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Effects of third-neighbor interactions on the frustrated quantum Ising model
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We investigate thermal and quantum phase transitions of the J1-J2-J3 transverse Ising model on the square
lattice. The model is studied within a cluster mean-field decoupling, which allows us to describe phase diagrams
and the free-energy landscape in the neighborhood of phase transitions. Our findings indicate that the third-
neighbor coupling (J3) can affect the nature of phase transitions of the model. In particular, ferromagnetic third-
neighbor couplings favor the onset of continuous order-disorder phase transitions, eliminating the tricritical point
of the superantiferromagnetic-paramagnetic (SAFM-PM) phase boundary. On the other hand, the enhancement
of frustration introduced by weak antiferromagnetic J3 gives rise to the staggered dimer phase favoring the onset
of discontinuous classical phase transitions. Moreover, we find that quantum annealed criticality (QAC), which
takes place when the classical discontinuous phase transition becomes critical by the enhancement of quantum
fluctuations introduced by the transverse magnetic field, is eliminated from the SAFM-PM phase boundary by a
relatively weak ferromagnetic J3. Nevertheless, this change in the nature of phase transitions can still be observed
in the presence of antiferromagnetic third-neighbor couplings being also found in the staggered-dimer phase
boundary. Therefore, our findings support that QAC persists under the presence of frustrated antiferromagnetic
third-neighbor couplings and is suppressed when these couplings are ferromagnetic, suggesting that frustration
plays a central role in the onset of QAC.
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I. INTRODUCTION

Quantum phase transitions have attracted an enormous in-
terest in the past few decades due to the exciting new physics
associated with this class of phenomena [1–6]. Particular at-
tention has been devoted to the study of the signatures of
quantum criticality at finite temperature and the underlying
quantum critical points at absolute zero [7,8]. Central to the
understanding of these subjects is the investigation of the
interplay of quantum and thermal fluctuations and the role of
interactions on the emergent phase transitions. In this context,
systems that exhibit classical continuous phase transitions
driven by temperature can be considered candidates to study
quantum criticality by tuning a nonthermal parameter, such
as an external magnetic field, pressure, or chemical dop-
ing. However, the presence of classical discontinuous phase
transitions still allows the onset of quantum criticality asso-
ciated with a continuous phase transition at absolute zero. In
this case, quantum fluctuations drive not only a ground-state
phase transition but also criticality. Thus, tuning a nonther-
mal parameter can introduce a change in the nature of phase
transitions, dubbed quantum annealed criticality (QAC). This
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phenomenon is found in several compressible ferroelectric
compounds [9]. In a recent contribution, a theoretical frame-
work was developed in the context of compressible insulating
systems and the possibility of QAC in other classes of many-
body systems, such as multiferroics [10], has been inferred
[11]. Therefore, the fundamental mechanisms concerning this
phenomenon beyond the context of compressible systems is a
subject worth exploring.

Recent investigations indicate that the frustrated Ising
model with antiferromagnetic (AFM) interactions between
first (J1) and second neighbors (J2) on the square lattice can
exhibit QAC induced by a transverse magnetic field [12,13].
At zero field, second-neighbor couplings drive a superan-
tiferromagnetic (SAFM) ground-state for g = J2/J1 � 0.5.
The classical phase transitions between SAFM and the para-
magnetic (PM) phases have been the subject of numerous
investigations [14–20]. State-of-the-art Monte Carlo simula-
tions for the classical model indicate that the phase boundary
between SAFM and PM phases exhibits a classical tricrit-
ical point at g∗

c = 0.67 ± 0.01 [18–20]. Therefore, thermal
fluctuations can drive discontinuous SAFM-PM phase transi-
tions for 0.5 � g < g∗

c. Recent results from cluster mean-field
(CMF) [12] and quantum cluster variational [13] methods
indicate that, for a certain range of g, the classical SAFM-PM
discontinuous phase transition becomes a continuous phase
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transition as the transverse magnetic field is increased. In
addition, series expansion calculations for the ground-state
phase diagram of the quantum counterpart of the model
show that continuous quantum phase transitions take place for
g < 0.67, suggesting that the coupling coordinate of the quan-
tum tricritical point (g∗

q) is smaller than the classical one [21].
Therefore, several results in literature suggests that criticality
is driven by quantum fluctuations in the J1-J2 Ising model,
making it prototypical for the study of QAC.

