore, it is reasonable to conclude
that large stiffness values play a critical role in achieving a
shortcut to adiabaticity.

Considering this, we propose a two-step protocol (TSP)
defined as follows:

k;, t <0,
k(t) = kn, 0<t<ty, (23)
kp, 1=ty

As we will see, this toy model captures the essential features
of general protocols. Using this stiffness, the variance in the
time interval 0 < ¢ < 1, was obtained by solving Eq. (11) with
the initial condition of Eq. (5),

1 11
x(t) =ox (1)’ = =t (E - k—>e—2’<m’. (24)

Using this variance, the expression for the probability dis-
tribution of the position at any time (0 <7 <1?) can be
written as

Py (x,, 1) =

1 < x? ) (25
exp | — .
V2 ox (1) 20%(1)
By forcing the system to arrive at a final equilibrium state at
t = ty, the variance x,(fy) must be 1/ky. This leads to a self-
consistency equation for k,, given by
1

1
exp(—2knts) = by

1 (26)
Kk~ ke

This equation is transcendental and can be solved numerically
to determine the value of k,,. Utilizing this value, the TSP is
a control protocol that joins the equilibrium state at k; with
the equilibrium state at k; in a finite time ¢;. Equation (26)
is not symmetric under the time inversion of the protocol,
i.e., if the system evolves from k; to k;, then the value of
ky, changes. Therefore, the system does not follow the same
evolution in the reverse direction of time. This fact is related
to the produced entropy, which is discussed later in this paper.

This approach differs from that in the previous section and
previous works Refs. [5,28], in which a specific form of the
protocol is proposed and the corresponding variance follows
from Eq. (11). Thus, this process is referred to as direct engi-
neering.

Although Eq. (26) cannot be solved analytically, we can
derive the asymptotic behavior of k,, for large and small values
of target final time ;. If ¢, > 1, then exp(—2k,,tf) — 0. From
the right-hand side of Eq. (26), we find k,, = k; = 1. This is
expected, as if we have an infinite amount of time to allow the
system to equilibrate (1 — 00), we can fix k,, = ky and wait
for the system to reach equilibrium at this new stiffness value.

More interesting and pertinent is the behavior when #; —
0. In this limit, k,, — oo, which means that the shorter the

target time, the larger the stiffness. At this limit, the right-hand
side of Eq. (26) converges to a finite value k;/ks. Therefore,
we deduce that &,y must remain finite, and we get

ky ~ 1 In IE (27)

Zlf k;

It is observed that k,, is inversely proportional to 7. This quan-
tifies the previous observation that, to achieve fast relaxation
to equilibrium, it is necessary to significantly increase the
stiffness. Since the typical relaxation time at a fixed stiffness
k, is of order 1/k,,, the TSP matches the transient relaxation
time of order 1/k,, to the target duration ¢, of the accelerated
protocol. The specific relationship is given by Eq. (27).

We can compute the corrections to Eq. (27) by expanding
the right-hand side of Eq. (26) in powers of 1/k,,. For exam-
ple, the next-to-leading-order term is given by

ky ky —

1
kml‘f =—In— +tf1

ki
Ay +0(t7). (28)

TR
n(ky/k;)

It turns out that the leading order Eq. (27) is universal for more
general protocols if we substitute k,, by the average value of
k(t) over the protocol duration

ky = l'/Afk(t)dl‘. 29)
lf 0

Indeed, when Eq. (11) is used for a general protocol, we
find that the average of k() is

1 500 /‘f 1 ar
=—1In + —.
2ty xo(ty)  Jo x2(@) ty

Since y; is a continuous function of ¢, applying the mean value
theorem and using the initial and final conditions Egs. (5) and
(6) leads to

kﬂl

(30)

1 k1
x2(t*)

=—1In
2t f k;

for some t* € [0, t7]. Figure 2 illustrates this by showing a
plot of k7 as a function of ¢, for different values of k; and the
ESE protocols discussed in the previous section and Ref. [5].
As ty — 0, all the protocols converge to the same value given
by Eq. (27). However, the next-to-leading corrections differ
from one protocol to another.

ko

€1y

A. Work distribution for two-step protocol

Since the TSP seems to be analytically tractable and ex-
hibits some general features of more complex ESE protocols,
we now proceed to use it as a basis for understanding the
stochastic energetics of the fast relaxation protocols. More
specifically, in this section, we want to calculate the work
probability distribution. Using Eq. (16), we obtain the work
Wp done on the system during the process

5 (ki — k)2,
P Ak — ka2 Lk — k),

0<t<ty,
l‘>l‘f.
(32)

Since the initial and final positions are stochastic variables
with normal distributions, the work done is also a stochastic
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FIG. 2. The average value k, of the stiffness multiplied by ¢,
is plotted for three protocols: the two-step protocol (TSP) given
by Eq. (23), the protocol proposed by Martinez et al. [S], and the
protocol k(z) given by Eq. (15). It can be observed that at short
target times f7, all protocols exhibit the same asymptotic behavior,
as predicted by Eq. (27).

variable. To compute the work distribution function, we need
to consider the following two cases.

