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α-divergence improves the entropy production estimation via machine learning
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Recent years have seen a surge of interest in the algorithmic estimation of stochastic entropy production (EP)
from trajectory data via machine learning. A crucial element of such algorithms is the identification of a loss
function whose minimization guarantees the accurate EP estimation. In this study we show that there exists a
host of loss functions, namely, those implementing a variational representation of the α-divergence, which can
be used for the EP estimation. By fixing α to a value between −1 and 0, the α-NEEP (Neural Estimator for
Entropy Production) exhibits a much more robust performance against strong nonequilibrium driving or slow
dynamics, which adversely affects the existing method based on the Kullback-Leibler divergence (α = 0). In
particular, the choice of α = −0.5 tends to yield the optimal results. To corroborate our findings, we present
an exactly solvable simplification of the EP estimation problem, whose loss function landscape and stochastic
properties give deeper intuition into the robustness of the α-NEEP.
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I. INTRODUCTION

How irreversible does a process look? One may pose this
question for two distinct reasons. First, whether a biological
process requires energy dissipation is often a subject of much
debate [1,2]. To resolve this issue, it is useful to note that
irreversibility suggests energy dissipation. Various hallmarks
of irreversibility, such as the breaking of the fluctuation-
dissipation theorem [3] and the presence of nonequilibrium
probability currents in the phase space [4,5], have been used
to determine whether energy is dissipated. Second, whether
a nonequilibrium system allows for an effective equilibrium
description is an important issue. For instance, in active mat-
ter, despite the energy dissipation at the microscopic level, it
has been argued that the large-scale phenomena allow for an
effective equilibrium description [6–10]. If we can quantify
the irreversibility of an empirical process at various levels of
coarse graining [11,12], it will provide us with helpful clues as
to whether we should look for an effective equilibrium theory
for the process.

Based on the framework of stochastic thermodynamics,
modern thermodynamics assigns entropy production (EP) to
each stochastic trajectory based on its irreversibility [13].
Thus, empirically measuring the irreversibility of a process is
closely tied to the problem of estimating EP from sampled tra-
jectories [14–21]. A straightforward approach to the problem
is to evaluate the relevant transition probabilities by directly
counting the number of trajectory segments, which is called
the plug-in method [14,15]. The method, readily applicable to
discrete systems, can also be applied to continuous systems
through the use of kernel functions [16]. However, while this
method is simple and intuitive, it requires a huge ensem-
ble of lengthy trajectories for accurate estimations (curse of
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dimensionality). More recent studies proposed methods based
on universal lower bounds of the average EP, such as the
thermodynamic uncertainty relations [16–19] and the entropic
bound [20]. While these methods do not suffer from the
curse of dimensionality and are applicable even to nonsta-
tionary processes [19,20], their accuracy is impaired when the
underlying bounds are not tight. Moreover, these methods are
applicable only to the estimation of the average EP, not the EP
of each trajectory.

Meanwhile, with the advent of machine learning tech-
niques in physics, a novel method for EP estimation using
artificial neural networks has been developed [21]. This
method, called the Neural Estimator for Entropy Production
(NEEP), minimizes the loss function based on a varia-
tional representation of the Kullback-Leibler (KL) divergence.
Without any presupposed discretization of the phase space and
using the rich expressivity of neural networks, the NEEP suf-
fers far less from the complications of the sampling issues and
is applicable to a diverse range of stochastic processes [19].

Still, the NEEP has its limits. Its accuracy deteriorates
when the nonequilibrium driving is strong or when the
dynamics slows down so that the phase space is poorly sam-
pled. In this study we show that the NEEP can be significantly
improved by changing the loss function. Toward this purpose,
we propose the α-NEEP, which generalizes the NEEP. Instead
of the KL divergence, the α-NEEP utilizes the α-divergence,
which has been mainly used in the machine learning commu-
nity [22–25]. We demonstrate that the α-NEEP with nonzero
values of α shows much more robust performance for a
broader range of nonequilibrium driving and sampling quality,
with α = −0.5 showing the optimal performance overall. This
is corroborated by an analytically tractable simplification of
the α-NEEP that shows the optimality of α = −0.5.

The rest of this paper is organized as follows. After re-
viewing the original NEEP and its limitations (Sec. II), we
introduce the α-NEEP (Sec. III) and demonstrate its enhanced
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performance for three different examples of nonequilibrium
systems (Sec. IV). Then we investigate the rationale behind
the observed results using a simplified model describing how
the α-NEEP works (Sec. V). Finally, we sum up the results
and discuss their implications (Sec. VI).

