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Magnetically controlled quantum thermal devices via three nearest-neighbor
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A quantum thermal device based on three nearest-neighbor coupled spin-1/2 systems controlled by the
magnetic field is proposed. We systematically study the steady-state thermal behaviors of the system. When
the two terminals of our system are in contact with two thermal reservoirs, respectively, the system behaves
as a perfect thermal modulator that can manipulate heat current from zero to specific values by adjusting
magnetic-field direction over different parameter ranges, since the longitudinal magnetic field can completely
block the heat transport. Significantly, the modulator can also be achieved when a third thermal reservoir perturbs
the middle spin. We also find that the transverse field can induce the system to separate into two subspaces in
which neither steady-state heat current vanishes, thus providing an extra level of control over the heat current
through the manipulation of the initial state. In addition, the performance of this device as a transistor can be
enhanced by controlling the magnetic field, achieving versatile amplification behaviors, in particular substantial
amplification factors.
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I. INTRODUCTION

Quantum thermodynamics [1–9] is a cross discipline that
describes the thermodynamic behavior of quantum systems. It
allows us to test thermodynamic laws at the quantum level and
to design quantum thermal devices that control heat current
as the electric current in electricity to realize amplification,
rectification, modulation, and so on [3,4]. Recently, more and
more attention has been attracted to various quantum thermal
devices, such as quantum refrigerators [10–15], quantum ther-
mal transistors [16–32], quantum thermal diode [16,33–41],
quantum batteries [42,43], and quantum modulators [44–48].

Many physical systems such as superconducting circuits
[26,49–51], quantum dots [10,18,30,48,52,53], cavity QED
systems [54–57], and optomechanical setups [58–63] are good
platforms for implementing quantum thermal devices. The
coupled spin-1/2 system has been widely employed to design
thermodynamic devices such as the smallest self-contained
quantum refrigerator [10], the smallest quantum thermal ma-
chine [12], the quantum heat manager [31,46], and the thermal
transistor [17,20,22,24,25]. What is more, rapid development
has been made in the simulation and experiment of magnetic
models, coupled-spin models such as the Ising model [64–70]
and Heisenberg XXZ model [71–74], including their simu-
lated systems, have a good experimental foundation [66,75–
78]. Trapped ions are widely used in the spin chain system
[63,75]. To more conveniently control the spin-spin inter-
action, Rydberg-dressed atom array is a friendly candidate.
Rydberg-dressed technology can be used to design the long-
range interaction in spin chains or lattices [79,80], and a
distance-selective Ising interaction can be achieved by cou-

*ycs@dlut.edu.cn

pling an off-resonant laser with the Rydberg atomic pairs [81],
indicating a potential and experimentally reliable application
prospect in quantum thermodynamic devices.

Furthermore, the thermodynamic device can manipulate
heat currents in various ways. The heat current for the thermal
transistor is usually controlled by a weak heat current [17,21].
Recently, it has been shown that the multi-subspace systems
can control steady-state heat current by preparing initial states
on purpose [47,48]. The dark state of a system can also be
used to control heat currents for quantum thermal diodes [40].
The control of thermal current by external manipulation is
attracting increasing interest. Sinusoidal modulation or π -flip
modulation is used to realize a periodically driven thermal
transistor [24]. In a coupled superconducting qubit system,
the heat current can be controlled by changing the magnetic
flux [44], and the thermal switch is designed based on coher-
ently driving a single qubit in superconducting circuits [51].
Moreover, by adjusting the Rabi frequency in the system con-
sisting of two coupled qubits coupled to two 1D waveguides,
all-optical control of the heat current can be performed in the
quantum electrodynamics [57]. It is also possible to realize
the quantum thermal transistor with high amplification by
controlling the Rabi frequency in a weak driving system [22].

In this paper, we design a quantum thermal device uti-
lizing a system composed of three nearest-neighbor coupled
spins immersed in an adjustable magnetic field. Each spin
is also individually connected to its respective heat reser-
voir, as shown visually in Fig. 1. The distinct advantage
of our design is the ability to manipulate the heat current
by altering the orientation of the applied magnetic field. To
understand the behavior of our system, we have employed
analytical techniques, in particular the Born-Markov-secular
(BMS) master equation, to derive the steady-state properties.
One noteworthy observation is that when the middle spin is
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FIG. 1. Sketch of the magnetically controlled thermal devices.
The system consists of three nearest-neighbor coupled spin-1/2 sys-
tems immersed in a direction-adjustable skew magnetic field (SF) �B
with the fixed amplitude B, i.e., �B = Bx�ex + Bz�ez, where Bx = B sin θ

and Bz = B cos θ . The coupling type between each two spins is σ z
μσ z

ν ,
μ, ν = L, M, R. The left, middle, and right atoms are labeled by L,
M, and R. The energy of each atom in the magnetic field is Bμ.
Each spin is independently connected to a thermal reservoir with
the temperature Tμ. The dotted line between the middle spin and the
corresponding reservoir indicates that the reservoir M is a perturbing
reservoir provided that the system is considered as a two-terminal
device.

isolated from the thermal reservoir, the longitudinal field (LF),
aligned with the direction of the coupling between the spins,
can effectively block the heat transfer between the system and
its corresponding thermal environment. By manipulating the
direction of the magnetic field, we can induce an expected
heat current, essentially demonstrating the capability of our
system as an ideal quantum thermal modulator, where the heat
current is controlled by the magnetic field orientation. More-
over, we have shown that the thermal modulator still works
effectively even when the middle spin is connected to a pertur-
bation reservoir. In particular, by appropriately adjusting the
parameters, such as the magnetic field and coupling strength,
we can completely block the heat current, highlighting the
characteristic of our modulator. In the case of the transverse
field (TF), where the magnetic-field direction is orthogonal
to the spin coupling direction, our system decouples into two
independent subspaces. This observation provides an alterna-
tive approach to modulating the heat current by controlling
the proportions of the initial state in each subspace. Finally,
when our system serves as a thermal transistor, we have found
that the controllable magnetic field significantly enhances the
transistor’s performance compared to the LF scenario [17].

This paper is structured as follows. Sec. II gives the pri-
mary model and deals with the dynamics of the system. In
Sec. III, we present the steady-state heat current of the system.
In Sec. IV, the magnetically controlled thermal devices are
implemented and analyzed, specifically, the quantum thermal
modulator and the quantum thermal transistor are described
in Secs. IV A and IV B, respectively. Section V gives the
discussion and conclusion.

II. MODEL AND STEADY STATE

The system, consisting of three nearest-neighbor spin-1/2
systems which are connected to an independent local heat
reservoir, immersed in a directional adjustable magnetic field

�B is the model mainly considered in this work, as shown
in Fig. 1. To simplify, we assume that the magnetic field
is restricted in the x-0-z plane, i.e., �B = Bx�ex + Bz�ez, where
Bx = B sin θ (or Bz = B cos θ ) is the component of the mag-
netic field on the x (or z) axis, �ex and �ez are unit vectors,
B ≡ | �B| =

√
|Bz|2 + |Bx|2 represents the constant amplitude

of the magnetic field, and θ represents the angle between
the magnetic field and the horizontal direction. θ = sπ or
θ = 2s+1

2 π , s = 0, 1, 2, · · ·, corresponds to the longitudinal
field (LF) or the transverse field (TF), which means that the
direction of the magnetic field parallel or perpendicular to the
coupled spins.

When the direction of the magnetic field θ is fixed, the
Hamiltonian of the coupled spin-1/2 systems reads

HS = HS0 + HSI . (1)

The Zeeman energy generated by the coupling of spin and
magnetic field HS0 is (we take h̄ = kB = 1)

HS0 = 1

2

∑
μ

(
Bx

μσ x
μ + Bz

μσ z
μ

)
, μ = L, M, R, (2)

where Bx
μ = Bμ cos θ (and Bz

μ = Bμ sin θ ) denotes the TF
(and LF) of the μth spin with Bμ denoting the energy gap
of μth spin induced by the magnetic field. The interaction
Hamiltonian HSI between the two nearest-neighbor coupled
spins is

HSI = 1
2

(
JLMσ z

Lσ z
M + JMRσ z

Mσ z
R

)
, (3)

where Jμν denotes the interaction strength between the μth
and the νth spins. In this system, the coupling between the left
and right spins is disregarded, i.e., JLR = 0. σ x

μ and σ z
μ are the

x-axis and z-axis component of the spin operator, expressed as

σ x
μ =

(
0 1
1 0

)
, σ z

μ =
(

1 0
0 −1

)
. (4)

This Ising-like spin chain in the skew field has been applied in
many scenarios [64–70]. For example, this model was simu-
lated by confining the rubidium atoms in the optical lattice and
the ferromagnetic-antiferromagnetic quantum phase transition
has been observed [66].

Each spin is in contact with an independent heat reservoir
with the temperature Tμ. The Hamiltonian of the three baths
read

HE =
∑

μ

Hμ
E =

∑
μ

∑
k

ωμka†
μkaμk, (5)

where ωμk is the frequency of the kth Bosonic mode, and
a†

μk (aμk ) is the creation (annihilation) operator. The dipole
interaction between the spin and the corresponding reservoir
is given by

HI =
∑

μ

∑
k

fμkσ
x
μ(a†

μk + aμk ), (6)

where fμk represents the coupling strength between the μth
spin and the kth mode.