1. For0 <t <ty

To study this time interval, we need to determine the po-
sition probabilities at two points described by (x;, #; = 0) and
(x¢, t). Therefore, the joint probability distribution (JPD) can
be expressed as follows:

Po(xi, iy x;, 1) = P(xy, tx;, 1)P(x;, 1), (33)

Computing P, is a straightforward task; P(x;, t|x;, t;) follows
an Ornstein-Uhlenbeck process [29]

1 X, — x;e k)2
P(x, 1], 1) = \/ﬁ exp {_W}’ (34
where
| — =2kt

on(t) = — 35)

The initial Gaussian probability distribution is
P(xi, 1) = ;eXP{—i}, (36)

V2o 2052

with o7 = 1/k; [Eq. (25) at¢ = 0].

Considering there exists an infinite number of paths con-
necting the points (x;, #;) and (x;, ¢) to compute the probability
density function of the work, we adopt the following ap-
proach. We focus solely on the paths that yield a specific
amount of work Wp, regardless of the initial and final points.
Hence, the PDF of the work can be expressed as follows:

00 00
PWD(W,I)Z/ dx,-/ dx, (S(W—WD)Pz(Xi,ti;xl,l‘).

(37

Since the work Wp is independent of x; for t < t7, the work
probability is stationary, and the previous equation simplifies
to

o0

(ki — ki )XIZ

dx;8 (W - 5

Py, (W, t) = / )P(xi, ). (38)

It W/(k, — ki) < 0, then the argument of the Dirac § distribu-
tion never vanishes, resulting in P(W, ) = 0. However, when
W/(kyn — ki) = 0, there are two roots to the equation W —
(ky, — ki)x,-z/Z = 0, yielding

ki ki
Py,W,t) = | ————exp|————W ). (39
7w (ky — ki)W kym — ki

This result can also be obtained using the methods described
in Refs. [25,27]. Returning to Eq. (38), one can use the Fourier

representation of the Dirac distribution

+oo ) dz
(S(W _ (km _ kl)le/z) — / elZ(W*(km*k:)Xi /2) 2_ (40)
s

—00

to compute the characteristic function of Py, (W, ). Inserting
Eq. (40) into Eq. (38), the resulting Gaussian integral over x;
can be performed to obtain

(o]

1 R .
Py (W, 1) = 5— f dzPy (2)e™?, (41)

—0oQ
where the characteristic function is
1

V1 —i—ialz’

with a; = (k,, — k;)/k;. Using the expansions

Py, (z) = (42)

In Ay, () = 3

n=1

e (Ciar)”
_Z—zn : (43)

n=1

c
nl "

we can obtain all the cumulants ¢, of W,
e =3 —1)d}. (44)

In particular, the average work and variance for this time
interval are

K — ki

W) =——. (45)
(ki — k;)?

ol = S (46)

Note that o, = 2(W)?. From the characteristic function, one
can check that the work distribution satisfies the Jarzynski
equality [14] as it should

ey = Py, (i) = ki =e 8, (47)

where AF = % In(k,, /k;) is the free energy difference for the
oscillator with final stiffness k,, (in the time interval 0 < <
t¢) and initial stiffness k;.
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2. Fort > t;

For the second case of the computation of work PDF is nec-
essary to consider the three-point joint probability distribution

Py(x;, tisxp trsx, t) = P(x, txy, tp)Po(xp, trs X, 1), (48)

Again, the work distribution is stationary; hence, we only need
the two-point JPD

(xs — . Kmts )2
Py(xi, tis xp, tp) = 2

2mw0;0,(t) °xp { 2Um(tf)2

2
xexp{— al } 49)

i
2‘71‘2

Here 0,,(¢) is given by Eq. (35). Inserting the two-point JPD
in an expression similar to Eq. (37) and using the Fourier
representation of the Dirac distribution, we obtain a Gaussian
integral in two variables that can easily be computed leading
to a characteristic function of the form