II. OVERVIEW OF THE ORIGINAL NEEP

We first give a brief overview of how the original
NEEP [21] estimates EP at the trajectory level. Suppose our
goal is to estimate EP of a Markov process in discretized time,
xt , in a d-dimensional space. For every ordered pair of states,
denoted by x ≡ (xt , xt+1), there is EP associated with the
transition between them, which is given by the ratio between
the forward and the backward path probabilities

�S(x) = log
p(x)

p(x̃)
, (1)

where x̃ ≡ (xt+1, xt ). Note that, throughout this study, we use
the unit system in which the Boltzmann constant can be set to
unity (kB = 1). Then it follows that the ensemble average of
this EP is equivalent to the KL divergence, which satisfies the
inequality

〈�S(x)〉 = DKL[p(x), p(x̃)]

�
〈
log r(x) − p(x̃)

p(x)
r(x) + 1

〉
p(x)

(2)

for any positive function r(x), given that 〈·〉p(x) denotes the
average with respect to the distribution p(x). This inequality
can be proven as follows: since log is a concave function,
the line tangent to any point never falls below the func-
tion. Thus, 1

r0
(r − r0) + log r0 � log r for any r and r0. By

putting r0 = r0(x) = p(x)/p(x̃) and taking the average with
respect to p(x), we get the inequality. In this derivation, we
immediately note that the equality condition is satisfied if
and only if r(x) = r0(x) = p(x)/p(x̃). Hence, by varying r(x)
to maximize the right-hand side of Eq. (2), we accurately
estimate the average EP 〈�S(x)〉. For this reason, Eq. (2) is
called the variational representation of the KL divergence.
Moreover, as a byproduct, we also obtain the function r0(x),
which yields an accurate estimate for trajectory-level EP by
�S(x) = log r0(x).

Kim et al. [21] used these properties to construct the loss
function of the NEEP. More specifically, they introduce sθ (x),
an estimator for trajectory-level EP parametrized by θ , and put
r(x) = esθ (x). Then Eq. (2) can be rewritten as

〈�S(x)〉 � 〈sθ (x) − esθ (x̃) + 1〉p(x), (3)

where 〈r(x) p(x̃)/p(x)〉p(x) = 〈r(x)〉p(x̃) = 〈r(x̃)〉p(x) has been
used based on the one-to-one correspondence between x and
x̃. Furthermore, since EP is odd under time reversal, i.e.,
�S(x) = −�S(x̃), it is natural to impose the same condition
on sθ . This leads to the inequality

〈�S(x)〉 � 〈sθ (x) − e−sθ (x) + 1〉p(x), (4)

which motivates the loss function

L(θ ) = 〈−sθ (x) + e−sθ (x) − 1〉p(x), (5)

so that the minimization of L(θ ) ensures the accurate EP
estimation sθ (x) = �S(x).

It is notable that L(θ ) defined above is a convex functional
of sθ . Thus, as long as the θ -dependence of sθ is well behaved,
any gradient-descent algorithm can reach the global minimum
of L(θ ) without getting trapped in a local minimum. In this
regard, the rugged loss function landscape is not a major issue
of the NEEP.

However, the performance of the NEEP strongly depends
on how well p(x) is sampled. Since the second term of L(θ )
depends exponentially on sθ (x), rare transitions with minute
p(x) can make nonnegligible contributions to L(θ ) when
e−sθ (x) is extremely large. Since the frequency of rare events
is subject to considerable sampling noise, the performance of
the original NEEP deteriorates in the presence of a strong
nonequilibrium driving, which induces rare transitions with
large negative EP. In the following section, we propose a loss
function that remedies this weakness of the NEEP.

III. FORMULATION OF THE α-NEEP

Here we formulate a generalization of the NEEP loss func-
tion with the goal of mitigating its strong sampling-noise
dependence. We note that the loss function needs not be an
estimator of average EP 〈�S(x)〉, for our goal is to estimate
�S(x) at the level of each trajectory. Thus, while the original
NEEP uses the variational representation of the KL divergence
corresponding to 〈�S(x)〉, we propose a different approach
based on the variational representation of the α-divergence,
which quantifies the difference between a pair of probability
distributions p(x) and q(x) as

Dα[p :q] ≡
〈

[p(x)/q(x)]α − 1

α(1 + α)

〉
p(x)

. (6)

Since this reduces to the KL divergence in the limit α → 0,
our approach generalizes the NEEP by introducing an extra
parameter α. To emphasize this aspect, we term our method
the α-NEEP.