The evolution of the system is governed by the Born-
Markov-secular (BMS) master equation [82], which can be
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written in the Schrödinger picture as

ρ̇(t ) = −i[HS, ρ(t )] +
∑

μ

Lμ[ρ(t )], (7)

where the Lindblad dissipator Lμ[ρ(t )] for the μth spin is

Lμ[ρ(t )] = Jμ

(− ω
μ
i j

)[
2V μ

i j ρ(t )V μ
i j

† − {
V μ

i j
†V μ

i j , ρ(t )
}]

+ Jμ

(+ ω
μ
i j

)[
2V μ

i j
†
ρ(t )V μ

i j − {
V μ

i j V μ
i j

†
, ρ(t )

}]
,

(8)

with Jμ(±ω
μ
i j ) = ±κμ(ωμ

i j )nμ(±ω
μ
i j ) denoting the spectrum

density. It is worth mentioning that the dissipation rate κμ(ωμ
i j )

between the μth spin and the mode of frequency ω
μ
i j in the cor-

responding reservoir is a quadratic function of the spin-Boson
coupling strength fμ(ωμ

i j ), i.e., κμ(ωμ
i j ) = π f 2

μ(ωμ
i j ) (π stems

from the integral formula
∫ +∞

0 dτe−iωτ = πδ(ω) − iP 1
ω

, the
Cauchy principal value P in the imaginary part can be ignored
as it can be eventually collected to the Lamb shift). For sim-
plicity, we only consider the flat spectrum, i.e., κμ(ωμ

i j ) = κμ.
nμ(ωμ

i j ) = [exp(ωμ
i j/Tμ) − 1]−1 is the average photon number.

In Eq. (8), the eigen-operator V μ
i j and the corresponding eigen-

frequency ω
μ
i j are defined as∑

ω
μ
i j

V μ
i j =

∑
ω

μ
i j=ω j−ωi

|i〉〈i|σ x
μ| j〉〈 j|, (9)

where the eigen-frequency ω
μ
i j is the transition energy of the

transition |i〉 ↔ | j〉 induced by the reservoir μ, ωi and |i〉
are the eigenvalue and eigenstate of the system Hamiltonian,
i.e., HS = ∑

i ωi|i〉〈i|. In particular, the eigenvector can be
expanded by the bare basis as |i〉 = ∑8

j=1 �(i, j)| j̃〉, where
�(i, j) is the matrix element in row i and column j, and the
explicit expression of �(i, j) is omitted here. The bare basis
is written as

|1̃〉 = |↑↑↑〉, |2̃〉 = |↑↑↓〉, |3̃〉 = |↑↓↑〉, |4̃〉 = |↑↓↓〉,
|5̃〉 = |↓↑↑〉, |6̃〉 = |↓↑↓〉, |7̃〉 = |↓↓↑〉, |8̃〉 = |↓↓↓〉,

(10)

where | ↑↑↑〉 = | ↑〉L ⊗ | ↑〉M ⊗ | ↑〉R, σ z
μ| ↑〉μ = | ↑〉μ, and

σ z
μ| ↓〉μ = −| ↓〉μ. Therefore, the eigen-operators can be ex-

plicitly given as

V L
i j =

∑
l=1,2,3,4

[�(i, l )�( j, l + 4) + �(i, l + 4)�( j, l )]|i〉〈 j|,

V M
i j =

∑
l=1,2,5,6

[�(i, l )�( j, l + 2) + �(i, l + 2)�( j, l )]|i〉〈 j|,

V R
i j =

∑
l=1,3,5,7

[�(i, l )�( j, l + 1) + �(i, l + 1)�( j, l )]|i〉〈 j|,

(11)

with i ∈ [1, 7] and j ∈ [i + 1, 8]. One can find that every heat
reservoir can induce the transition between any two eigen-
vectors |i〉 and | j〉 of the system, but the probability of this
transition is different.

Equation (7) can be divided into two completely unrelated
groups [83] corresponding to the evolution of the populations

and coherences, i.e., the diagonal and nondiagonal elements
of the density matrix. The coherence of the system decays to
zero at steady state, so the steady-state density matrix must
be diagonal in the HS representation. As a consequence, the
dynamics of the diagonal entries can be given as

ρ̇ii = −
∑

μ

∑
j=1, j �=i

�
μ
i j, i = 1, · · ·, 8, (12)

where �
μ
i j = 2[Jμ(+ω

μ
i j )ρii − Jμ(−ω

μ
i j )ρ j j] = −�

μ
ji is the net

transition rate, and ρii denotes the population of the energy
level |i〉 in the HS representation. The steady state should
satisfy

|ρ̇S〉 = M|ρS〉 = 0, (13)

and the normalization condition TrρS = 1, where |ρS〉 =
[ρS

11, ρ
S
22, ρ

S
33, ρ

S
44, ρ

S
55, ρ

S
66, ρ

S
77, ρ

S
88]T and M = ∑

μ Mμ is
coefficient matrix corresponding to Eq. (12). Generally, the
rank of the coefficient matrix M is 7, so the steady state |ρS〉
should be unique. Equation (13) can be analytically solved,
but we do not present it here because the explicit expression is
too complicated. However, if the magnetic field is along some
particular direction, then the dynamics could become simple,
thus the steady state could be explicitly provided.

A. Longitudinal field case

The LF corresponds to Bz
μ = Bμ and Bx

μ = 0. We use ‖
to denote the LF case. For example, the eigenvector of the
Hamiltonian H‖

S is |i‖〉 and others are similar. In the LF
case, one can find that the corresponding eigenvalues of the
Hamiltonian H‖

S are given in Appendix A, and the transfor-
mation matrix �‖ is an identity. Therefore, the eigenvectors
in the LF case are exactly the bare basis. Meanwhile, the
dynamics Eq. (12) can be simplified as Eq. (A5). The tran-
sitions induced by every reservoir given in Eq. (11) can be
reduced to 4, namely, |1‖〉 ↔ |5‖〉, |2‖〉 ↔ |6‖〉, |3‖〉 ↔ |7‖〉,
and |4‖〉 ↔ |8‖〉 induced by reservoir L, |1‖〉 ↔ |3‖〉, |2‖〉 ↔
|4‖〉, |5‖〉 ↔ |7‖〉, and |6‖〉 ↔ |8‖〉 induced by reservoir M,
and |1‖〉 ↔ |2‖〉, |3‖〉 ↔ |4‖〉, |5‖〉 ↔ |6‖〉, and |7‖〉 ↔ |8‖〉
induced by reservoir R. The rank of matrix M‖ in the evo-
lution equation |ρ̇‖(t )〉 = M‖|ρ‖(t )〉 is 7, so the steady state
ρ‖,S is uniquely determined. Because of its complex expres-
sion, the concrete expression of the steady state is not given
here.

B. LF without middle reservoir

If the middle spin is not in contact with an environment,
i.e., κM = 0, then the corresponding dissipator LM[ρ̃‖(t )] = 0
in Eq. (7). Throughout the paper, we use ˜ to denote the
case κM = 0. In this case, the transitions induced by the
reservoir M are forbidden, namely, �̃

‖,M
i j = 0 in Eq. (A5).

Based on the allowed transitions, the dynamics of the popu-
lations can be divided into two groups, as shown in Eqs. (A6)
and (A7), the total Hilbert space can be divided into two
independent subspaces. The subspace consisting of energy
levels |1‖〉, |2‖〉, |5‖〉, and |6‖〉 is denoted by S‖

1 and the
subspace supported by |3‖〉, |4‖〉, |7‖〉, and |8‖〉 is denoted
by S‖

2. Since subspaces S‖
1 and S‖

2 are both subsets of the
total space and have no intersection, the Hilbert space of the
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stable system can be represented as the direct sum of two
subspaces, i.e., S‖ = S‖

1 ⊕ S‖
2 in the steady state. In S‖

l , l =
1, 2, the evolution equation becomes | ˙̃ρ‖

l (t )〉 = M̃‖
l |ρ̃‖

l (t )〉,
where the dissipation coefficient matrix M̃‖

l is shown in
Appendix A, |ρ̃‖

1 (t )〉 = [ρ̃‖
11(t ), ρ̃‖

22(t ), ρ̃‖
55(t ), ρ̃‖

66(t )]T and
|ρ̃‖

2 (t )〉 = [ρ̃‖
33(t ), ρ̃‖

44(t ), ρ̃‖
77(t ), ρ̃‖

88(t )]T . The evolution of
the two subspaces is independent of each other, for a random
initial state

ρ̃‖,I = p̃
∑

i, j∈S‖
1

ρ̃
‖,I
i j

p̃
|i‖〉〈 j‖| + (1 − p̃)

∑
i, j∈S‖

2

ρ̃
‖,I
i j

1 − p̃
|i‖〉〈 j‖|

+
∑

i∈S‖
1 , j∈S‖

2

ρ̃
‖,I
i j |i‖〉〈 j‖| +

∑
i∈S‖

2 , j∈S‖
1

ρ̃
‖,I
i j |i‖〉〈 j‖|, (14)

with p̃ = ∑
i∈S‖

1
〈i‖|ρ̃‖,I |i‖〉 denoting the probability that the

system is in the state consisting of eigenvectors of the
subspace S‖

1 at the initial state, and ρ̃
‖,I
i j = 〈i‖|ρ̃‖,I | j‖〉 rep-

resenting the matrix element in the HS representation. In
Eq. (14), the first (or second) line indicates that the initial
state of the system is directly (or interactively) formed by
the eigenvectors of the two subspaces. Due to the decoupling
of these two subspaces in the steady state, the elements in
interactive spaces decay to zero. The steady state can be given
as

|ρ̃‖,S〉 = p̃
[
ρ̃

‖,S
11 , ρ̃

‖,S
22 , 0, 0, ρ̃

‖,S
55 , ρ̃

‖,S
66 , 0, 0

]T

+ (1 − p̃)
[
0, 0, ρ̃

‖,S
33 , ρ̃

‖,S
44 , 0, 0, ρ̃

‖,S
77 , ρ̃

‖,S
88

]T
, (15)

where the explicit expression of ρ̃
‖,S
ii can be found in Eq. (A9),

and the detailed derivation is given in Appendix A.
The evolution process of the density matrix is shown in

Fig. 2(a) to describe the dynamics of independent subspaces
more clearly. The 8 × 8 matrix in each parenthesis represents
the density matrix, and the colorful and blank elements cor-
respond to the nonzero and zero density matrix elements,
respectively. For any given initial state ρ̃‖,I , the density matrix
elements in the red, blue, and yellow regions correspond to the
three terms in Eq. (14). When the system is in the steady state,
all nondiagonal elements decay to 0, and the component p̃ of
the subspace S‖

1 is constant, meaning that the subspaces evolve
independently of each other.