Several recent studies indicate that the presence of other
interactions in the antiferromagnetic J1-J2 Ising model can
alter its phase diagram [22–26]. For instance, third-neighbor
interactions (J3) can modulate the critical behavior of the
system, displacing the tricritical point at the SAFM-PM phase
boundary. Results from Monte Carlo simulations indicate that
g∗

c is displaced towards higher values as the strength of the
antiferromagnetic J3 couplings is increased [26]. In addition,
the staggered dimer (SD) phase, in which the system exhibits
a pattern with antialigned pairs of aligned spins, can take place
at weak antiferromagnetic third-neighbor couplings. Monte
Carlo and numerical transfer matrix data suggest that a discon-
tinuous transition separates SD and PM phases [26,27]. On the
other hand, ferromagnetic J3 favors the AFM and SAFM long-
range orders, increasing its transition temperatures [26,28].
Moreover, a very recent mean-field study indicated that an-
tiferromagnetic interactions can introduce a complex scenario
concerning the order-disorder phase transitions of the model
[29]. Therefore, the effects of the third-neighbor coupling
on classical criticality suggests that this interaction can be
relevant to the onset of QAC on the frustrated quantum Ising
model. In spite of the remarkable features of the J1-J2-J3 Ising
model on the square lattice, there is an open question as to the
effects of a transverse magnetic field on this model.

In this paper, we present a detailed investigation of the
effects of third-neighbor interactions on the frustrated square
lattice with Ising spins in the presence of a magnetic trans-
verse field. The main goal of the present work is to identify
the role of further neighbor interactions on the QAC phe-
nomenon. We note that third-neighbor interactions can play
a significant role in the behavior of magnetic systems, but its
strength is often weaker than the interactions between nearest
neighbors (see, for instance, Refs. [30–32]). Therefore, we
constrain our analysis to −0.4 � J3/J1 � 0.4. We remark that
it has been suggested that competing interactions can play
a relevant role on the onset of QAC [12]. In the presence
of weak AFM J3, a scenario of strong competition between
phases and interactions takes place, providing an interesting
context for the study of the QAC phenomenon. In order to
investigate the J1-J2-J3 transverse Ising model, we carried
CMF calculations, providing an estimate for the system’s free
energy from which the nature of phase transitions can be
identified. It is worth stressing that this methodology has been
wielded in the study of frustrated quantum spin Hamiltonians,
often providing an accurate description of phase boundaries
[33–39]. For instance, the method delivers a very precise
estimate for the coupling coordinate of the tricritical point
at the SAFM-PM phase boundary of the J1-J2 Ising model
on the square lattice, g∗

c ≈ 0.66, in strong agreement with
state-of-the-art Monte Carlo simulations [20]. This theoretical
framework also incorporates quantum fluctuations by exact

FIG. 1. Representation of the square lattice with first-neighbor
(solid black), second-neighbor (dashed red), and third-neighbor (dot-
ted blue) interactions.

diagonalization of the intracluster terms, which allowed the
QAC in the J1-J2 quantum Ising model to be identified [12].
Therefore, the CMF method can provide important insight
into the role of frustration and quantum fluctuations in the
phase transitions hosted by the J1-J2-J3 quantum Ising model.

This paper is organized as follows. In Sec. II, the energies
associated with the ordered phases in the absence of both
quantum and thermal fluctuations are discussed. In addition,
the CMF approach for each phase is presented. Phase dia-
grams and a detailed description of the free-energy landscape
are provided in Sec. III, where the effects of couplings, tem-
perature, and the transverse field on the present model are
described. Finally, a conclusion is given in Sec. IV.

II. MODEL AND METHOD

The Hamiltonian of the transverse Ising model is given by

H =
∑

i, j

Ji jσ
z
i σ z

j − �
∑

i

σ x
i , (1)

where Ji j is the exchange coupling between pairs of spins
at the vertices of a square lattice (see Fig. 1) and � is the
transverse magnetic field. Here, σ z

i and σ x
i denote the z and

x components of the Pauli spin matrices, respectively. In the
present work, we adopt antiferromagnetic interactions be-
tween first and second neighbors, i.e., J1 > 0 and J2 > 0. In
addition, we investigate the cases in which the third-neighbor
interactions can be ferromagnetic and antiferromagnetic, al-
lowing |J3| � 0.4J1.