The goal of the α-NEEP is to find r(x) that minimizes the
loss function

Lα[r] ≡
〈
− r(x)α − 1

α
+ q(x)

p(x)

r(x)1+α − 1

1 + α

〉
p(x)

, (7)

where p(x) and q(x) are probability density functions, and α

is a real number other than 0 and −1. See Appendix B for
discussion of these two exceptional cases. It can be rigorously
shown (see Appendix B) that Lα[r] satisfies the inequality

Lα[r] � −Dα[p :q], (8)

where the equality is achieved if and only if r(x) = p(x)/q(x)
for all x. In other words, by minimizing Lα[r] to find Dα[p :q],
we also obtain an estimate for the ratio p(x)/q(x). We note
that the properties of Lα[r] used here are also valid for a much
more general class of loss functions, as discussed in [22,23]
(also see Appendix B).

Based on Eq. (8), we can construct a loss function

Lα (θ ) =
〈
−eαsθ (x) − 1

α
+ e−(1+α)sθ (x) − 1

1 + α

〉
. (9)
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hθ(xt,xt+1)

hθ(xt+1,xt)

Lα(θ)
sθ(xt,xt+1) To minimize

Update θ

xt

xt+1

FNN

FNNxt

xt+1

FIG. 1. Schematic illustration of the neural-network implemen-
tation of the α-NEEP.

Note that this reduces to the loss function of the original
NEEP shown in Eq. (5) in the limit α → 0. If sθ is suffi-
ciently well behaved, the minimization of Lα (θ ) yields the
minimizer θ∗, which satisfies Lα (θ∗) = −Dα[p(x), p(x̃)] and
�S(x) = sθ∗ (x). The former is generally not equal to average
EP 〈�S(x)〉 (unless α → 0), but the latter ensures the accurate
estimation of trajectory-level EP �S(x).

Comparing Eqs. (5) and (9), one readily observes that the
exponential dependence on sθ (x) can be made much weaker
in Lα (θ ) by choosing the value of α between −1 and 0. Since
this mitigates the detrimental effects of the sampling error
associated with rare trajectories with large negative sθ (x), one
can naturally expect that the performance of the α-NEEP is
much more robust against strong nonequilibrium driving. This
is confirmed in the following sections.

Before proceeding, a few remarks are in order:
(1) The loss function satisfies L−(1+α)(θ ) = Lα (θ ), so the

α-NEEP is symmetric under the exchange α ↔ −(1 + α).
For this reason, in the rest of this paper, we focus on the
regime −0.5 � α � 0 (the regime α > 0 leads to very poor
performance and is left out).

(2) From the antisymmetry �S(x) = −�S(x̃), we may
set the estimator sθ to be related to the feed-forward neural
network (FNN) output hθ as

sθ (x) = hθ (x) − hθ (x̃), (10)

so that the neural network focuses on the estimators that
satisfy the antisymmetry of EP for more efficient training. The
method described so far is schematically illustrated in Fig. 1.

(3) We emphasize that the minimized Lα is not directly
related to average EP. In all cases we compute the average EP
by averaging sθ over the sampled transitions.

IV. EXAMPLES

To assess the performance of the α-NEEP for various
values of α, we apply the method to toy models of nonequi-
librium systems, namely, the two-bead model, the Brownian
gyrator, and the driven Brownian particle.

(i) The two-bead model. This model has been used in
a number of previous studies as a benchmark for test-
ing EP estimators [4,16,18,21]. The model consists of two

TcTh

xcxh

k k k

FIG. 2. (a) Illustration of the two-bead model. (b) Mean square
error (MSE) of the EP estimate for various temperature differences.
(c) Ratio between the estimated value σpred and the true value σ of
average EP for the two-bead model. Temperature of the cold bath is
fixed at Tc = 1. Each data point and error bar are obtained from 40
independent trainings.

one-dimensional (1D) overdamped beads which are con-
nected to each other and to the walls on both sides by identical
springs; see Fig. 2(a). The beads are in contact with heat baths
at temperatures Th and Tc with Th > Tc. Denoting by xh (xc)
the bead in contact with the hot (cold) bath, the stochastic
equations of motion are given by

γ ẋh = k(−2xh + xc) +
√

2γ Thξh(t ), (11a)

γ ẋc = k(−2xc + xh ) +
√

2γ Tcξc(t ). (11b)

Here k is the spring constant, γ the friction coefficient,
and ξh, c the Gaussian thermal noise with zero means and
〈ξh(t )ξh(t ′)〉 = 〈ξc(t )ξc(t ′)〉 = δ(t − t ′). For infinitesimal dis-
placements (dxh, dxc), the associated EP is given by