C. Transverse field case

The TF corresponds to Bx
μ = Bμ and Bz

μ = 0, where we
use ⊥ to specify this case. For example, the eigenvector of
H⊥

S in this case is expressed as |i⊥〉 = ∑8
i=1 �⊥(i, j)| j̃〉 with

the transformation matrix correspondingly denoted by �⊥.
The detailed contents about �⊥ and the eigenoperators in
this case are given in Eqs. (B4), (B8), and (B9). What we
emphasize is that the system can also be divided into two
independent subspaces, one consists of the four energy levels
|1⊥〉, |2⊥〉, |3⊥〉 and |4⊥〉, denoted by S⊥

1 , and the other four
levels forming the other subspace denoted by S⊥

2 . There are
six possible transitions in each subspace, the dynamics of the
system can be expressed as Eqs. (B10) and (B11). Analogous
to Eq. (14), if we use p to denote the fraction of the subspaces
S⊥

1 in the initial state, then the steady state can be expressed

(a)

(b)

(a)

FIG. 2. Evolution sketch of density matrix. Panels (a) and
(b) correspond to the dynamic processes of the longitudinal field
model with κM = 0 and the transverse field model with κM �= 0,
respectively. The left or right figure corresponds to the random initial
state and unique steady state. The colorful and blank elements in the
figure correspond to the appearing and disappearing matrix elements.
In the left figure, the red and blue regions correspond to the first and
second terms, and the yellow regions correspond to the last two terms
in Eq. (14). Each element can be represented as ρi j = 〈i|ρ| j〉 for the
corresponding density matrices and the eigenstates.

as

|ρ⊥,S〉 = p
[
ρ⊥,S

11 , ρ⊥,S
22 , ρ⊥,S

33 , ρ⊥,S
44 , 0, 0, 0, 0

]T

+ (1 − p)
[
0, 0, 0, 0, ρ⊥,S

55 , ρ⊥,S
66 , ρ⊥,S

77 , ρ⊥,S
88

]T
,

(16)

where ρ⊥,S
ii are shown in Eq. (B13) and the detailed derivation

is given in Appendix B. The corresponding evolution sketch
is shown in Fig. 2(b).

III. STEADY-STATE HEAT CURRENT

Through the above section, one can obtain the steady state
of the system in various cases, allowing us to study the
thermodynamic behaviors. The heat current is defined as the
first-order derivative of the mean energy of the system with
respect to time, i.e.,∑

μ

Q̇μ = d

dt
〈HS〉 =

∑
μ

Tr{HSLμ[ρ(t )]}, (17)

with 〈HS〉 = Tr[HSρ(t )]. Q̇μ denotes the heat current from the
μth reservoir to the system. With the vectorized populations
|ρ(t )〉, the steady-state heat current can be expressed as

Q̇μ = 〈ω|Mμ|ρS〉, (18)

where |ω〉 is the vector consisting of the energy eigenvalues
of the system, and Mμ is the dissipation coefficient matrix
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associated with the reservoir μ. For the steady-state heat cur-
rents,

∑
μ Q̇μ = 0, which is consistent with the first law of

thermodynamics.
According to Eqs. (17) and (18), the steady-state heat

current can be obtained for the SF, the LF, and the TF, re-
spectively. In the SF case, the heat current can be given as

Q̇μ =
7∑

i=1

8∑
j=i+1

ω
μ
i j�

μ
i j . (19)

In the LF case, the steady-state heat currents for κM �= 0
read

Q̇‖
L = ω

L,‖
15 �

L,‖
15 + ω

L,‖
26 �

L,‖
26 + ω

L,‖
37 �

L,‖
37 + ω

L,‖
48 �

L,‖
48 ,

Q̇‖
M = ω

M,‖
13 �

M,‖
13 + ω

M,‖
24 �

M,‖
24 + ω

M,‖
57 �

M,‖
57 + ω

M,‖
68 �

M,‖
68 ,

Q̇‖
R = ω

R,‖
12 �

R,‖
12 + ω

R,‖
56 �

R,‖
56 + ω

R,‖
34 �

R,‖
34 + ω

R,‖
78 �

R,‖
78 . (20)

However, if κM = 0, then it is easy to obtain that any net
transition rate �̃

μ,‖
i j = 0. Although the steady state consists of

two independent subspaces, there is no heat transfer in either
subspace between the remaining two reservoirs. Therefore,
the total steady-state heat currents of the system vanish, i.e.,

˙̃Q‖
L = ˙̃Q‖

M = ˙̃Q‖
R = 0. (21)

The detailed derivation is given in Eq. (A10).
A potential understanding of the blockade of heat current

for κM = 0 is as follows. In this case, the eigen-operators
of the system can be further expressed as Eq. (A4), and the
transitions induced by the middle reservoir are prohibited. The
allowable transitions for left (or right) spin can be expressed as
the tensor product of the transition of spin itself σ−

L(R) with the
state of the middle spin |↑〉M〈↑ | or |↓〉M〈↓|. Both transitions
induced by the left (or right) reservoir correspond to the same
frequency ωLl (or ωRl ) in subspace S‖

l . It is well-known that
the heat transfer between the system and the environment is
generated by the cyclic transition between the energy levels
induced by the heat reservoir. Figure 3 gives the transitions
in subspace S‖

1 (or S‖
2) with the red (or blue) background.

For S‖
1, we find that there is only one nonrepetitive cyclic

process inducing the heat transfer: |6‖〉 → |2‖〉 → |1‖〉 →
|5‖〉 → |6‖〉. In this circle, the energy ωL1 absorbed from the
high-temperature thermal reservoir (left reservoir) causes the
transition |6‖〉 → |2‖〉, and the equivalent energy ωL1 released
to the environment during the transition |1‖〉 → |5‖〉. Sim-
ilarly, the energy absorbed and released for right reservoir
induced transitions |2‖〉 → |1‖〉 and |5‖〉 → |6‖〉 is both ωR1.
Therefore, energy cannot be transferred from the left reservoir
to the right one in subspace S‖

1. In the same way, there is no
net heat transfer through the subspace S‖

2 between two heat
reservoirs with temperature gradients. What is more, we also
find that the various coupling types between spins do not block
heat current except σμ

z σ ν
z coupling, in the dissipative model,

Appendix C complements the heat-current-modulation pro-
cess when the Heisenberg interaction is considered between
the nearest-neighbor spins.

In the TF case, the steady state of the system is the com-
bination of those in two independent subspaces as given in

FIG. 3. Sketch of the energy-level transition of the system when
only the longitudinal field is present and κM = 0. Since the middle
reservoir is not in contact with the system, only two heat reser-
voirs exist. The red (or blue) shade contains four energy levels
that form the subspace S‖

1 (or S‖
2), respectively. The gradient arrows

between the reservoir and the system indicate the energy absorbed
or released from the environment, measured by the arrow thick-
ness. The arrows between the energy levels represent stimulated
absorption (or spontaneous radiation) that occurs when energy is
absorbed from (or released to) the reservoir, and the solid red and
dashed blue arrows correspond to transitions induced by the left and
right reservoirs. Here, Bμ = B0, JLM = 0.5B0, JMR = 0.1B0, TL > TR,
and κL = κR.

Eq. (16). The steady-state heat current is also the combination
of the contributions of the two subspaces. Namely, the steady-
state heat current is determined by the initial state and can be
given as

Q̇⊥
μ = p

3∑
i=1

4∑
j=i+1

ω
μ,⊥
i j �

μ,⊥
i j + (1 − p)

7∑
i=5

8∑
j=i+1

ω
μ,⊥
i j �

μ,⊥
i j .

(22)

IV. MAGNETICALLY CONTROLLED THERMAL DEVICES

A. Quantum thermal modulator

Let us first consider a two-terminal thermal device, namely,
the dissipation of the middle spin does not exist, i.e., κM = 0.
In this case, the system can be decoupled by the LF (θ = sπ )
into two subspaces where the steady-state heat currents are
both zero. But the steady-state heat current does not vanish for
θ �= sπ . This property allows the steady-state heat current to
be modulated by controlling the direction of the magnetic field
θ . We plot the heat current versus the magnetic-field direction
θ in Fig. 4 to demonstrate a whole modulation.