In the zero-field limit of this model, three different ordered
phases can be found for the set of parameters adopted in
the present work. A Néel antiferromagnet, as illustrated in
Fig. 2(a), with a ground-state energy per spin of UAFM =
−2J1 + 2J2 + 2J3, can be found when first-neighbor inter-
actions are dominant. Strong second-neighbor interactions
can lead to the SAFM state, which is shown in Fig. 2(b).
In this phase, all second-neighbor interactions are satisfied,
while first-neighbor interactions are partially frustrated and
the third-neighbor interactions are fully frustrated, leading
to the ground-state energy per spin USAFM = −2J2 + 2J3. At
weak AFM third-neighbor interactions the system can exhibit
the SD phase, in which 1/4 of the AFM first-neighbor inter-
actions and 1/2 of the second- and third-neighbor couplings
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FIG. 2. Schematic view of spin configurations of the phases (a) AFM, (b) SAFM, and (c) SD. Red and black circles represent spins up and
down, respectively. Configurations in lower panels are obtained by global spin inversion of the configurations in upper panels.

are frustrated. This phase exhibits an eightfold degeneracy,
as shown in Fig. 2(c), and a ground-state energy of
USD = −J1. By comparing the ground-state energies of the
different phases, one can evaluate the ground-state phase dia-
gram of the present model.

In the presence of thermal and quantum fluctuations, the
exact free energy of this model is not available and one needs
to consider numerical and/or analytical approximations in or-
der to describe its phase transitions. In the present work, we
adopt a CMF approach, which has been employed in the study
of several spin models with competing interactions [24,40–
47], including the J1-J2 quantum Ising model on the square
lattice [12,48]. In this method, the system is divided into clus-
ters capable of exhibiting a repeating pattern. The interactions
within the clusters are treated exactly, while the couplings be-
tween clusters are evaluated following the standard mean-field
approximation σ z

i σ z
j ≈ mz

i σ
z
j + σ z

i mz
j − mz

i m
z
j , where mz

i is the
z component of the magnetization of site i. Here, we consider
a four-site cluster, which is known to provide an estimate for
the tricritical point in the SAFM-PM phase boundary for the
J1-J2 Ising model in excellent agreement with Monte Carlo
simulations [12,20,48]. Therefore, this approximation pro-
vides a starting point to introduce both quantum fluctuations
and third-neighbor interactions in the model.

Within the CMF approximation, the single-cluster Hamil-
tonian is given by

HCMF = H0 + HMF − �

4∑

i=1

σ x
i , (2)

with

H0 = J1
(
σ z

1 + σ z
4

)(
σ z

2 + σ z
3

) + J2
(
σ z

1σ z
4 + σ z

2σ z
3

)
(3)

containing the intracluster terms and HMF incorporating the
mean-field contribution. This term is a function of the local
magnetizations

mz
i = 〈

σ z
i

〉 = Tr σ z
i e−βHCMF

Tre−βHCMF
, (4)

where β = 1/kBT , in which T is the temperature and kB

is the Boltzmann constant. Within the present four-site ap-
proximation, one can relate the local magnetizations from
different sites and clusters in a straightforward way that de-
pends only on the particular phase under study. Therefore, the
CMF Hamiltonian can be written as a function of a single

local magnetization; here mz
1 is chosen as the independent

parameter.
For the AFM phase, as shown in Fig. 2(a), the clusters

exhibit the same magnetization pattern and within each cluster
the local magnetizations respect the relation mz

1 = −mz
2 =

−mz
3 = mz

4. Thereby, the intercluster Hamiltonian for this
phase can be written as

HAFM
MF = (−2J1 + 3J2 + 4J3)mz

1λAFM, (5)

where

λAFM = σ z
1 − σ z

2 − σ z
3 + σ z

4 − 2mz
1. (6)

For the SAFM phase, there are four equivalent magneti-
zation patterns, which are shown in Fig. 2(b). In the present
approach, we consider the magnetization patterns with an-
tialigned columns of spins, for which mz

1 = −mz
2 = mz

3 =
−mz

4. Then, the intercluster Hamiltonian is given by

HSAFM
MF = (−3J2 + 4J3)mz

1λSAFM, (7)

where

λSAFM = σ z
1 − σ z

2 + σ z
3 − σ z

4 − 2mz
1. (8)

It is worth stressing that this particular choice of the magneti-
zation pattern with columns provides equivalent results when
considering the other two possibilities depicted in Fig. 2(b)
[23].