1

Py, (2) = ————. (50)
VI+taiz+ az?
where the coefficients are given by
itk — ki ik — k) (ki — kp)o2(t
al:(f )+(f ) )m(f)7 51)
ki ki
i(kp — k) (ki — k)02 (2
0 = i(ks ) d )Um(f)' (52)

Substituting the consistency equation Eq. (26), these expres-
sions can be simplified to

i(ky — ki km
a) = u7 (53)
kiky
0 — (ky — ki) (ki — ky) (54)
2T kok; '

Clearly, Py, (W) is normalized (Py(0) = 1) and satisfies the
Jarzynski equality [14]

(e™) =Py, (i) = e ", (55)

where now AF = %ln(kf /k;) is the Helmholtz free energy
difference between the two equilibrium states with stiffness
ks and k;. From the characteristic function, we can determine
any moments of work distribution, including the average work
and variance

(W) = k_m<l l) (56)
"2\ k)
2k, — k¢
G%/ — 2(W)2 + % (57)

It is worth noting that a‘%, > 2(W)? holds true when (k,, —
ke)(W) > 0.

The exact computation of the inverse Fourier transform
in Eq. (41) can be achieved for the characteristic function
given in Eq. (50). To accomplish this, it is imperative to use
the vertex form of a quadratic polynomial. Subsequently, an
elementary change of variable results in an integral represen-
tation of the modified Bessel function of the second kind of

e Pw,(W): Simulation
—— Puw,(W): Theoretical prediction

0.5 A

0.4 A

Pw, (W)

0.2 A

0.1 A

oow WWWWWWWWWWWW

250 -25 0.0 2.5 5.0 75 100 125  15.0
w

FIG. 3. Comparison between the theoretical and numerical prob-
ability density functions (PDFs) of the work done on a harmonic
oscillator after the stiffness parameter k is changed according to
TSP. The solid curve is the theoretical prediction for ¢ > ¢, given
by Eq. (58). The histogram is obtained by simulating the Langevin
dynamics of the system with 10° realizations. The parameters for the
simulations are k; = 1/2, k; = 1, and t; = 1/30.

order zero Kj. The final expression is as follows:

Py (W) = exp { W) W}
Joi —awyz - Low —200)?
o — W 58
x Ko m“}” . (58)

The comparison between the above work probability distri-
bution and simulations is depicted in Fig. 3. The simulations
have been performed with an open source code developed by
us, available in Ref. [30]. The work PDF Eq. (58) exhibits
an intriguing structure characterized by the product of two
components. The first component is an exponential function of
W, introducing an asymmetry in the probabilities of obtaining
positive or negative work values. The second component is
a symmetric function of W, specifically the Bessel K func-
tion, with an argument proportional to the absolute value of
W. Since the overall process is a compression (k; > k;), the
average work done on the particle is positive. Nevertheless,
there are rare events in which W < 0 but those are less fre-
quent than the ones where W > 0. Accordingly, the tail of
Py, (W) for W > 0 is larger than the one for W < 0. Mathe-
matically, this asymmetry factor can be quantified by the ratio
Py, (W)/Py,(—W). From Eq. (58), we have

B 2wy { Kin W}
= exp —Uv%/_2<W>2 = exp Pa— .

(59)

P, (W)
PWD(_W)

This equation is a consequence of the symmetry relation for
the characteristic function
k
- ) (60)

ko — kg

Py, (z) = Py, (—z —i
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—— Prediction from the TSP *
Martinez et al. [5]
41 % k() Eq.(15)
e Linear *e

= x Optimal
2 31
|
8
<
2
2
s
<
<

1 -

O .

FIG. 4. We tested the TSP relation, Eq. (59), for four differ-
ent protocols: the protocol by Martinez et al. [5], the protocol in
Eq. (15), and the linear and optimal protocols in Egs. (22) and (20),
respectively. We used 10° simulations with k; = 1/2, k; = 1, and
tp = 1/30.

Figure 4 shows the relationship outlined in Eq. (59) for the
TSP protocol, alongside the results of the other protocols
obtained by simulations. From this figure, we observe that
the behavior of the ratio Py, (W)/Py,(—W) is the similar
for all protocols when ¢y <« 1 (the range of interest for fast
thermalization protocols). This numerical evidence leads us
to conjecture that this is a general property. An analytical
proof of this fact for an arbitrary protocol remains as an open
question.

However, the behavior predicted by Eq. (59) breaks down
at times fy ~ Trlax = 1. The other protocols exhibit slight
deviations from the predicted behavior of the TSP protocol
but still follow a linear behavior (in semilog scale), as shown
in Fig. 5.