In Fig. 4, the dashed red, solid green, and dotted blue
lines denote Q̇L, Q̇M , and Q̇R, respectively. Let us focus on
the unmarked lines. Since we do not consider the middle
reservoir (κM = 0), one can easily find that the dotted green
line shows the zero heat current Q̇M = 0. From the dashed
red and dotted blue lines, one can find that the heat currents
Q̇L = −Q̇R disappear at θ = sπ , which is consistent with our
above calculation in Eq. (21), and appear at θ �= sπ . This
phenomenon illustrates the apparent modulation of the heat
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FIG. 4. Steady-state heat currents with the direction of the magnetic field θ . The red dashed, green solid, and blue dotted lines are used to
denote the heat current Q̇L , Q̇M , and Q̇R, the hollow (or solid) circles, diamonds, and squares represent the steady-state heat currents Q̇L , Q̇M ,
and Q̇R with p = 0 (or p = 1) in the TF case, respectively. Normal-colored unmarked, light-colored with crosses, and dark-colored with plus
signs lines describe the heat currents when the dissipation between the middle spin and the environment is κM = 0, κM = 0.1κL , and κM = κL ,
respectively. Panels (a–c) analyze the effect of the amplitude of the magnetic field on the heat current when the coupling strengths between spins
are fixed as JLM = 0.8 B0, JMR = 1.2 B0. The magnetic fields are considered to be the same, i.e., BL = BM = BR = B, B = 0.3B0, B = 1.5 B0,
and B = 3 B0 in panels (a), (b), and (c). Panels (e–g) study the effect of coupling strength between spins on the heat current when the magnetic
fields are fixed as BL = B0, BM = 2 B0, and BR = 3 B0. The coupling strengths are assumed to be the same, i.e., JLM = JMR = J , J = 0.5 B0,
J = 2 B0, and J = 8 B0 in panels (e), (f), and (g). Panels (d) and (h) describe the heat currents when the magnetic field and coupling strength
are the same, i.e., BL = BM = BR = JLM = JMR = B. B = 0.1 B0 and B = 10B0 in panels (d) and (h). Other parameters in all the figures are
taken as B0 = 1, κL = κR = 0.001 B0, TL = 2 B0, TM = 0.02 B0, and TR = 0.2 B0.

current by controlling the magnetic-field direction θ . In one
modulation period, the magnetic field changes from the LF to
the TF and then back to the LF. However, it can be found that
the steady-state heat current does not always increase as the
magnetic field shifts from the LF to the TF, which closely
depends on Bμ and the coupling Jμν . Several typical cases
can be observed more clearly by comparing the figures in
Figs. 4. From Figs. 4(a)–4(c), one can find that the maximum
heat current occurs far away from the θ = (2s + 1)π/2 with
the magnetic field B increases. And from Figs. 4(e)–4(g),
one can find that the maximal heat currents occur at θ =
(2s + 1)π/2 for strong coupling Jμν as shown in Fig. 4(g)
and deviate from (2s + 1)π/2 for the weak and medium
coupling as shown in Figs. 4(e) and 4(f). In one word, the
modulator can be designed on purpose based on the practical
scenario.

Suppose the quantum thermal modulator is perturbed by
a perturbing reservoir, i.e., κM �= 0, the steady-state heat cur-
rent versus the direction of magnetic field θ for κM = 0.1κL

and κM = κL are depicted in Figs. 4 by cross lines and plus
lines, respectively. It is clear that when the system is uncou-
pled (κM = 0) or ultraweakly coupled (κM = 0.1κL) to the

middle thermal reservoir, the system can realize the good
magnetically controlled modulation of heat current. For κM =
κL, the plus lines in Fig. 4(b) show that the heat current
changes in a quite limited range with the change of θ , so it
is not sufficient to serve as an efficient thermal modulator in
the case of the medium magnetic field. In this sense, if the
perturbing reservoir leads to strong dissipation (large κM) in
the corresponding parameter condition, then the magnetically
controlled modulator can only be realized at the expense of the
weak magnetic field, such as the case in Fig. 4(a). On the con-
trary, if we consider other parameters, as shown in Fig. 4(f),
then one can find that the strong coupling with a proper
magnetic field can also serve as a good modulator as shown
in Fig. 4(g)—the other figures in Fig. 4 illustrate alterna-
tive parameter conditions to achieve the potential modulation
effect.

It is exciting that if κM = κL, one can find that applying
the LF can also block the steady-state heat current when
Bμ = Jμν . The analytic proof is given in Appendix A. The
nonvanishing heat current will appear when the magnetic-field
direction deviates from the LF. One can also modulate the
heat current by controlling the magnetic field. In Figs. 4(d)
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and 4(h), we show the magnetic modulation process under the
condition Bμ = Jμν = B. It indicates that as B increases, the
modulation capability of the system improves.

In Figs. 4(b), 4(c) 4(d), 4(f), and 4(h), one can easily
observe that there is Q̇M > Q̇R near θ = sπ when κM = κL.
This is due to the special energy-level structure of the system
in the condition of Bμ ∼ Jμν . With conditions Bμ = Jμν and
θ = sπ , the levels |3‖〉, |4‖〉, |7‖〉, and |8‖〉 are degenerated,
so that the transitions |3‖〉 ↔ |7‖〉 and |4‖〉 ↔ |8‖〉 induced by
left reservoir (and |3‖〉 ↔ |4‖〉 and |7‖〉 ↔ |8‖〉 induced by the
right one) are prohibited, while the transitions induced by the
middle reservoir are not affected, so that the heat current from
the left reservoir to the middle one is easier than to the right
one. Of course, the heat transfer between the system and the
environment depends not only on the energy-level transition
but also on the reservoir’s temperature. In Appendix D, we
give the variations of heat currents with the temperature of the
middle heat reservoir when θ = 0.1π , the parameters are the
same as those in Fig. 4. There is a clear competition between
Q̇M and Q̇R, and the direction of Q̇M changes when TM reaches
a critical value.

Moreover, as mentioned previously, when θ = 2s+1
2 π (cor-

responding to the TF), the steady state of the system depends
on the initial state, so do the steady-state heat currents, which
should be the joint contribution of the two separate subspaces.
In Fig. 4, we use circles, diamonds, squares to mark Q̇L, Q̇M ,
and Q̇R at θ = 2s+1

2 π with the “solid” and “hollow” signs
representing p = 0 and p = 1, respectively. Obviously, the
difference between the heat currents of the two subspaces
decoupled by the TF increases as B increases, which is con-
cretely represented in Figs. 4(c), 4(e) and 4(h). It must be
emphasized that the heat-current values at θ = 2s+1

2 π on all
the lines in Fig. 4 are plotted by choosing the steady state
at the almost nearest-neighbor point before θ = 2s+1

2 π as
the initial state. This means that the heat current must lie
between the solid and hollow signs, regardless of the initial
state. However, for a given initial state, the steady-state heat
current is uniquely determined. This is quite consistent with
the practical scenario where during the adjustment of θ , the
initial state of the system for a given θ is just the steady state
of the system corresponding to the θ before the adjustment. Of
course, one can simultaneously choose some particular initial
state by which one could reach different steady states in the
TF case. However, due to the nonvanishing heat currents in
either subspace for the TF case, the total heat current can-
not be zero by changing the fraction p, which is explicitly
shown in Fig. 5. The variations of the transient-state heat
currents with time t at κM = 0, κM = 0.1κL, and κM = κL

for different p are shown successively in Figs. 5(a), 5(b)
and 5(c). The initial state for Fig. 5 is selected as |ρ⊥,I〉 =
p|ρ⊥,I

1 〉 + (1 − p)|ρ⊥,I
2 〉 with |ρ⊥,I

1 〉 = [1, 0, 0, 0, 0, 0, 0, 0]T

and |ρ⊥,I
2 〉 = [0, 0, 0, 0, 1, 0, 0, 0]T .

In summary, the model can be used as a magnetically con-
trolled thermal modulator, regardless of whether the middle
spin is in contact with the environment. When there is no dis-
sipation of the middle spin, the system can perfectly modulate
the heat current, i.e., the heat current can be modulated from
zero to a finite value. If the modulation of the heat current by
the magnetic field is insufficient, then it is desirable to control
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FIG. 5. Transient-state heat current with time t . The dashed,
solid, and dotted lines denote the heat current Q̇L , Q̇M , and Q̇R.
The same color corresponds to the same fraction p. Other param-
eters in all the figures are taken as B0 = 1, JLM = 0.8B0, JMR =
1.2B0, κL = κR = 0.001B0, TL = 2B0, TM = 0.02B0, TR = 0.2B0,
BL = BM = BR = 1.5B0, κM = 0, κM = 0.1κL , and κM = κL in pan-
els (a), (b), and (c).

the heat current based on the initial state when the magnetic
field is significant.

B. Quantum thermal transistor

Besides the function of a modulator of heat current, this
system can also be used as a well-performing quantum heat
transistor or triode, which allows a slight change of the current
at one of the terminals (base) to cause a significant change of
the currents at the other two terminals (collector and emitter).
The amplification characteristics of this system in the LF have
been studied extensively [17,19,20,22,24]. The performance
of a transistor can be described as the amplification factor

αμ = ∂Q̇μ

∂Q̇M
, μ = L, R, (23)

where the terminal M is regarded as the base. According to
the conservation of energy, i.e.,

∑
μ Q̇μ = 0, it is easy to

understand that αL + αR = −1. When |αμ| > 1, the system
can be regarded as a transistor. The higher the absolute value
of αμ, the better the transistor performance. Now, we discuss
the amplification of the system in the SF and the TF.