�S = k

γ

[
2xh − xc

Th
◦ dxh + 2xc − xh

Tc
◦ dxc

]
+ �Ssys, (12)
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where ◦ denotes the Stratonovich product and �Ssys the
change of the system’s Shannon entropy, namely,

�Ssys = − ln
ps(xh + dxh, xc + dxc)

ps(xh, xc)
, (13)

for the steady-state distribution ps(xh, xc). Since the system is
fully linear, ps(xh, xc) can be calculated analytically. Thus the
EP of this model can be calculated exactly using Eq. (12) and
compared with the α-NEEP result.

To see how the predicted EP differs from the true EP,
we observe the behavior of the mean square error (MSE)
〈(sθ − �S)2〉. In Fig. 2(b) we observe that strengthening the
nonequilibrium driving (by increasing Th while keeping Tc =
1) tends to impair the EP estimation. This is because a stronger
driving makes the reverse trajectories of typical trajectories
rarer, lowering the sample quality. The adverse effects of
the nonequilibrium driving are the strongest for the original
NEEP (α = 0), which are mitigated by choosing different
values of α. Remarkably, choosing α = −0.5 leads to the
most robust performance against the driving.

As an alternative measure of the estimator’s performance,
we also observe the ratio between the predicted average EP
σpred and the exact average EP σ . The results are shown in
Fig. 2(c), which exhibit two different regimes. As Th increases,
there is a regime where the estimator overestimates aver-
age EP, which is followed by an underestimation regime. A
detailed explanation for this behavior will be given in Sec. V
using a simplified model. At the moment, we note that σpred/σ

tends to deviate away from 1 most strongly for the original
NEEP (α = 0), while choosing different values of α makes
the ratio stay closer to 1. Again, the optimal value of α seems
to be −0.5.

(ii) The Brownian gyrator. This simple model of a single-
particle heat engine allows us to check the effects of a
nonequilibrium driving apart from the temperature difference
Th > Tc. The dynamics of the model is governed by

γ ẋh = −∂xhU (xh, xc) + εxc +
√

2γ Th ξh(t ), (14a)

γ ẋc = −∂xcU (xh, xc) + δxh +
√

2γ Tc ξc(t ), (14b)

where U (xh, xc) = 1
2 k(x2

h + x2
c ) is the harmonic potential, and

(εxc, δxh ) is a nonconservative force that drives the system out
of equilibrium and enables work extraction. See Fig. 3(a) for
an illustration of this system. For infinitesimal displacements
(dxh, dxc), the associated EP is given by

�S = −Qh

Th
− Qc

Tc
+ �Ssys, (15)

where

Qh = (∂xhU − εxc) ◦ dxh, (16a)

Qc = (∂xcU − δxh) ◦ dxc, (16b)

and �Ssys the change of the system entropy. Again, the
system is fully linear, and the steady-state distribution can be
calculated analytically, allowing exact calculations of EP at
the trajectory level.

Setting Th/Tc = 10 and ε = −δ, we vary the magnitude of
ε to assess the robustness of the α-NEEP in terms of the MSE
and the ratio σpred/σ , as shown in Figs. 3(b) and 3(c), respec-
tively. The results are qualitatively similar to the case of the

U(xh, xc)

xc

xh

Tc

Th

FIG. 3. (a) Illustration of the Brownian gyrator. Circles represent
the equipotential lines, and the dashed arrows indicate the directions
of the nonconservative driving. (b) MSE of the EP estimate for the
Brownian gyrator model as the magnitude of nonconservative force,
ε = −δ, is varied. (c) Ratio between the estimated value σpred and the
true value σ of average EP for the Brownian gyrator. Temperatures
are fixed at Th = 10 and Tc = 1. Each data point and error bar are
obtained from 40 independent trainings.

two-bead model: as the nonconservative driving gets stronger,
the performance of the original NEEP (α = 0) deteriorates the
most, while other values of α yield more robust results. Again,
α = −0.5 seems to be the optimal choice.