—— Prediction from the TSP
71 Martinez et al. [5]
*  k(t) Eq. (15)
61 e Linear
= X Optimal
5
g ] *
5 . *
|
- &£ X
< 4 . X
2 37
S
<
£ 2
1 -
O -

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
w

FIG. 5. The behavior predicted by Eq. (59) present a deviation
for t; ~ 1. However, we can observe a linear tendency. This plot has
been made for 10° simulations with parameters t; = 0.7, k; = 1/2,
and k; = 1.

The tails of the work distribution Eq. (58) can be obtained
from the asymptotic behavior of the Bessel function Kj, they
are

1 1 W}

row OXP {ozm W — oo,

Py, (W) ~
w} W — —o0,

(61)

1 1
Jamow OXP { o —(W)

where o2 0‘%, — (W)2.

y =

3. Reverse protocol

Equation (59) is different from the Crook’s fluctuation the-
orem Refs. [16,17], which we review and test for our model in
this section. Previously, we computed the probability distribu-
tion connecting the equilibrium states for k; and k;, through
a suitable choice of k,, as given by Eq. (26). However, our
results are more general than this specific case. The proba-
bility density function of work retains the same expressions
as before for arbitrary k,,, except that the average work and
its variance will change. In this general setup, the expressions
for ¢ < t; remain unchanged; see Eq. (45). The expressions
fort > t; are as follows:
ky — ki n (ki — k5 ) (ki

— k")a,f,(tf), (62)

W =
W) 2k; 2k;
ki — ki) (k,, — ki
on =2(W)> + ( flz( )aj(tf). (63)
Now, let us consider a time-reversed protocol defined as
kp, t<0,
Kty = Ykn, 0 <t <ty (64)
ki, t>t.

In this time-reversed protocol, we do not change the value
of k,, it is the same as in the forward protocol. As a result,
the system will not be at thermal equilibrium at #; since the
value of k,, has not been adjusted properly [to obtain thermal
equilibrium at ¢ in a reversed protocol, the roles of k; and k¢
had to be interchanged in Eq. (26)].

The Crooks relation can be verified by utilizing the general
expression for (W) and o‘%, [17],

Py, (W)

———— =exp{W — AF},
R, (W)

for any ¢. (65)
Here, P (—W) represents the work probability distribution of
the time reversed protocol. On the left-hand side of Eq. (65),
the cancellation of Bessel functions occurs due to the symme-
try of the argument under the interchange of k; and k;. The
factor AF arises from the ratio of normalization factors in
Eq. (58), while the appearance of W stems from the exponen-
tial function (refer to Appendix A for more details).

B. Heat distribution function for TSP

In this section, we move to the study of another relevant
thermodynamics quantity: heat. For a Brownian particle con-
fined in a harmonic potential, the heat that enters to the system
is expressed as [24]

QD(t):/ k@ x(t)x(t")dr'. (66)
0
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Using the first law of thermodynamics, the heat can also be
computed from Qp(t) = U(t) — U(0) — Wp(t). For the TSP,
the stochastic heat is

3o (7 = 27),

Op(t) =
%km(x% — xlz) + %kf(x,2 — x%),

It is worth noting that the heat distribution is time-
dependent because it involves x;. This complication leads to a
nonstationary heat probability density function. Similar to the
work calculation, the analysis of heat needs to be performed
in two distinct cases.

1. For0 <t <ty

By following a similar methodology as with the work dis-
t{ibution, we can obtain the characteristic function for the heat
Py(2) = (1 + biz + byz*)~ /% with the coefficients

_i(km - ki )km

by = c

o2(t),

k2
m=ﬁ¢m

where o0,,(¢) is given by Eq. (35). From this characteristic
function, we can derive the average heat

_ _u =2kt
(0), = 2% (1 —e), (68)
and its variance
2k, (0),
@af=2@ﬁ—;—%%. (69)

It is important to observe that the average heat and variance
exhibit a characteristic time 7,, = 1/k,. The characteristic
function ISQ(z) has a similar structure to that of the work
probability density function for t > ;. Therefore, the inverse
Fourier transform can be computed explicitly, leading to the
heat probability distribution for 0 < ¢ < ty,
(Q)
o]
t

! exp{ >
T /GQ(t)z _ 2<Q>r2 UQ(I) —2(0)

X oo(t)* — (0)} 0l
N AR
"\ oot)? — 2(0)2

This result can also be obtained using the methods described
in Ref. [31]. It is worth noting that the exponential term in the