Figure 6 depicts the variations of the heat currents at three
terminals and the amplification factors with the temperature
of the base TM in the different directions of the magnetic field.
The heat currents are increasing as θ increases, as shown in
Figs. 6(a), but Fig. 6(b) indicates that the amplification factor
is not monotonically changed with θ . In Fig. 6(b), the system
achieves good amplification for θ = 0 (solid lines), which is
consistent with Ref. [17]. In addition, Fig. 6(b) also indicates
that by adjusting the magnetic field, we can achieve a much
larger amplification factor than that in Ref. [17], which can
be seen when θ = π/6 or θ = π/4. Whereas, inappropriate θ

can also lead to the reduction of the amplification factor. For
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FIG. 6. Steady-state heat currents Q̇μ, μ = L, M, R, and ampli-
fication factor αμ versus temperature TM . Panels (a) and (c) describe
the steady-state heat currents for different magnetic-field directions;
panels (b) and (d) show the amplification factors. In panels (a) and
(c), the red, green, and blue lines denote Q̇L , Q̇M , and Q̇R, respec-
tively. In panels (b) and (d), the red and blue lines correspond to
amplification factors αL and αR, respectively. Different line styles
represent different directions of the magnetic field. Solid lines rep-
resent the particular LF case, and cross lines denote the TF case.
In panels (a) and (b), BL = BM = BR = 0.01 B0 and JMR = 1.001 B0.
In panels (c) and (d), BL = BM = BR = 0.001 B0 and JMR = 1.01 B0.
Other parameters in all the figures are taken as B0 = 1, JLM = B0,
κL = κM = κR = 0.001 B0, TL = 0.2 B0, and TR = 0.02 B0.

example, the heat currents reach maximum for θ = π
2 , but the

amplification factor is relatively small, |αμ| ≈ 10. However,
the amplification factor is not always small in the TF case
(θ = π/2). When the magnetic field Bμ is reduced, as the
magnetic field gradually changes from θ = 0 to θ = π

2 , both
heat currents and amplification factor gradually increase, and
the system in the TF can still be treated as a good transistor,
which is shown in Figs. 6(c) and 6(d).

V. DISCUSSIONS AND CONCLUSIONS

Before the end, we will discuss the nonreciprocal heat
transport through our system to give a comprehensive under-
standing. We know that the unidirectional thermal transport
of the quantum thermal diode usually arises from the asym-
metry of the system, such as the different magnetic fields on
the spins or the different couplings between the spins in our
model. Since there is no heat transport for θ = sπ , we only
address the case θ �= sπ . We found that the perfect rectifi-
cation can be realized for one zero-temperature terminal. At
other parameter regimes, our model also demonstrates certain
rectification functions. Significantly, the rectification due to
different magnetic fields is superior to rectification due to

different coupling strengths between spins. Detailed studies
are provided in Appendix E. For the case where the steady
state depends on the initial state, although the system is de-
coupled into two subsystems, the steady-state heat currents
in both subsystems are not zero. Hence, the rectification is
closely related to the fraction p of the initial state in the two
subspaces, which differs from the case in Ref. [41] where the
rectification is independent of the fraction.

In conclusion, we have designed a quantum thermal de-
vice based on three nearest-neighbor coupled spins to change
the heat current by changing the direction of the magnetic
field. When the middle spin is not connected to the thermal
reservoir, we find that the LF can block the heat transfer
between the system and the thermal reservoir. With the di-
rection of the magnetic field changed, our system can act
as an ideal quantum thermal modulator to manage the heat
current by controlling the direction of the magnetic field. A
well-performing thermal modulator can also be implemented
even if the middle spin is connected to a perturbation reservoir.
In particular, the heat current can always be entirely blocked
by appropriately adjusting the magnetic field and the coupling
strengths between the spins. In the TF, we find that the system
decouples into two independent subspaces, which provides an
alternative modulation method of heat current by controlling
the fractions of the initial state in both subspaces. When the
system serves as a transistor, we show that the controllable
magnetic field can improve the performance of the transistor
compared to the LF case. This discovery opens up exciting
possibilities for improving quantum thermal management in
various applications.
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APPENDIX A: DETAILED DERIVATION
OF THE STEADY STATE IN LF

Provided that the system is immersed in the LF, the Hamil-
tonian of the system is

H‖
S = 1

2

⎛
⎝∑

μ

Bμσ z
μ +

∑
μ �=ν

Jμνσ
z
μσ z

ν

⎞
⎠, μ, ν = L, M, R.

(A1)

In the diagonal representation, i.e., H‖
S = ∑8

i=1 ω
‖
i |i‖〉〈i‖|, the

eigenstates are |i‖〉 = |ĩ〉, which are shown in Eq. (10), and the
corresponding eigenvalues ω

‖
i are

ω
‖
1 = 1

2 (+BL + BM + BR + JLM + JMR),

ω
‖
2 = 1

2 (+BL + BM − BR + JLM − JMR),

ω
‖
3 = 1

2 (+BL − BM + BR − JLM − JMR),

ω
‖
4 = 1

2 (+BL − BM − BR − JLM + JMR),

ω
‖
5 = 1

2 (−BL + BM + BR − JLM + JMR),

ω
‖
6 = 1

2 (−BL + BM − BR − JLM − JMR),

ω
‖
7 = 1

2 (−BL − BM + BR + JLM − JMR),

ω
‖
8 = 1

2 (−BL − BM − BR + JLM + JMR). (A2)
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The eigen-operators are

V ‖
L1 = V L,‖

51 + V L,‖
62 , ω

‖
L1 ≡ ω

L,‖
51 = ω

L,‖
62 = BL + JLM ,

V ‖
L2 = V L,‖

73 + V L,‖
84 , ω

‖
L2 ≡ ω

L,‖
73 = ω

L,‖
84 = BL − JLM ,

V ‖
M1 = V M,‖

31 , ω
‖
M1 ≡ ω

M,‖
31 = BM + JLM + JMR,

V ‖
M2 = V M,‖

42 , ω
‖
M2 ≡ ω

M,‖
42 = BM + JLM − JMR,

V ‖
M3 = V M,‖

75 , ω
‖
M3 ≡ ω

M,‖
75 = BM − JLM + JMR,

V ‖
M4 = V M,‖

86 , ω
‖
M4 ≡ ω

M,‖
86 = BM − JLM − JMR,

V ‖
R1 = V R,‖

21 + V R,‖
65 , ω

‖
R1 ≡ ω

R,‖
21 = ω

R,‖
65 = BR + JMR,

V ‖
R2 = V R,‖

43 + V R,‖
87 , ω

‖
R2 ≡ ω

R,‖
43 = ω

R,‖
87 = BR − JMR,

(A3)

where V μ,‖
i j = |i‖〉〈 j‖|, and ω

μ,‖
i j is defined as Eq. (9). V ‖

μi
denotes the ith eigen-operator induced by the reservoir μ,
and ω

‖
μi is the corresponding eigen-frequency. There are only

four allowed transitions for each spin. There are two eigen-
operators for the Lth or the Rth spin, which can be rewritten
as

V ‖
L1 = σ−

L ⊗ m+
M ⊗ 1R, V ‖

L2 = σ−
L ⊗ m−

M ⊗ 1R,

V ‖
R1 = 1L ⊗ m+

M ⊗ σ−
R , V ‖

R2 = 1L ⊗ m−
M ⊗ σ−

R , (A4)

where m+
μ = |↑〉μ〈↑| and m−

μ = |↓〉μ〈↓|. We find that the tran-

sitions V ‖
L1 and V ‖

L2 are only caused by the thermal reservoirs
L and M, independent of the reservoir R. Similarly, the tran-
sitions of the Rth spin do not rely on the reservoir L. This
is caused by the Lth and the Rth spins not being directly
connected.

The dynamics of the populations can be expressed as

ρ̇
‖
11 = −�

L,‖
15 − �

M,‖
13 − �

R,‖
12 , ρ̇

‖
22 = −�

L,‖
26 − �

M,‖
24 + �

R,‖
12 ,

ρ̇
‖
33 = −�

L,‖
37 + �

M,‖
13 − �

R,‖
34 , ρ̇

‖
44 = −�

L,‖
48 + �

M,‖
24 + �

R,‖
34 ,

ρ̇
‖
55 = +�

L,‖
15 − �

M,‖
57 − �

R,‖
56 , ρ̇

‖
66 = +�

L,‖
26 − �

M,‖
68 + �

R,‖
56 ,

ρ̇
‖
77 = +�

L,‖
37 + �

M,‖
57 − �

R,‖
78 , ρ̇

‖
88 = +�

L,‖
48 + �

M,‖
68 + �

R,‖
78 ,

(A5)

where �
μ,‖
i j = 2[Jμ(+ω

μ,‖
i j )ρ‖

ii − Jμ(−ω
μ,‖
i j )ρ‖

j j]. According to
the evolution equation of the system, we can obtain the unique
steady state ρ‖,S of the system by the steady-state condition
|ρ̇‖,S〉 = M‖|ρ‖,S〉 = 0 and the normalization condition. Be-
cause of its complex expression, the concrete expression of
the steady state is not given.