For the SD phase, there are eight possible ground-states,
as shown in Fig. 2(c). We note that the ground-state energy
of this phase depends only on J1 and, therefore, we consider
the configurations that leads to more frustrated J1 interactions
within the cluster. In this way, frustration effects that could
be relevant for the phase transitions are incorporated by exact
diagonalization instead of the mean-field decoupling. The SD
configuration that leads to more frustrated first-neighbor intr-
acluster couplings is the one depicted in Fig. 3. In this case,
the local magnetizations can exhibit different patterns within
different clusters. In particular, cluster ν ′ exhibits the same
local magnetization pattern of the central cluster ν. On the
other hand, cluster ν ′′ exhibits a local magnetization pattern
in which equivalent sites from ν show a magnetization with
the opposite sign. It means that mz

i = mz
i′ = −mz

i′′, allowing
us to write the local magnetization from different clusters in
terms of the central one.

Within the central cluster ν, mz
1 = mz

2 = −mz
3 = −mz

4 and,
therefore, the MF contribution within the SD phase is given
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FIG. 3. The square lattice divided into four-site clusters within
the CMF approximation, with intracluster interactions J1 represented
by solid lines. The mean fields are represented by arrows only for
the site 1 of the central cluster ν. Solid circles indicate the local
magnetization pattern consistent with the SD phase.

by

HSD
MF =(−2J1 + J2)mz

1λSD, (9)

where

λSD = σ z
1 + σ z

2 − σ z
3 − σ z

4 − 2mz
1. (10)

In order to investigate the J1-J2-J3 Ising model, the single-
cluster problem given by Eq. (2) and the local magnetization
mz

1 = 〈σ z
1 〉 should be solved in a self-consistent way. The

mean-field term HMF should be adopted accordingly with the
phase under consideration; i.e., for the AFM, SAFM, and SD
phases, one must consider Eqs. (5), (7), and (9), respectively.
After solving the CMF Hamiltonian, one can compute the
system’s free energy per cluster,

F = −kBT ln Tre−βHCMF , (11)

for each phase. The order parameter of each phase can be
evaluated from the equations

mAFM = (
mz

1 − mz
2 − mz

3 + mz
4

)
/4,

mSAFM = (
mz

1 − mz
2 + mz

3 − mz
4

)
/4, and

mSD = (
mz

1 + mz
2 − mz

3 − mz
4

)
/4.

(12)

III. RESULTS

In this section, we present our numerical results within the
CMF approximation. The phase transitions are investigated by
computing the order parameter and the free-energy of each
phase. We discuss the phase transitions in terms of the free-
energy landscape, by evaluating the free energy per cluster as
a function of the order parameter. Within our calculations, the
local magnetization mz

1 is equivalent to the order parameter
and, therefore, the behavior of F (mz

1) allows us to describe
the nature of phase transitions. For numerical purposes, we
adopt kB = 1. The first-neighbor interaction (J1) is taken as the
energy unit. The second neighbor interaction is constrained to

FIG. 4. Classical phase diagram (� = 0) of the frustrated square
lattice. Solid and dashed lines represent continuous and discontinu-
ous phase transitions respectively. Solid circles indicate the tricritical
point. Dotted lines indicate the ground-state boundaries between the
ordered phases.

a positive value not larger than the first-neighbor coupling. We
also consider the relatively weak third-neighbor interactions
−0.4 � J3/J1 � 0.4.