. . .. . . (0); _ ki—ky
heat distribution is time-independent since 7207 = Ok

does not depend on ¢. On the other hand, the argument of
the Bessel function Kj is time-dependent. The ratio of the
heat probability distributions Py, (Q,t)/Pp,(—Q, t) satisfies
a similar relation to the one found for the work in Eq. (59),

Po,(Q.1) 200 | fki—kn
%ewfﬂdﬁfqu_m{@1q
)

A numerical test of this relation for non-TSP protocols in
the range ty < Trelax = 1 is shown in Fig. 6 revealing again
its universality. For longer protocol times 7, ~ 1, the relation
given by Eq. (71), which has been proven for the TSP
protocol, remains valid at large values of |Q| but shows some
deviations at small values as illustrated in Fig. 7 for other

Po,(Q,1) =

(70)

0.0 4 —— Prediction from the TSP
Martinez et al. [5]
051 . *  K(t) Eq. (15)
e Linear

= -1.0] Optimal
=
o
L 154
S
<
T 2.0
S
S
& -2.51
£

—-3.0 1

_35.

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
Q

FIG. 6. The relation established for the TSP protocol, as ex-
pressed in Eq. (71), is followed by more generalized protocols as the
Martinez et al. [5], the k(¢) protocol defined in Eq. (15), the linear
protocol Eq. (22), and the optimal protocol Eq. (20). This behavior
is observed under the condition #; <« 1. The figure is constructed
based on 10° simulations for the parameters k; = 1/2, k; = 1, and
tp = 1/30.

non-TSP protocols. A similar relation to Eq. (71) where the
ratio Pp,(Q,t)/Pp,(—0Q,t) is a simple exponential function
of Q also appears in a different context when one considers
the relaxation from the microcanonical to the canonical
ensembles of this system [32].

2. Fort > tf

After the second step of the TSP, the average heat reaches
its equilibrium value given by Eq. (68) evaluated at t = ty.
However, surprisingly, moments of order n > 2 of the heat
distribution take more time to reach their equilibrium values.
To investigate this phenomenon, we attempt to calculate the
heat distribution for # > #. This has the expression

)
PoyQ.1) = [ dvidxydd(©@ - 0oIPrGr iyt ).
—00
(72)
0.0 —— Prediction from TSP
Martinez et al. [5]
* k(t) Eq. (15)
* % )
—0.5 * . e Linear
- x ¥ x ¥ Optimal
o
1 -1.04
<
g; —1.5 A
o
<
£
_2.0-
—2.5'

00 05 10 15 20 25 30 35 40
Q
FIG. 7. Therelation Eq. (71) remains applicable for more general

protocols than the TSP and for times 7, comparable to the relaxation
time of the system (f; < Trelax = 1)
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which  involves the JPD of the three-point
Ps3(x;, ti;xf,tp; %, t). This quantity is a product of two
Ornstein-Uhlenbeck processes with stiffness &, and k; and
the initial probability distribution,

Py(x;, ti; x5t %, 1) = P(xg, ;)P (xp, 15X, 1)

x P(x;, tlxy, ty), (73)
with
P(x;, tlxp, tr) = RN exp {— (i = xpe ) }
V2ros(t)? 20(1)?
(74)
where
or(t) = ﬂ. (75)

kg

The transition probability P(xy, t¢|x;, ;) and the initial distri-
bution are given by Eqgs. (34) and (36), respectively.

By combining these expressions, utilizing the Fourier rep-
resentation of the § distribution, and performing the resulting
Gaussian integrals, we can obtain the characteristic function

Poy(2) = ! , (76)
V1+eiz+ e +ad

whose coefficients are given by

ik (ki — k;
o1 = A(l — ¢~ Hs=ty _ Do ( k. )' onlts),
k2
o =B(1 —2k/(l‘ l/))+ k m (tf)
c3=C(1 — e 20y,
where A, B, and C are constants given by
itk —kg)  ikp(ky — ki) o2
A= : E t
N k; Oully);
kp o+ (kpki — 2k — Kikn + k2)02(t7)
= r i
itk,, — kf)kma,fl(tf)
= o )

These coefficients are completely general, meaning that k,,
does not necessarily satisfy the consistency equation Eq. (26).
If k,, satisfies the consistency equation, then the coefficient
A vanishes but the coefficients B and C are nonzero. As a
result, the average heat for t > ¢, becomes time-independent.
However, the variance and higher-order moments of the heat
PDF depend on time and have a characteristic relaxation time
given by 1/ky. If k,, is a solution of Eq. (26), then the average
heat and variance are given by

ky (1 1
Q) = —7(;[ - E>, (77
o5 =2(0)* - 2@y b1 — ey 1)

ko — ki
where D is

(ky — k) (K? + k ki
kik (ki — k)

k kl‘ﬂ)

D= (79

Po,(Q, tr): Simulation
—— Po,(Q, t): Theoretical prediction

0.4

0.3 1
=
e
5
% 0.2 1

) mwmmwmmmmmmmm

0.0 ' ‘M -

—-10 - 0 2 4

FIG. 8. The probability density function for heat Eq. (70) at
t = t; and the numerical results for 10% simulations. The simulations
were conducted using a specific parameter setting, where k; = 1/2,
k;=1,and t; = 1/30.