If the middle spin is not in contact with the environment,
then the dynamics of the populations can be divided into two
groups, one for

˙̃ρ‖
11 = −�̃

L,‖
15 − �̃

R,‖
12 , ˙̃ρ‖

22 = −�̃
L,‖
26 + �̃

R,‖
12 ,

˙̃ρ‖
55 = +�̃

L,‖
15 − �̃

R,‖
56 , ˙̃ρ‖

66 = +�̃
L,‖
26 + �̃

R,‖
56 , (A6)

and the other for

˙̃ρ‖
33 = −�̃

L,‖
37 − �̃

R,‖
34 , ˙̃ρ‖

44 = −�̃
L,‖
48 + �̃

R,‖
34 ,

˙̃ρ‖
77 = +�̃

L,‖
37 − �̃

R,‖
78 , ˙̃ρ‖

88 = +�̃
L,‖
48 + �̃

R,‖
78 , (A7)

where ˜ denotes the quantity at κM = 0. From Eqs. (A6) and
(A7), the total Hilbert space can be divided into two sub-
spaces. One subspace consists of energy levels |1‖〉, |2‖〉, |5‖〉,
and |6‖〉 named as S‖

1, and the other subspace consists of |3‖〉,
|4‖〉, |7‖〉, and |8‖〉) named as S‖

2. In S‖
l , l = 1, 2, the evolution

equation in matrix form is | ˙̃ρ‖
l (t )〉 = M̃‖

l |ρ̃‖
l (t )〉, where the

dissipation coefficient matrix M̃‖
l is

M̃‖
l =

∑
μ=L,R

M̃‖
μ,l = ML ⊗ 12 + 12 ⊗ MR, (A8)

with Mμ = 2(
−Jμ(−ω

‖
μl ) Jμ(+ω

‖
μl )

Jμ(−ω
‖
μl ) −Jμ(+ω

‖
μl )

) and |ρ̃‖
1 (t )〉 = [ρ̃‖

11(t ),

ρ̃
‖
22(t ), ρ̃‖

55(t ), ρ̃‖
66(t )]T and |ρ̃‖

2 (t )〉 = [ρ̃‖
33(t ), ρ̃‖

44(t ), ρ̃‖
77(t ),

ρ̃
‖
88(t )]T . In the steady state ρ̃

‖,S
l , the nonzero density matrix

elements are

ρ̃
‖,S
11/33 = 1

Ñ‖
1/2

J+,‖
L1/2J+,‖

R1/2, ρ̃
‖,S
22/44 = 1

Ñ‖
1/2

J+,‖
L1/2J−,‖

R1/2,

ρ̃
‖,S
55/77 = 1

Ñ‖
1/2

J−,‖
L1/2J+,‖

R1/2, ρ̃
‖,S
66/88 = 1

Ñ‖
1/2

J−,‖
L1/2J−,‖

R1/2, (A9)

where J±,‖
μl = Jμ(±ω

‖
μl ) for the sake of brevity of the

expression and Ñ‖
l = (J+,‖

Ll + J−,‖
Ll )(J+,‖

Rl + J−,‖
Rl ) is the nor-

malization coefficient.
In this case, the steady-state heat currents are

˙̃Q‖
L = −p̃ω‖

L1

(
�̃

L,‖
15 + �̃

L,‖
26

) − (1 − p̃)ω‖
L2

(
�̃

L,‖
37 + �̃

L,‖
48

) = 0,

˙̃Q‖
R = −p̃ω‖

R1

(
�̃

R,‖
12 + �̃

R,‖
56

) − (1 − p̃)ω‖
R2

(
�̃

R,‖
34 + �̃

R,‖
78

) = 0.

(A10)

Substituting the steady state Eq. (A9) into the net transition
rate �̃

μ,‖
i j , it is easy to obtain �̃

μ,‖
i j = 0. Thus, when only the

LF is present and the middle spin is not in contact with the
environment, the steady-state heat currents of the system all
vanish, which is independent of the fractions of two sub-
spaces.

One can find that in the case κM �= 0, the system can
also block the heat current when the amplitude of the
magnetic field is precisely equal to the coupling strength
between the spins, i.e., Bμ = Jμν ≡ B. In this case, the en-
ergy levels |3‖〉, |4‖〉, |7‖〉, and |8‖〉 are degenerated. The
eigen-frequencies of the system are ω̌

L,‖
51 = ω̌

L,‖
62 = ω̌

R,‖
21 =

ω̌
R,‖
65 = 2B, ω̌

L,‖
73 = ω̌

L,‖
84 = ω̌

R,‖
43 = ω̌

R,‖
87 = 0, ω̌

M,‖
31 = 3B, and

ω̌
M,‖
42 = ω̌

M,‖
75 = ω̌

M,‖
68 = B, where ˇ represents the quantity in

the condition Bμ = Jμν . Therefore, the net transition rates
are �̌

L,‖
37 = �̌

L,‖
48 = �̌

R,‖
34 = �̌

R,‖
78 = 0 in the dynamics Eq. (A5).

Following the same steps, we obtain that the steady-state den-
sity matrix as ρ̌‖,S = ∑8

i=1 ρ̌
‖,S
ii |i‖〉〈i‖| = 1

Ň

∑8
i=1 ρ̌

‖,S
i |i‖〉〈i‖|,

which Ň = ∑8
i=1 ρ̌

‖,S
i is the normalized coefficient and the

nonnormalized diagonal elements are

ρ̌
‖,S
1 = JL(+2B)JM (+3B)JM (−B)JM (+B)JR(+2B),

ρ̌
‖,S
2 = JL(+2B)JM (+3B)JM (−B)JM (+B)JR(−2B),

ρ̌
‖,S
3 = JL(+2B)JM (−3B)JM (−B)JM (+B)JR(+2B),

ρ̌
‖,S
4 = JL(+2B)JM (+3B)JM (−B)JM (−B)JR(−2B),
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ρ̌
‖,S
5 = JL(−2B)JM (+3B)JM (−B)JM (+B)JR(+2B),

ρ̌
‖,S
6 = JL(−2B)JM (+3B)JM (−B)JM (+B)JR(−2B),

ρ̌
‖,S
7 = JL(−2B)JM (+3B)JM (−B)JM (−B)JR(+2B),

ρ̌
‖,S
8 = JL(−2B)JM (+3B)JM (+B)JM (+B)JR(−2B). (A11)

According to the definition of the heat current Eq. (18), we get
the steady-state heat current as

˙̌Q‖
L = ˙̌Q‖

M = ˙̌Q‖
R = 0. (A12)

APPENDIX B: DETAILED DERIVATION OF THE STEADY STATE IN TF

If the system is immersed in the TF, then the Hamiltonian of the system is

H⊥
S = 1

2

⎛
⎝∑

μ

Bμσ x
μ +

∑
μ �=ν

Jμνσ
z
μσ z

ν

⎞
⎠, μ, ν = L, M, R. (B1)

The system is diagonalized as H⊥
S = ∑

i ω
⊥
i |i⊥〉〈i⊥|, where ω⊥

i and |i⊥〉 are the eigenvalue and the corresponding eigenstate.
Since the amplitude of the magnetic field of each spin Bμ has no qualitative effect on the characteristic of the system, we consider
here only the case of Bμ = B. The eigenvalues are

ω⊥
1 = − 1

4
√

6
(
√

m−+
3 +

√
m−

2 ), ω⊥
2 = 1

4
√

6
(
√

m−+
3 −

√
m−

2 ),

ω⊥
3 = − 1

4
√

6
(
√

m−−
3 −

√
m−

2 ), ω⊥
4 = 1

4
√

6
(
√

m−−
3 +

√
m−

2 ),

ω⊥
5 = − 1

4
√

6
(
√

m++
3 +

√
m+

2 ), ω⊥
6 = 1

4
√

6
(
√

m++
3 −

√
m+

2 ),

ω⊥
7 = − 1

4
√

6
(
√

m+−
3 −

√
m+

2 ), ω⊥
8 = 1

4
√

6
(
√

m+−
3 +

√
m+

2 ), (B2)

and the parameters in the above equation are

m±∓
3 = −12c − m±

2 ∓ 12
√

6d±√
m±

2

, m±
2 = m±

1 + 4(c2 + 12e)

m±
1

− 4c,

m±
1 = {4[2c3 + 27d±2 − 72ce +

√
(2c3 + 27d±2 − 72ce)

2 − 4(c2 + 12e)3]}1/3,

c = −6B2 − 2J2
LM − 2J2

MR,

d± = ±8B3,

e = −3B4 + 2B2(J2
LM + J2

MR

) + (
J2

LM − J2
MR

)2
. (B3)

The eigenstates are |i⊥〉 = ∑8
j=1 �⊥(i, j)| j̃〉, where �⊥(i, j) is the matrix element of ith row and jth column of coefficient

matrix �⊥ represented as

�⊥ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�11 �12 �13 �14 �14 �13 �12 �11

�21 �22 �23 �24 �24 �23 �22 �21

�31 �32 �33 �34 �34 �33 �32 �31

�41 �42 �43 �44 �44 �43 �42 �41

−�51 �52 −�53 −�54 �54 �53 −�52 �51

−�61 �62 −�63 −�64 �64 �63 −�62 �61

−�71 �72 −�73 −�74 �74 �73 −�72 �71

−�81 �82 −�83 −�84 �84 �83 −�82 �81

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B4)

Defining some parameters is necessary to represent the matrix elements of the above matrix in concrete terms. First, for i =
1, · · ·, 4, there are