A. Classical phase diagram

In Fig. 4, the classical phase diagram of the J1-J2-J3 Ising
model is presented. In the absence of third-neighbor interac-
tions, the coupling-temperature (J2/J1-T/J1) phase diagram
exhibits a tricritical point in the PM-SAFM phase bound-
ary at J2/J1 ≈ 0.66. This result is in agreement with several
others’ CMF implementations [12,20,48,49] and is in very
good agreement with state-of-the-art Monte Carlo simula-
tions that predict a tricritical point at J2/J1 ≈ 0.67 ± 0.01
[18]. The presence of ferromagnetic J3 < 0 interactions favors
AFM and SAFM long-range orders, increasing the transition
temperatures of these phases. For weak third-neighbor inter-
actions, the structure of the phase diagram is the same as
that for J3 = 0. For instance, for J3/J1 = −0.2, the AFM-PM
phase transitions are continuous and a tricritical point can be
observed in the SAFM-PM phase boundary. It is worth noting
that the range of J2/J1 in which discontinuous SAFM-PM
phase transitions take place is reduced with the increase of the
ferromagnetic third-neighbor interactions. As a consequence,
the tricritical point is displaced towards J2/J1 = 0.5. For a
strong enough ferromagnetic J3 coupling, the tricritical point
vanishes and all order-disorder phase transitions become con-
tinuous, as shown for J3/J1 = −0.4. Therefore, our findings
suggest that ferromagnetic third-neighbor couplings are able
to increase the ordering temperature and suppress first-order
phase transitions in the temperature-coupling phase diagram
of the model. We remark that Monte Carlo simulations for
the present model indicated that the ordering temperature of
the SAFM-PM phase transitions is enhanced by an increasing
magnitude of the ferromagnetic J3 coupling [26], corroborat-
ing our findings.

The presence of antiferromagnetic third-neighbor cou-
plings (J3 > 0) introduces an additional source of frustration
in the model. This coupling is not satisfied within the mi-
croscopic configurations of the AFM and SAFM phases,
increasing its ground-state energy. Thus, the AFM-PM
and SAFM-PM transition temperatures are reduced by the
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AFM

AFM

AFM

FIG. 5. Field-temperature phase diagram for J2/J1 = 0.2 and for
(a) ferromagnetic (J3/J1 = −0.2) third-neighbor couplings, (b) in
the absence of J3 and (c) in the presence of antiferromagnetic
(J3/J1 = 0.2) third-neighbor couplings. Solid lines indicate contin-
uous phase transitions.

increase in the antiferromagnetic J3 coupling. Moreover, an-
tiferromagnetic third-neighbor interactions drive the onset of
the degenerated SD phase near J2/J1 ≈ 0.5. In fact, the range
of J2/J1 in which the SD phase arises is proportional to
J3/J1. In the range of J3/J1 considered in this work, the
classical SD-PM transitions are discontinuous. This result is
in agreement with Monte Carlo simulations [26,28], which
indicates a strong first-order phase transition between SD and
PM phases. We also note that the coupling coordinate of the
tricritical point is displaced to higher values, as can be noted
for J3/J1 = 0.2. It is worth remarking that this displacement in
g∗

c is also observed in Monte Carlo outcomes [26]. Therefore,
our findings for the effects of third-neighbor couplings on the
classical J1-J2-J3 Ising model are in fair agreement with recent
Monte Carlo results.

B. Phase transitions under a transverse field

The presence of a finite transverse magnetic field intro-
duces quantum fluctuations on the J1-J2-J3 Ising model. Our
findings indicate that the effects of these quantum fluctua-
tions are determined by the strength of exchange couplings.
Although a strong enough transverse field can suppress any
magnetic long-range order, driving a polarized PM state, its
effect on the nature of phase transitions depends strongly on
the phases under transformation.

In Fig. 5, temperature versus transverse-field phase dia-
grams for J2/J1 = 0.2 depict quantum phase transitions from
the AFM to PM state at a critical transverse field. The presence
of ferromagnetic third-neighbor interactions increases the

AFM

AFM

FIG. 6. Field-temperature phase diagram for J2/J1 = 0.4 and for
(a) ferromagnetic (J3/J1 = −0.2) third-neighbor couplings, (b) in
the absence of J3 and (c) in the presence of antiferromagnetic
(J3/J1 = 0.2) third-neighbor couplings. The same convention of
Fig. 4 was adopted.

critical transverse field, as noted by conparing Figs. 5(a) and
5(b). On the other hand, an antiferromagnetic J3 coupling
reduces the critical transverse field of the AFM-PM phase
transition, as shown in Fig. 5(c) for J3/J1 = 0.2. Although
the location of phase transitions is affected by weak third-
neighbor couplings, their nature remains the same. In other
words, even in the presence of weak third-neighbor inter-
actions (J3/J1 = ±0.2), the system exhibits only continuous
phase transitions between AFM and PM phases.