Figure 8 shows the heat PDF at r = f;. Figure 9 shows the
evolution of the average heat and its standard deviation. When
t > tr, the average heat has stabilized, but its standard de-
viation continues to change in time with a relaxation time
of order 1/k;. This finding is interesting, as it indicates that
the position and work probability distribution have reached
a state of equilibrium at the final time #;,. However, the heat
distribution requires additional time to reach its ultimate state
of equilibrium. The primary aim of the shortcut protocols is
to achieve equilibrium in the position distribution, while the
attainment of equilibrium in other relevant distributions is not
necessarily simultaneous with that of the position distribu-
tion.

8] — 0Oo
] -—— <Q>
64 /e Asymptotic limit of g
4
] 9.2 Frerererenre
2 i
] 9.0
1 S
0 - 8.8
1 N .
1\ .
2] \ 8.6
] \ —
] \ 0 20 40
_4__ \\ t/tf
\
T AY
- gy iy gy —
__|||||||||||||||||||||||||||||||||
0 1 2 3 4 5 6
t/ts

FIG. 9. Standard deviation and average of heat for the TSP with
parameters t; = 1/30, k; = 1/2 and k; = 1. The dotted line is the
asymptotic value of oy when t — oo. The inset plot is a zoom of the
variation of the function oy for t > t;.
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C. Produced entropy distribution for TSP

In this section, we specifically focus on the produced en-
tropy associated with the two-step protocol. This quantity
holds significant importance in understanding the inherent
irreversibility within nonequilibrium systems and provides
valuable insights into the fundamental thermodynamic prin-
ciples that govern the TSP.

The Gibbs-Von Neumann entropy of the particle (with
kg = 1) is defined as

S@t) = —/de(x,t)lnP(x,t), (80)

where P(x, t) is the solution of the Fokker-Planck equation for
a given initial probability distribution P;(x). This entropy can
be interpreted as the average of the quantity —In P(x,?).
This trajectory-dependent expression has information on the
ensemble through the initial distribution [15,33]. Therefore,
we can associate an entropy with a particular realization of
the stochastic process x(¢) as

s(t) = —InP(x;, t). (81)

From this, we can compute the particle entropy change (“the
system” entropy change) from ¢ = 0 to ¢
Pi(xi)

As = s(t) —s(0) =1n P )

(82)

Hence, the total entropy change of the system + environment
is

_Op i Pi(x;)

AS = —_— .
T P(x;, 1)

(83)
The first term in Eq. (83) corresponds to the increase in
entropy of the environment, which is assumed to be in equilib-
rium at the temperature 7 (in dedimensionalized units 7 = 1)
and the last term represents the increase in entropy of the
system. We will use AS and X interchangeably to represent
produced entropy.

By employing a methodology analogous to that used to
calculate the probability density functions of heat and work,
we can derive the PDF of produced entropy. Due to the sim-
ilarities with the previous derivations, we will omit several
intermediate steps. Once again, it is necessary to consider two
distinct cases.

1. For0 <t <ty

To calculate the system entropy change, we need the prob-
ability density function of the position at the initial time as
well as the position PDF at ¢, as given by Eq. (25). By utilizing
the expression for the heat transferred from the environment
to the particle in the process, as shown in Eq. (67), and the
two-point probability distribution given in Eq. (33), we can
determine the total entropy change (with T = 1) for ¢t < #; as
follows:

) 1k (7 —x7) + o) 3 + X (84)
= Skn(x; —x -5t
b=t A 0 207 20x(1)?

2 . . . . . .
where Xy(¢) = % In "Xg# is a deterministic function of time.