λ±∓
i = B ± JLM ∓ JMR + ω⊥

i ,

Λi2 = λ−−
i

λ−+
i

,Λi3 = Λ̆i3

Bω⊥
i λ−+

i λ+−
i

,Λi4 = λ−−
i

λ+−
i

,

Λ̆i3 = 3B4 − (J2
LM − J2

MR)2 − 2B2(J2
LM + J2

MR)

+ {6B3 + [B2 + (JLM − JMR)2](JLM + JMR)}ω⊥
i

+ [3B2 + (JLM + JMR)2]ω⊥
i

2 − (JLM + JMR)ω⊥
i

3
, (B5)
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and for i = 5, · · ·, 8, there are

λ±∓
i = B ± JLM ∓ JMR − ω⊥

i ,

Λi2 = λ++
i

λ+−
i

,Λi3 = Λ̆i3

Bω⊥
i λ−+

i λ+−
i

,Λi4 = λ++
i

λ−+
i

,

Λ̆i3 = 3B4 − (
J2

LM − J2
MR

)2 − 2B2
(
J2

LM + J2
MR

)
+ {−6B3 + [B2 + (JLM − JMR)2](JLM + JMR)}ω⊥

i + [3B2 + (JLM + JMR)2]ω⊥
i

2 − (JLM + JMR)ω⊥
i

3
. (B6)

Using the parameters of Eqs. (B5) and (B6), the unnormalized coefficient matrix Λ⊥, i.e., 〈ĭ|ĭ〉 �= 1 with |ĭ〉 = ∑8
j=1 Λ⊥(i, j)| j̃〉,

as

Λ⊥ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 Λ12 Λ13 Λ14 Λ14 Λ13 Λ12 1
1 Λ22 Λ23 Λ24 Λ24 Λ23 Λ22 1
1 Λ32 Λ33 Λ34 Λ34 Λ33 Λ32 1
1 Λ42 Λ43 Λ44 Λ44 Λ43 Λ42 1

−1 Λ52 −Λ53 −Λ54 Λ54 Λ53 −Λ52 1
−1 Λ62 −Λ63 −Λ64 Λ64 Λ63 −Λ62 1
−1 Λ72 −Λ73 −Λ74 Λ74 Λ73 −Λ72 1
−1 Λ82 −Λ83 −Λ84 Λ84 Λ83 −Λ82 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B7)

Then, based on the normalization condition 〈i⊥|i⊥〉 = 1, we can obtain Eq. (B4).
The eigen-operator and the corresponding eigenfrequency induced by the thermal reservoir μ are V μ,⊥

i j = �
μ,⊥
i j |i⊥〉〈 j⊥| and

ω
μ,⊥
i j , respectively, where the coefficients are

�L,⊥
i j = 2

[
+

∑
k=1,4

�⊥
ik�

⊥
j5−k +

∑
k=2,3

�⊥
ik�

⊥
j5−k

]
,

�M,⊥
i j = 2

[
+

∑
k=1,3

�⊥
ik�

⊥
j4−k +

∑
k=2,4

�⊥
ik�

⊥
j6−k

]
,

�R,⊥
i j = 2

[
+

∑
k=1,2

�⊥
ik�

⊥
j3−k +

∑
k=3,4

�⊥
ik�

⊥
j7−k

]
, (B8)

for i ∈ [1, 3], j ∈ [i + 1, 4], and

�L,⊥
i j = 2

[
−

∑
k=1,4

�⊥
ik�

⊥
j5−k +

∑
k=2,3

�⊥
ik�

⊥
j5−k

]
,

�M,⊥
i j = 2

[
−

∑
k=1,3

�⊥
ik�

⊥
j4−k +

∑
k=2,4

�⊥
ik�

⊥
j6−k

]
,

�R,⊥
i j = 2

[
−

∑
k=1,2

�⊥
ik�

⊥
j3−k +

∑
k=3,4

�⊥
ik�

⊥
j7−k

]
, (B9)

for i ∈ [5, 7], j ∈ [i + 1, 8]. Except for the 12 transitions mentioned above for each spin, other transitions are not allowed. The
transition |i⊥〉 ↔ | j⊥〉 can be induced by either thermal reservoir, although the probability of transition �

μ,⊥
i j is different for

each thermal reservoir.
Since only the steady-state property of the system is considered, the dynamics of the populations, which are nonzero at steady

state, can be represented as two separate sets of groups based on Eqs. ((B8),(B9),12); one group is

ρ̇⊥
11 =

∑
μ

(− �
μ,⊥
12 − �

μ,⊥
13 − �

μ,⊥
14

)
,

ρ̇⊥
22 =

∑
μ

(+ �
μ,⊥
12 − �

μ,⊥
23 − �

μ,⊥
24

)
,

ρ̇⊥
33 =

∑
μ

(+ �
μ,⊥
13 + �

μ,⊥
23 − �

μ,⊥
34

)
,

ρ̇⊥
44 =

∑
μ

(+ �
μ,⊥
14 + �

μ,⊥
24 + �

μ,⊥
34

)
, (B10)
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and the other group is

ρ̇⊥
55 =

∑
μ

(− �
μ,⊥
56 − �

μ,⊥
57 − �

μ,⊥
58

)
,

ρ̇⊥
66 =

∑
μ

(+ �
μ,⊥
56 − �

μ,⊥
67 − �

μ,⊥
68

)
,

ρ̇⊥
77 =

∑
μ

(+ �
μ,⊥
57 + �

μ,⊥
67 − �

μ,⊥
78

)
,

ρ̇⊥
88 =

∑
μ

(+ �
μ,⊥
58 + �

μ,⊥
68 + �

μ,⊥
78

)
. (B11)

The net transition rate is �
μ,⊥
i j = 2(�μ,⊥

i j )2[Jμ(+ω
μ,⊥
i j )ρ⊥

ii − Jμ(−ω
μ,⊥
i j )ρ⊥

j j]. Obviously, the system is automatically de-
coupled into two independent subspaces S⊥

1 and S⊥
2 . Energy levels |1⊥〉, |2⊥〉, |3⊥〉, and |4⊥〉 constitute the subspace S⊥

1 ,
and the other four energy levels constitute the subspace S⊥

2 . In S⊥
1 , the dynamic is |ρ̇⊥

1 (t )〉 = M⊥
1 |ρ⊥

1 (t )〉, where |ρ⊥
1 (t )〉 =

[ρ⊥
11(t ), ρ⊥

22(t ), ρ⊥
33(t ), ρ⊥

44(t )]T . Thus, the steady-state dynamics in matrix form can be expressed as⎛
⎜⎜⎜⎝

−M+
12 − M+

13 − M+
14 M−

12 M−
13 M−

14

M+
12 −M−

12 − M+
23 − M+

24 M−
23 M−

24

M+
13 M+

23 −M−
13 − M−

23 − M+
34 M−

34

M+
14 M+

24 M+
34 −M−

14 − M−
24 − M−

34

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ρ⊥,S
11

ρ⊥,S
22

ρ⊥,S
33

ρ⊥,S
44

⎞
⎟⎟⎟⎟⎠ = 0, (B12)

where M±
i j = ∑

μ Mμ,±
i j = ∑

μ 2(�μ,⊥
i j )2Jμ(±ω

μ,⊥
i j ). The steady state in S⊥

1 is ρ⊥,S
1 = ∑4

i=1 ρ⊥,S
ii |i⊥〉〈i⊥|, where ρ⊥,S

ii = ρ̆ii

N1
is the

normalized population with the normalized coefficient N1 =
√∑4

i=1 ρ̆2
ii and

ρ̆11 = M−
12M−

13M−
14 + M−

12M−
13M−

24 + M−
12M−

13M−
34 + M−

12M−
14M−

23 + M−
12M−

14M+
34 + M−

12M−
23M−

24 + M−
12M−

23M−
34 + M−

12M−
24M+

34

+ M−
13M−

14M+
23 + M−

13M−
14M+

24 + M−
13M+

23M−
24 + M−

13M+
23M−

34 + M−
13M+

24M−
34 + M−

14M−
23M+

24 + M−
14M+

23M+
34 + M−

14M+
24M+

34,

ρ̆22 = M+
12M−

13M−
14 + M+

12M−
13M−

24 + M+
12M−

13M−
34 + M+

12M−
14M−

23 + M+
12M−

14M+
34 + M+

12M−
23M−

24 + M+
12M−

23M−
34 + M+

12M−
24M+

34

+ M+
13M−

14M−
23 + M−

13M+
14M−

24 + M+
13M−

23M−
24 + M+

13M−
23M−

34 + M+
13M−

24M+
34 + M+

14M−
23M−

24 + M+
14M−

23M−
34 + M+

14M−
24M+

34,

ρ̆33 = M−
12M+

13M−
14 + M−

12M+
13M−

24 + M−
12M+

13M−
34 + M+

12M−
14M+

23 + M−
12M+

14M−
34 + M+

12M+
23M−

24 + M+
12M+

23M−
34 + M+

12M+
24M−

34

+ M+
13M−

14M+
23 + M+

13M−
14M+

24 + M+
13M+

23M−
24 + M+

13M+
23M−

34 + M+
13M+

24M−
34 + M+

14M+
23M−

24 + M+
14M+

23M−
34 + M+

14M+
24M−

34,

ρ̆44 = M−
12M−

13M+
14 + M+

12M−
13M+

24 + M−
12M+

13M+
34 + M−

12M+
14M−

23 + M−
12M+

14M+
34 + M+

12M−
23M+

24 + M+
12M+

23M+
34 + M+

12M+
24M+

34

+ M−
13M+

14M+
23 + M−

13M+
14M+

24 + M+
13M−

23M+
24 + M+

13M+
23M+

34 + M+
13M+

24M+
34 + M+

14M−
23M+

24 + M+
14M+

23M+
34 + M+

14M+
24M+

34.