Another interesting scenario arises for J2/J1 = 0.4 (Fig. 6),
which is close to the AFM-SAFM ground-state phase bound-
ary for J3/J1 � 0 and can lead to the SD phase for J3/J1 > 0.
While the AFM-PM phase boundary exhibits only continuous
phase transitions for J3/J1 = 0 and −0.2, discontinuous phase
transitions can be found in the whole SD-PM phase bound-
ary for J3/J1 = 0.2. Therefore, our results indicate that the
transverse field alone is unable to change the nature of phase
transitions for J2/J1 < 0.5.

Our findings support that a rich scenario is introduced
by quantum fluctuations when J2/J1 > 0.5. For J2/J1 = 0.6,
the nature of phase transitions is strongly dependent on the
strength of the third-neighbor interactions and the transverse
field (see Fig. 7). Strong enough third-neighbor ferromagnetic
interactions introduce continuous classical phase transitions.
As shown in Fig. 7(a), this SAFM-PM transition remains
continuous when the transverse field is increased. However,
in the presence of antiferromagnetic third-neighbor interac-
tions, the SD-PM phase boundary arises, exhibiting only
first-order phase transitions [see Fig. 7(c)]. Nevertheless, for
J3/J1 = 0, the nature of the SAFM-PM phase boundary is
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SAFM

SAFM

FIG. 7. Field-temperature phase diagram for J2/J1 = 0.6 and for
(a) ferromagnetic (J3/J1 = −0.2) third-neighbor couplings, (b) in
the absence of J3 and (c) in the presence of antiferromagnetic
(J3/J1 = 0.2) third-neighbor couplings. The same convention of
Fig. 4 was adopted.

strongly dependent on the transverse-field strength, as re-
ported in Ref. [12]. For weak transverse fields, a discontinuous
SAFM-PM phase transition is obtained [see Fig. 7(b)]. At
this phase transition, the free-energy landscape reveals three
minima near the order-disorder phase transition, as shown in
Fig. 8(a) for �/J1 = 1. Two of these minima occur at finite
values of mz

1, equidistant from 0, corresponding to the ordered
SAFM solution. Below the ordering temperature (i.e., T/J1 =
1.4590), the free energy of the SAFM solution is lower than
that of the PM solution (mz

1 = 0). At the ordering temperature,
the three minima exhibit the same value, as illustrated for
T/J1 = 1.4597. Just above the ordering temperature (T/J1 =
1.4610), the paramagnetic solution shows the lowest free en-
ergy, but the local minima associated with the SAFM solution
are still present. Increasing the transverse-field strength leads
to a change in the nature of phase transitions, as indicated by
the tricritical point in the phase diagram. Near tricriticality, the
free energy becomes more sensitive to thermal fluctuations. In
Fig. 8(b), the free-energy landscape for �/J1 = 1.75 is shown.
Although the system undergoes a first-order phase transition,
with three minima observed below and at the ordering tem-
perature, a single minimum can be observed slightly above
the ordering temperature. For stronger transverse fields, con-
tinuous phase transitions can be observed, as indicated by the
behavior of the free energy for �/J1 = 1.9 in Fig. 8(c). Below
the ordering temperature, two minima can be observed at finite
values of mz

1 and the paramagnetic solution corresponds to a
local maximum, which is expected near a continuous phase
transition. As temperature is increased towards the transition
temperature, the free-energy minima are displaced towards
mz

1 = 0 and a flat free-energy region can be noted very close

FIG. 8. Difference between the free energy per cluster as a func-
tion of the local magnetization mz

1 [F (mz
1)] and the free energy per

cluster of the paramagnetic phase [F (0)] near the ordering tempera-
ture for J2/J1 = 0.6 in the absence of third-neighbor couplings with
(a) �/J1 = 1 (b) �/J1 = 1.75, and (c) �/J1 = 1.9. The free energy
is computed assuming the SAFM phase solution.

to the ordering temperature. Within the paramagnetic phase,
the system exhibits a single minimum at mz

1 = 0. It is worth
stressing that this change in the nature of phase transitions
is ruled by quantum fluctuations introduced by the transverse
magnetic field.