(iii) The driven Brownian particle. While the two examples
given above were both linear systems, we also consider a non-
linear system featuring a 1D overdamped Brownian particle in
a periodic potential U (x) = A sin x driven by a constant force
f . The motion of the particle is described by the Langevin
equation

γ ẋ = f − U ′(x) +
√

2γ T ξ (t ), (17)
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f

U(x) = A sin x

FIG. 4. (a) Illustration of the driven Brownian particle. (b) MSE
of the EP estimate for the driven Brownian particle as the potential
depth A is varied. (c) Ratio between the estimated value σpred and
the true value σ of the average EP for the driven Brownian particle.
Strength of the nonequilibrium driving is fixed at f = 32 and the
temperature at T = 1. Each data point and error bar are obtained
from 40 independent trainings.

where ξ (t ) is a Gaussian white noise with unit variance. See
Fig. 4(a) for an illustration of the model. For sufficiently large
A, this model can approximate the behaviors of the Markov
jump process on a discrete chain. For this model, the EP
associated with the infinitesimal displacement dx is given by

�S = − f dx + U (x + dx) − U (x)

T
+ �Ssys, (18)

where �Ssys = − ln ps(x + dx)/ps(x) again denotes the
Shannon entropy change for the steady-state distribution
ps(x). Since the system is 1D, it is straightforward to obtain
ps(x) by numerical integration. Thus, the EP of this model can
also be calculated exactly and compared to the α-NEEP result.

Fixing f = 32, the performance of the α-NEEP for this
model is shown in Figs. 4(b) and 4(c) in terms of the MSE and

the ratio σpred/σ , respectively. Due to the presence of a strong
background driving ( f = 32), there are already considerable
differences among different methods at A = 0. But it is worth
noting that increasing the amplitude A of the periodic potential
U (x) clearly increases the MSE and makes σpred/σ deviate
farther away from 1 for the original NEEP (α = 0). This
may be the consequence of rarer movements (jumps from one
potential well to the next) across the system as the potential
well gets deeper, which means rare trajectories are even more
poorly sampled. The α-NEEPs with nonzero values of α are
much more robust against the increase of A, with α = −0.5
showing the best performance overall.

V. SIMPLE GAUSSIAN MODEL

The results shown thus far clearly indicate that, by choos-
ing a nonzero value of α, the α-NEEP can exhibit a much more
robust performance against the adverse effects of the nonequi-
librium driving. Moreover, α = −0.5 seems to exhibit the
best performance in many cases. To gain more intuition into
these results, we simplify the EP estimation problem to the
density-ratio estimation problem for a 1D random variable. To
be specific, we estimate the log ratio s(x) ≡ log p(x)/p(−x)
given samples drawn from the distribution p(x). It is intu-
itively clear that this problem is structurally equivalent to EP
estimation.

For further simplification, we set

p(x) =
{
N exp

[ − (x−μ)2

2σ 2

]
for |x − μ| � kσ ,

0 otherwise.
(19)

Here N is a suitable normalization factor, μ the positive mean
of the distribution, σ the width of the distribution, and k a
positive number truncating the tails of the distribution. While
k = ∞ corresponds to the perfect sampling of a Gaussian
distribution, a finite k corresponds to the case where the tails
of the distribution are poorly sampled.

For k = ∞, the correct answer to the problem is a linear
function s(x) = θ0x, where θ0 ≡ 2μ/σ 2. Thus, for further
simplicity, we focus on the one-parameter model sθ (x) = θx,
which estimates s(x) using only a single parameter θ . For this
problem, the suitable loss function is obtained as an analog of
Eq. (9):

Lα (θ ) =
〈
− (1 + α)eαθx − 1

α
+ e−(1+α)θx

〉
p(x)

. (20)

If k is large but finite, the minimum of this loss function
shifts to θ0 + �θ , where �θ can be expanded to the leading
orders in 1/k:

�θ ∼ exp

[
−k2

2
+ 2μ

σ

(∣∣∣∣α + 1

2

∣∣∣∣ + 1

2

)
k

]
. (21)

This clearly shows that α = −0.5 gives the least shift �θ , as
also illustrated by various results shown in Fig. 5.

In Fig. 5(a) we show that the shift of the minimum �θ

tends to increase as the tail sampling becomes poorer (i.e., k
decreases). The landscapes of the loss function Lα (θ ), shown
in the inset of Fig. 5(a), also confirm this observation. The
increase of the error with the potential depth A in Figs. 1(d)
and 2(b) may primarily be due to the same effect.
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FIG. 5. Performance of the exactly solvable one-parameter model. (a) Shift �θ of the loss function minimum as a function of the truncation
parameter k. Circles are results obtained by numerical minimization, and solid lines are from the small 1/k expansion. (Inset) Loss function
landscapes, with circles indicating the minima. We fixed μ = 3, σ = 1, and α = 0. (b) Ratio of the estimated minimum θ∗ to the true minimum
θ0 as the bias μ is varied. The optimal points are calculated using the criterion that the loss function gradient satisfies |∂θLα (θ )| < 10−3 for
the first time as θ increases from 0. We fixed k = 4 and σ = 1. (Inset) Loss function landscape. Open diamonds indicate the true minima θ0,
and filled diamonds represent the estimated minima θ∗. The parameters α = −0.5 and k = 4 are fixed. (c) MSE of θ . The vertical dashed line
shows that the error is minimized at α = −0.5. (d) Distribution of the loss function gradient ∂θLα at the minimum θ0 = 2 for μ = σ = 1.