Similar to the computation of work and heat distributions,
the PDF of produced entropy can be expressed as

1 e ~
Py (%) = - f dzPs, () expliz(S — T, (85)

where Py, (z)e *> is the characteristic function of the en-
tropy and the function Py, (z) is given by

1

Ps,(2) = e, (86)
V1+diz+ dr2?
whose coefficients are
i(—k,02k; + k20* — k02 + 1
d1 — ( m m-m m )’ (87)
O’r%lk,‘
k — ki) (ko2 — 1
dy = ( )( ”‘ ) (88)
ki
Computing the integral Eq. (85), we arrive at the expression
1
Py, (X,1) =
n\/og(t)z —2(X — Xp)?
¥-X
x exp{ ( ol 5(Z - E0)}
o5 (t)* —2(Z — Xo);
Jos@? — (2 - 5
x Ko 1% — 5 |,
o5 (t)* —2(T — Xo);
(89)
where
ki — ki —2kt
(X); = o) + % (I —e =), (90)
2 2 (ki — km)z(l - e—2k,,,1)
=22 —-X . 91
OR(0) = AT = To)f + o O
2. Fort > tf
In this case, the entropy is given by
1 1
x? x?
+ 30— 5+ 5 (92)

207 20x(1)*

It is worth noting that if we ensure a final equilibrium situation
at t; by imposing the consistency relation Eq. (26), there is a
cancellation between —kf)ct2 /2 and xt2 /[2ox (t)*] making ¥p
time-independent.

Assuming that k,, is arbitrary, the function 13>:D (z) takes the
form

1
VIt fiz+ h2+ i

where the coefficients fi, f>, and f; are complex expressions
of the system parameters (refer to Appendix B for details).
Due to the cubic polynomial inside the square root, the inte-
gral in Eq. (85) cannot be evaluated in closed form.
Therefore, in this section we will impose the constraint
that k,, satisfies the consistency equation Eq. (26). Under this

ﬁED(Z) =

93)
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FIG. 10. Standard deviation and average for the produced en-
tropy for the TSP protocol with parameters k; = 1/2, ky = 1, and
tp = 1/30.

constraint, the coefficient f3 vanishes, allowing us to obtain a
closed-form expression. The result is similar to the result in
the previous time interval Eq. (89), although the average and
variance will exhibit modifications. More specifically, they are
time-independent (as expected for an equilibrium situation)
and are given by

ko (1 1
b2} S SNPRNTRLLY [ 94
(%) 0.5 + 2<ki kf) 94)
2T — %o 1) (ko — k
o2 =2(8 — So)% + ( O}Cﬂ( D o5)

with 3o r = Xo(ty) = %ln(ki/kf). This average and variance
of ¥p coincide with the final values obtained in the previous
time interval, Eqs. (90) and (91) at t = t;. Figure 10 shows
the evolution of the average produced entropy and its standard
deviation.

The produced entropy distribution satisfies a relation simi-
lar to the ones for work and heat shown in Eqs. (59) and (71)
if we define £ = ¥ — X. This is given by

Py, (2) 2(E - %ok s
P (—5)  TPloZ o2z - 5
2p x t
:exp{kkfmkffl}. (96)

Figure 11 represents this relation for r =¢; < 1 and the
simulation results for the non-TSP protocols considered in
this paper. This plot shows the universality of the relation
Eq. (96) when 1 < 1. However, this universality breaks down
for longer protocol times £ ~ 1 as can be observed in Fig. 12.

3. Fluctuation theorem for the produced entropy

The entropy distribution must satisfy a fluctuation theorem
[18,19], in the same way, that the work distribution must
satisfy the Jarzynski equality and the Crocks relation. Hence,
we will prove the integral fluctuation relation for the produced

—— Prediction from the TSP X
Martinez et al. [5]
51 K(t) Eq. (15)
e Linear
timal
~ 4] X Optima
<
aN
L
3
¢ 37
=
uA
3

&2
£

1 -

0 -

0 1 2 3 4 5
b1

FIG. 11. Plot of the Eq. (96) for the TSP protocol and simulation
results for the other protocols. 10° simulations have been performed
withk; = 1/2, k; = 1, and ¢, = 1/30.

entropy. Using the definition of the expectation value and
inserting the integral representation given in Eq. (85), we can
obtain the following identity:

(e7%) = Py, (—i)e ™0, 97)

For arbitrary k,, [not necessarily a solution of Eq. (26)], we
can compute Py, (—i) as

By, (—i) = X0 (98)

i

As aresult, the expectation value is given by
(e F) = 1. (99)

This is the well-known integral fluctuation theorem for pro-
duced entropy [19,20,33].