In the absence of third-neighbor interactions, the QAC
phenomenon disappears for J2/J1 > 0.66, as reported in a
CMF study of the J1-J2 quantum Ising model [12]. This occurs
due to the absence of discontinuous classical phase transi-
tions. However, antiferromagnetic third-neighbor couplings
can favor the onset of discontinuous classical phase transitions
at stronger second-neighbor couplings, as shown in Fig. 4.
In Fig. 9, we present the effects of antiferromagnetic third-
neighbor couplings on the phase boundaries of the model
for J2/J1 = 0.75. The free-energy landscape is explored in
two scenarios, namely, weak quantum fluctuations and strong
thermal fluctuations (�/J1 = 1 near the ordering temperature)
and for strong quantum fluctuations and weak thermal fluc-
tuations (T/J1 = 0.4 and near the transition transverse field).
These scenarios are indicated by arrows in the phase diagrams
shown in Fig. 9. For J3/J1 = 0, the free-energy landscape
exhibits the signatures of continuous phase transitions at weak
[Fig. 9(d)] and strong [Fig. 9(g)] transverse fields in which
the nature of phase transitions is not affected by quantum
fluctuations. In Fig. 9(b), first-order phase transitions occur
for moderate transverse fields, such as �/J1 = 1, which means
that the free-energy exhibits minima associated with both
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SAFM

SAFM

FIG. 9. Effects of third-neighbor interactions on temperature–transverse-field phase diagrams for J2/J1 = 0.75. Panels (a)–(c) exhibit
phase diagrams in which the same convention of Fig. 4 was adopted. Upper and lower arrows indicate strong thermal/weak quantum and weak
thermal/strong quantum fluctuations, respectively. Each phase diagram is accompanied by plots of the free-energy landscape in the right-hand
side near the ordering temperature (upper arrows) for �/J1 = 1 [panels (d)–(f)] and near the transition transverse field (lower arrows) for
T/J1 = 0.4 [panels (g)–(i)]. The free energy is obtained by adopting the solution of the ordered phase in the corresponding phase diagram.

ordered and disordered phases below the ordering temperature
[see Fig. 9(e)]. At stronger transverse fields, the transition
becomes continuous as can be noted by the behavior of the
free energy in Fig. 9(h). Therefore, the QAC phenomenon
arises in the SAFM-PM phase boundary even for J2/J1 > 0.66
when antiferromagnetic third-neighbor couplings are present.
Remarkably, the same change in the nature of phase transi-
tions can be spotted in the phase diagram and the free-energy
landscape for J3/J1 = 0.4, in which a SD-PM phase transi-
tion is driven by both thermal and quantum fluctuations [see
Figs. 9(c), 9(f), and 9(i)] . Therefore, our findings suggest that
QAC is not restricted to the phase transitions between SAFM
and PM phases in the frustrated square lattice.

In Fig. 10, we summarize our findings, providing a pictorial
view of the effects of couplings on the classical and quantum
phase transitions hosted by the frustrated Ising square lattice.
Solid lines indicate the ground-state phase boundaries sep-
arating AFM, SAFM, and SD phases in the absence of the
transverse field. In addition, the location of the classical and
quantum tricritical points in the J2/J1-J3/J1 plane allows us
to identify regions in which only one type of phase transi-
tion can be driven by both temperature and transverse field.
The coupling coordinates of the classical tricritical points
can be obtained from temperature-coupling phase diagrams
in the zero-field limit, such as those shown in Fig. 4. For
the quantum tricritical points, the coupling coordinates were
obtained from field-coupling phase diagrams at T = 0 for

several strengths of J3/J1. The model exhibits only continuous
transitions between AFM and PM phases driven by both ther-
mal and quantum fluctuations. Therefore, no tricritical point