In Fig. 5(b) we plot the ratio between the estimated mini-
mum θ∗ and the true minimum θ0 as a function of the mean
μ, which is an analog of the nonequilibrium driving. We note
that here θ∗ is the lowest value of θ at which the slope of
the loss function becomes less then 10−3. We observe that an
overestimation regime (θ∗/θ0 > 1) crosses over to an under-
estimation regime (θ∗/θ0 < 1) as μ grows. This is in striking
agreement with the trends shown in Fig. 2(a). The reason
why θ∗ underestimates θ0 for large μ can be understood by
the flattened loss function landscapes shown in the inset of
Fig. 5(b). In this regime the dynamics of θ (starting from
θ = 0) slows down, ending up at a value (filled diamonds)
even lower than θ0 (empty diamonds). This effect is due to the
samples with x < 0 vanishing when μ is too large. We expect
that a similar mechanism might be at play behind the observed
behavior of σpred/σ shown in Fig. 2(a). If we had used a
broader range of nonequilibrium driving, the same behaviors
might have been observed for other models as well, although
this remains to be checked.

The one-parameter model also allows us to examine the
effects of the finite minibatch size M. While the ideal loss
function is given in Eq. (20), the loss function used in the
actual training looks like

Lα (θ ; M ) = 1

M

∑
i

[
− (1 + α)eαθXi − 1

α
+ e−(1+α)θXi

]
,

(22)

where X1, . . . , XM are i.i.d. Gaussian random variables of
mean μ and variance σ 2. When M is large and finite, using the
central limit theorem (CLT), the gradient of this loss function
can be approximated as [26,27]

∂Lα

∂θ

∣∣∣∣
θ=θt

= K̄ (θt − θ0) +
√

�

M
Nt + o(M−1/2), (23)

where θ0 = argmin(〈Lα (θ )〉), K̄ = ∂2
θ 〈Lα〉|θ=θ0

, and � =
Var[∂θLα|θ=θ0, M=1]. When the stochastic gradient descent
θt+1 = θt − λ(∂Lα/∂θ )|θ=θt

reaches the steady state, the MSE

of θ is given by

〈(θ − θ0)2〉s = λ�

MK̄ (2 − λK̄ )
+ o(M−1). (24)

This leading-order behavior is shown in Fig. 5(c) for various
values of μ. For all cases, the MSE of θ is minimized at
α = −0.5, which is consistent with the smallest error bars
observed at α = −0.5 in Figs. 1 and 2. Hence, α = −0.5
yields the most consistent EP estimator.

Direct measurements of the loss function gradient at the
minimum also confirm the above result. As shown in Fig. 5(d),
the gradient ∂θLα is far more broadly distributed for α = 0
than for α = −0.5. Moreover, due to the subleading effects
(beyond the CLT) of finite M, the gradient for α = 0 features
a large skewness. These show that the training dynamics for
the original NEEP (α = 0) tends to be far more volatile and
unstable than for the α-NEEP with α = −0.5.

VI. SUMMARY AND OUTLOOK

We proposed the α-NEEP, a generalization of the NEEP for
estimating steady-state EP at the trajectory level. By choos-
ing a value of α between −1 and 0, the α-NEEP weakens
the exponential dependence of the loss function on the EP
estimator, effectively mitigating the adverse effects induced
by poor sampling of transitions associated with large neg-
ative EP in the presence of strong nonequilibrium driving
and/or deep potential wells. We also observed that α = −0.5
tends to exhibit the optimal performance, which can be un-
derstood via a simplification of the original EP estimation
problem, whose loss function landscape and relaxation prop-
erties are analytically tractable. The α-NEEP thus provides
a powerful method for estimating the EP for much broader
range of the nonequilibrium driving force and the timescale
of dynamics. Identification of even better loss functions and
optimization of other hyperparameters (network size, number
of iterations, etc.) are left as future work. It would also be
interesting to apply the α-NEEP to estimations of the EP of the
Brownian movies [28] and stochastic systems with odd-parity
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variables [29], which have been studied using the original
NEEP method.
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APPENDIX A: TRAINING DETAILS