71 —— Prediction from the TSP
¢ Martinez et al. [5]
*  k(t) Eq. (15)
61 o Linear
’ ¢
x  Optimal f
= 5] £ =
= ¢*
wlq § * *
W4
<
lb‘: 3 -
é—t‘
£ 51
1 -
O -

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

z

FIG. 12. The prediction given by Eq. (96) fails when ¢/ ~ 1;
however, the behavior looks linear. This plot is for 10° simulations
with parameters k; = 1/2,k; = 1,and t; = 0.7.
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IV. CONCLUSION

We have reviewed how to construct ESE protocols. In par-
ticular, we have shown that a Brownian particle in a harmonic
potential with time-dependent stiffness and at initial equilib-
rium with a Gaussian distribution, the position distribution
remains Gaussian for later times. Additionally, the variance
of the position distribution depends on the protocol. More-
over, we have thoroughly described the two-step protocol
and examined its energetic behaviors. Notably, we obtained
analytical expressions for the distribution functions of work,
heat, and produced entropy. These analytical solutions comply
with the fluctuation theorems and identities well-established
in the existing literature Refs. [14-20].

The significance of the two-step protocol extends beyond
analytical solutions, as it also characterizes more general
protocols within the time range of interest of the shortcut
protocols (i.e., when 77 < Tyelax). Our findings unveil intrigu-
ing insights into the behavior of various protocols that are
of common interest for theoretical and experimental research.
The average value of the stiffness k,, is inversely proportional
to the protocol duration f¢, explicitly given by Eq. (27). This
relation can serve as a guide for designing fast thermalization
protocols. It also imposes some restrictions on them. If for
some practical application the stiffness has to be bounded,
then Eq. (27) imposes a limit on how short the protocol can be
[21]. Regarding the energetics statistics, we obtained strong
numerical evidence that suggests that the probability distri-
bution functions of work, heat, and produced entropy satisfy
universal simple relations given by Egs. (59), (71), and (96)
when we compare the positive versus the negative production
of these quantities.

Despite the valuable insights gained, this study faced cer-
tain limitations, particularly in the context of the overdamped
regime. Future research may involve finding analytical solu-
tions in the underdamped regime and extending the analysis to
systems of interacting particles. By addressing these aspects,
future studies can provide a more comprehensive under-
standing of the fast thermalization protocols for Brownian
particles in complex environments, further enriching the field
of stochastic thermodynamics.

In summary, our research significantly advances the
comprehension of stochastic thermodynamics in colloidal
Brownian particles. We have gained valuable insights into
the dynamics of overdamped Brownian particles under time-
dependent potentials and external control, which facilitates
the acceleration of equilibration times. These findings hold
great potential for the design and application of efficient pro-
tocols across diverse scientific and engineering disciplines.
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APPENDIX A

To prove the Crooks identity Eq. (65), it is necessary to
demonstrate the symmetry under the permutation k; <> ky of

the Bessel function in Eq. (58). To achieve this goal, we use
the following definitions:

§_ (ki — kp )k — ki)op (1)

(AL)

(A2)

where S and A stand for symmetric and antisymmetric under
the permutation, respectively. Equations (62) and (63) take the
form

A+S

(W) = a (A3)
2 .
o = 2(A+ Sk)2 +2kS. (Ad)

i

Now, the combination in the argument of the Bessel function

is
Vow — (W>2 \/A2+SZ+2S(A+I<)

GW—2

(A5)

The only term that is not evidently symmetric is the combina-

tion A + k;, however

ki+k f
2

that is symmetric under the permutation.

A+k =

(A6)

APPENDIX B

In this Appendix, we give the intricate expressions of the
coefficients given intervening in Eq. (93):

lop f3 wfa (kf — k,,,)(kfat2 — 1)(oi2km — l),
o’ fo = op(07km — 1) (knoy — 1) — 07 (kgo} — 1)

x (0m (ks — k) (07 ki — 1) — kpo? + 1),
ol fi = _“’f(kf‘7 — 1) (ks ( m( 0 km — 1) — Giz) +1)

+io; (kman%(kmat —1)+1)
—io} (kno, + 1) + io,,

where o2 is the solution of Eq. (11) for the variance x(¢) in
the interval t > ¢ given by

1 1 — kyo2 1
2_(_ 2 27O 2 2%(-y) . = (B
e e

Substituting the consistency equation Eq. (26), these coeffi-
cients collapse to

f2=0, (B2)

(ki = kp)(ky — ki)
o= Kk , (B3)
— (Lo B4
Ji=—i (k, k_,> (B4)

Because f3 is zero, the polynomial Eq. (93) is of second order
and the inverse Fourier transform can be computed in terms of
Bessel functions, yielding Eq. (89).
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