FIG. 10. The role of exchange couplings on the classical and
quantum phase transitions. Solid lines delimit the zero-field ground-
state phase boundaries. Solid circles and squares indicate the
coupling coordinates of the quantum and classical tricritical points,
respectively. Dashed lines are guides to the eye, delimiting the range
of exchange parameters in which QAC (indicated by lighter colors),
only continuous (C), and only discontinuous (D) phase transitions
can be found.
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is found in the AFM-PM phase boundary. In the SAFM-PM
phase boundary, there are regions in which both thermal and
quantum fluctuations drive phase transitions of the same na-
ture. However, one can identify a region in the J2/J1-J3/J1

plane in which classical phase transitions are discontinuous
(in the left-hand side of the classical tricritical points) but the
quantum phase transitions are continuous (in the right-hand
side of the quantum tricritical points). In this region, which is
indicated by a lighter color in Fig. 10, QAC can be found.
A region in which QAC can be observed is also indicated
for the SD-PM phase transition. In the range of parameters
considered in the present work, only discontinuous classical
phase transitions between SD and PM phases were found at
zero field. On the other hand, a transverse field can drive
zero-temperature continuous quantum phase transitions be-
tween these phases. Therefore, the coupling coordinates of
the quantum tricritical points in the SD-PM phase boundary
separate the region in which only discontinuous (quantum and
classical) phase transitions are observed and the region with
the emergence of QAC.

IV. CONCLUSION

We investigate the transverse-field Ising model on the
square lattice with exchange interactions between first, sec-
ond, and third neighbors. By employing a four-site CMF
approximation, we provide a description of the effects of
third-neighbor couplings and transverse fields on the nature
of phase transitions, presenting phase diagrams and the free-
energy landscape in the vicinity of phase transitions. In the
absence of transverse fields, our findings support that fer-
romagnetic J3 interactions favor AFM and SAFM phases,
enhancing its ordering temperatures, and avoid discontinuous
phase transitions in the SAFM-PM phase boundary, suppress-
ing tricriticality. On the other hand, weak antiferromagnetic J3

interactions can drive the onset of the SD phase and increase
the coupling coordinate of the tricritical point found in the
SAFM-PM phase boundary. These results are consistent with
the Monte Carlo data from the literature [26,28].

In the presence of transverse fields, results from CMF
[12] and quantum cluster variational [13] methods indicate
that the J1-J2 Ising model can exhibit the QAC phenomenon
in the SAFM-PM phase boundary. Our analysis of phase

transitions indicates that ferromagnetic J3 interactions sup-
press the onset of QAC in the model. On the other hand,
our results supported by the system’s free-energy landscape
suggest the QAC phenomenon is robust under the presence of
weak antiferromagnetic third-neighbor couplings, being also
found in the SD-PM phase boundary. Therefore, our work
reports on the possible onset of QAC in two different phases
of the frustrated square lattice. We hope that our CMF findings
motivate further investigations of the present model by means
of numerical and analytical methods, such as effective-field
theory [14], series expansion [21], quantum Monte Carlo [50],
and quantum cluster variational [13] methods. It is also worth
noting that our CMF investigation focused on the long-range
orders observed in the ground-state of the model, so we cannot
rule out the onset of other phases at finite temperature. In fact,
a recent mean-field investigation suggests that a complex sce-
nario of ordered phases can arise in the zero-field limit of the
present model [29]. Moreover, a relevant subject concerns the
onset of incommensurate phases, which have been reported
for frustrated Ising spin systems [27,51–53]. An interesting
question is whether these phases can arise in the J1-J2-J3

quantum Ising model, which could be addressed by employing
the numerical transfer matrix technique [27,52].

In our opinion, our findings for the frustrated quantum
Ising model make this particular model a prototype for the ex-
perimental realization of QAC. It is worth noting that several
two-dimensional magnets have been produced in the grow-
ing field of van der Waals materials [54], including magnets
with Ising anisotropy and competing interactions [55]. An-
other route to the experimental observation of QAC could
be the implementation of two-dimensional arrays of Rydberg
atoms, which have been used to simulate the antiferromag-
netic transverse-field Ising model on the square lattice [56,57].
We believe that mechanisms able to tune the interactions
in these experimental systems can provide platforms for the
investigation of the QAC phenomenon.
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