We always use the fully connected network (FCN) with
three hidden layers, with each layer composed of 512 nodes.
Each training dataset consists of 106 trajectories. The neural
network parameters are updated using the ReLU activation
function and the Adam optimizer. The learning rate is fixed to
10−5, and the weight decay is fixed to 5 × 10−5. We halt the
training after 10 000 iterations, except for the results shown
in Figs. 8 and 9 (see Appendix C), where we continue the
training for a longer time to check the overfitting effects.
All trainings are done on PyTorch with NVIDIA GeForce
RTX 3090.

FIG. 6. Coefficient of determination R2 for (a) the two-bead
model with Tc = 1 and for (b) the driven Brownian particle with
f = 32. 104 trajectories are used for each minibatch, and error
bars indicate the standard deviations obtained from 40 independent
trainings.

In subfigure (b) of Figs. 2–4, each minibatch consists of
104 trajectories. On the other hand, in subfigure (c) of Figs. 2–
4, each minibatch consists of 105 trajectories.

APPENDIX B: DENSITY RATIO ESTIMATION VIA
f -DIVERGENCE

Here we show that the the loss function Lα[r] given in
Eq. (7), whose minimization allows us to estimate the ratio
between two probability density functions, can be generalized
even further using the concept of f -divergence. Consider a
convex, twice-differentiable real-valued function f (u). Then
the inequality

−p f ′(u) + q[u f ′(u) − f (u)] � −q f (p/q) (B1)

holds. We can verify this by differentiating the left-hand side
(LHS) with respect to u, which yields f ′′(u)(−p + qu). Thus,
the LHS has a local minimum at u = p/q, and this is the
only local minimum since f is convex. In addition, the second
derivative of the LHS at u = p/q equals q f ′′(p/q), which is
positive by the convexity. This proves the inequality (B1).

Using this result, we can design a loss function whose
minimum is equal to the negative f -divergence between two
probability distributions p(x) and q(x). To be specific, for any

FIG. 7. Effects of the minibatch size on the performance of the
α-NEEP for the two-bead model with Th = 1000 and Tc = 1. Error
bars indicate the standard deviations obtained from 40 independent
trainings.
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FIG. 8. Training dynamics of the α-NEEP for the two-bead model at Th = 10. Each minibatch consists of 105 trajectories. The first and the
third columns show the performance for the training set [blue (dark gray curve)] and the test set [orange (light gray curve)]. The second and the
fourth columns show the difference in performance between the two datasets. The first (last) two columns correspond to α = −0.5 (α = 0).

function r(x), we define

L f [r] =
〈
− f ′(r(x)) + q(x)

p(x)
[r(x) f ′(r(x)) − f (r(x))]

〉
p(x)

=
∫

d2d x {−p(x) f ′(r(x))

+ q(x)[r(x) f ′(r(x)) − f(r(x))]}. (B2)

Using Eq. (B2), we conclude that

L f [r] � −
∫

d2d x q(x) f

(
p(x)

q(x)

)
= −D f [p :q], (B3)

where D f [p : q] is the f -divergence between the distributions
p(x) and q(x), and the equality holds if and only if r(x) =
p(x)/q(x) for all x. By minimizing L f [r], we can estimate
p(x)/q(x) as well as D f [p :q].

The loss function Lα and the associated α-divergence dis-
cussed in the main text are obtained by choosing the function
f to be

fα (u) =

⎧⎪⎪⎨
⎪⎪⎩

u1+α−(1+α)u+α

α(1+α) for α �= 0, −1,

u log u for α = 0,

log u + 1 − u for α = −1.

. (B4)

Note that f0(u) = limα→0 fα (u) and f−1(u) = limα→−1 fα (u).
It is straightforward to obtain Eq. (9) and its extensions to the
cases α = 0 and α = −1 from this choice.

APPENDIX C: EXTRA NUMERICAL RESULTS

1. Coefficient of determination

In the literature the extent of agreement between a predic-
tion and the true value is often expressed by the coefficient

of determination R2. Here we check how the behaviors of R2

differ as the value of α changes for the cases of the two-bead
model and the driven 1D Brownian particle.

For the two-bead model, as shown in Fig. 6(a), R2

exhibits a nonmonotonic behavior as a function of Th. The
decrease of R2 with increasing Th reflects the detriment of
the α-NEEP performance as the nonequilibrium driving gets
stronger. Meanwhile, the decrease of R2 as Th decreases (get-
ting closer to equilibrium Th = Tc = 1) is due to the overfitting
phenomenon discussed in the next section, which disrupts the
linear relationship between the predicted EP and the true EP.

For the driven Brownian particle, as shown in Fig. 6(b), R2

always increases with A. This may seem contradictory to how
the MSE tends to increase or stay constant with increasing A
in Fig. 4(b). Indeed, higher R2 only means that there is a good
linear relationship between the EP estimate sθ and the true EP
�S, not that sθ and �S are close to each other. When A is
increased, due to the slower dynamics, we may have sθ > �S
for transitions with positive EP and sθ < �S for transitions
with negative EP, which can make the linear relationship be-
tween sθ and �S appear stronger. This example clearly shows
that R2 is not an adequate measure of the performance of EP
estimators.

2. Effects of the minibatch size

The minibatch refers to the group of samples used for
computing the gradient of the loss function. Smaller (larger)
minibatches increase (decrease) the noisy component of the
gradient, which in turn affects the performance of the α-
NEEP.

We explicitly check the effects of the minibatch size using
the two-bead model with Th = 1000 and Tc = 1, as shown
in Fig. 7. We use the ratio σpred/σ and the MSE as two
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FIG. 9. Training dynamics of the α-NEEP for the two-bead model at Th = 3000 and Tc = 1. Each minibatch consists of 105 trajectories.
The first and the third columns show the performance for the training set [blue (dark gray curve)] and the test set [orange (light gray curve)].
The second and the fourth columns show the difference in performance between the two datasets. The first (last) two columns correspond to
α = −0.5 (α = 0).

different measures of the α-NEEP performance. For small
minibatches, the highly skewed distribution of the stochastic
gradient shown in Fig. 5(d) causes underestimation of the
EP. For large minibatches, the noisy component of the loss-
function gradient decreases, revealing the properties of the
loss function landscape of the training dataset. As discussed
using the Gaussian model in Sec. V, the loss function land-
scape at a moderately strong nonequilibrium driving leads to
the overestimation of the EP. Thus, as the minibatch size is
increased, σpred/σ grows beyond 1.

The nonmonotonic behaviors of the MSE also hint at the
existence of an optimal minibatch size at the tradeoff between
the skewed noise in the gradient (which drives the neural
network towards underestimation) and the loss function land-
scape tilted towards overestimation. For both measures, the
superiority of α = −0.5 to α = 0 is manifest.

3. Effects of overfitting

In many cases, when the training continues for too many
iterations, artificial neural networks are known to exhibit over-
fitting behaviors. As shown in Figs. 8 and 9, we checked
whether the α-NEEP is also subject to the same phenomena
as the training continues up to 20 000 iterations. Towards
this end, we created two independent datasets of trajecto-
ries exhibited by the two-bead model, namely, the training
set and the test set. Only the former was used during the
training of the α-NEEP, and we measured the MSE and the
ratio σpred/σ to assess the performance of the α-NEEP for
each dataset.

In Fig. 8 we show the results for the weak nonequilib-
rium driving (Th = 10 and Tc = 1). The first and the third
columns show the two different measures of performance
for the training dataset and the test dataset. Meanwhile, the
second and the fourth columns show the difference between
the corresponding measures obtained for two datasets. The
overfitting phenomena are manifest from the increase of the
MSE towards the end of the training. Interestingly, overfitting
leads to an overestimation of the average EP only for the
training dataset. We also note that the value of α is largely
irrelevant to the extent of overfitting. This phenomenon can
be explained as follows. Near equilibrium, the neural net-
work swiftly reaches the loss function minimum. However,
as the training continues, the neural network starts to see
the detailed fluctuations of the training dataset. This makes
the functional form of the estimator sθ very rough, leading
to the increase of the MSE for both datasets. But while the
neural network now believes all trajectories in the training
dataset to be highly irreversible and assigns high EP to them,
the EP assigned to the trajectories in the test dataset stay
unbiased. Thus, σpred/σ grows larger only for the training
dataset.

In Fig. 9 we show the results for the strong nonequilibrium
driving (Th = 3000 and Tc = 1). The subfigures are organized
in exactly the same way as in Fig. 8. In this case the overfitting
effects do exist. But they are not as pronounced as in the
case of the weaker nonequilibrium driving, and the differences
between the training and the test datasets stay small. Note that
the curves for α = 0 exhibit strong fluctuations, which is in
agreement with the large fluctuations of the gradient shown in
Fig. 5(d).
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