(B13)

Replacing the four energy levels |1⊥〉, |2⊥〉, |3⊥〉, and |4⊥〉 of S⊥
1 with the other four energy levels |5⊥〉, |6⊥〉, |7⊥〉, and |8⊥〉,

we can obtain the nonzero density matrix elements ρ⊥,S
55 , ρ⊥,S

66 , ρ⊥,S
77 , and ρ⊥,S

88 in the steady state of the subspace S⊥
2 , which is

not repeated here.

APPENDIX C: MODULATION OF HEAT CURRENT
FOR COUPLING IN DIFFERENT DIRECTIONS

In this Appendix, we study the effects of coupling interac-
tions in different directions on heat current. The most general

TABLE I. The number of steady states resulting from different
coupling (gxgygz ) between the spins in the present of TF.

(gxgygz ) (◦ ◦ •) (◦ • ◦) (• ◦ ◦) (• ◦ •) (◦ • •) (• • ◦) (• • •)

Isotropic 2 2 8 2 4 2 2
Anisotropic − − − 2 2 2 2

XY Z Heisenberg interaction between the spins is

HSI =
∑
(μ,ν)

Jμν

2
(gxσ x

μσ x
ν + gyσ y

μσ y
ν + gzσ z

μσ z
ν ), (C1)

for (μ, ν) ∈ {(L, M ), (M, R)}, where gx, gy, gz ∈ [0, 1] repre-
sents the coupled anisotropy of the two nearest-neighbor spins
in the x, y, z direction. We use (gxgygz ) to indicate the case
of different anisotropy, gx = 0 and gx �= 0 are denoted by the
symbols ◦ and •, respectively.

When only the longitudinal field is present, the steady
state of the system is unique and the steady-state heat current
is not blocked except for the case (◦ ◦ •) with κM = 0. In
the transverse field case, we find that the eigenstates in any
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FIG. 7. The process of modulating heat currents by adjusting the direction of the magnetic field under different types of couplings between
spins. The unmarked, cross, and plus lines correspond to σ z

μσ z
ν , σ x

μσ x
ν , and σ z

μσ z
ν + σ x

μσ x
ν coupling modes between spins, respectively. Dashed,

solid, and dotted lines correspond to Q̇L , Q̇M , and Q̇R, respectively. Solid (or hollow) circles, diamonds, and squares correspond to Q̇L , Q̇M ,
and Q̇R for p = 0 (or p = 1) when θ = 0.5π . Note that when the coupling is σ x

μσ x
ν , the heat current in the presence of the transverse field

is 0, which is not represented in the figure. Here, B0 = 1, BL = BM = BR = 1.5 B0, JLM = 0.8 B0, JMR = 1.2 B0, TL = 2 B0, TM = 0.02 B0,
TR = 0.2 B0, κL = κR = 0.001 B0, κM = 0, 0.1κL , and κL in panels (a), (b), and (c).

coupling type can be expressed as Eq. (B4) except for two
cases, which are (• ◦ ◦) and isotropic (◦ • •). Therefore, the
stable system in these cases can also be represented as a direct
sum space of two subspaces. Table I gives the number of
steady states of the system when only transverse field exists
with different coupling types (gxgygz ), where isotropy and
anisotropy represent the same and different coupling in dif-
ferent directions when the nearest-neighbor spins are coupled
in more than one direction. For case (• ◦ ◦), the eigenstates
of the system in the present of transverse field are |+ ++〉,

|+ +−〉, |+ −+〉, |+ −−〉, |− ++〉, |− +−〉, |− −+〉, and
|− −−〉, where |±〉μ = 1√

2
(| ↑〉μ ± | ↓〉μ) are the eigenstate

of the operator σ x
μ. For spin-Boson coupling

∑
k σ x

μ(aμk +
a†

μk ), there is no transition between any two eigenstates since
the eigen-operators are all 0, and the space formed by any
eigenstate is an invariant subspace. Therefore, when the cou-
pling between the nearest-neighbor spins is σ x

μσ x
ν , the heat

current is also disappeared. The physics behind the vanished
heat current can be understood as follows. For the gen-
eral spin-Boson model HS−B = 1

2�σ x + ∑
k,μ ωk,μa†

k,μ
ak,μ +
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FIG. 8. Steady-state heat currents vary with the temperature of the middle heat reservoir TM . The selection of parameters and the meaning
of the line styles in this figure are consistent with those in Fig. 4 and the direction of the magnetic field is fixed θ = 0.1π .
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FIG. 9. Rectification R with the temperature of the left heat
reservoir TL . Panels (a) and (b) describe R versus the magnetic-field
direction θ . Panels (c) and (d) describe the dependence of R on the
fraction p when the magnetic field is the TF, i.e., the system’s steady
state depends on the initial state. The diode property described in the
two figures on the left (or right) derives from the asymmetry of the
free magnetic field Bμ (or of the coupling strength between the spins
Jμν). Here, B0 = 1, κL = κR = 0.001B0, κM = 0, and TR = 0.5B0. In
(a) and (c), BL = 3B0, BM = 2B0, BR = B0, JLM = JMR = 0.1B0. In
panels (b) and (d), BL = BM = BR = B0, JLM = B0, JMR = 0.1B0.

∑
k,μ(gz

k,μ
σ z + gx

k,μσ x )(a†
k,μ

+ ak,μ), gz
k,μ

and gx
k,μ describe

the coupling strength of dissipative and dephasing interactions
between the qubit and the corresponding reservoir, respec-
tively. For gz

k,μ
= 0, the dephasing interaction results in pure

decoherence, no energy loss (i.e., heat current is zero) is a
trivial result [84]. For the isotropic (◦ • •), i.e., gy = gz �= 0,
two of the eight eigenstates of the system become |+ ++〉 and
| − −−〉, and the other six eigenstates can still be divided into
two subspaces, so there are four subspaces. The heat-current
modulation processes under three coupling types, which are
σ z

μσ z
ν , σ x

μσ x
ν , and σ x

μσ x
ν + σ z

μσ z
ν , are shown in Fig. 7 with the

unmarked, cross, and plus lines. Regardless of the coupling
type, the heat currents periodically vary with the direction of
the magnetic field. But only for coupling σ z

μσ z
ν , in the case

κM = 0, the heat current can be perfectly modulated in the
dissipative dynamics.

APPENDIX D: VARIATION OF STEADY-STATE HEAT
CURRENT WITH TM

Figure 8 gives the variations of the steady-state heat cur-
rents from the three heat reservoirs to the system with the
temperature of the middle reservoir. The competition between

Q̇M and Q̇R obviously depends not only on the energy spec-
trum (i.e., the relationship between Bμ and Jμν) but also on the
temperature of the heat reservoir, which is particularly clear
in Figs. 8(b), 8(c) 8(d), 8(f), and 8(h). Q̇M also has a critical
temperature T c

M that reverses the direction of the heat current.
When the direction of the magnetic field changes, the critical
temperature still exists, but the competition between Q̇M and
Q̇R may disappear, as shown in Fig. 4.

APPENDIX E: QUANTUM THERMAL DIODE

An asymmetrical quantum system with two terminals can
often be regarded as a quantum thermal diode, and the recti-
fication R is used to measure the performance of the device.
The rectification factor is defined as the ratio of the difference
between the heat currents of the system before and after ex-
changing the temperatures of the two heat reservoirs to the
maximum value between them, i.e.,

Rμ =
∣∣Q̇ f

μ + Q̇r
μ

∣∣
max

[
Q̇ f

μ, Q̇r
μ

] , μ = L, R, (E1)

where the superscript f (or r) indicates the forward (or re-
verse) temperature bias. Due to Q̇L = −Q̇R at the steady state,
there is RL = RR ≡ R. According to Eq. (E1), when R = 0,
the system is perfectly symmetrical, i.e., there is no recti-
fication effect; when R = 1, the system with the strongest
asymmetry can be considered as a perfect quantum thermal
diode; and when 0 < R < 1, the system shows specific recti-
fication.

For the system where the middle spin is not in contact with
the thermal reservoir, the variation of R with the tempera-
ture of the left thermal reservoir TL is given in Fig. 9. Since
the system is decoupled and both subsystems have vanished
heat current at θ = sπ , this case will not be considered in
this section. In Figs. 9(a) and 9(b), the dependencies of the
diode, which is based on the asymmetry of the magnetic field
strength Bμ and the coupling strength between the spins Jμν ,
on the magnetic-field direction θ are investigated respectively.
We find that when the asymmetry of the system arises from
the magnetic field of each spin Bμ, the rectification decreases
as the magnetic-field direction changes from longitudinal to
transverse as shown in Fig. 9(a). However, the variation of
the rectification is no longer monotonic around θ = π

2 , and
the heat current at θ = π

2 is obtained by evolving the steady
state of the nearest-neighbor point as the initial state. When
the rectification stems from the coupling strength between the
spins, we find that the dependence of R on θ is not monotonic,
as depicted in Fig. 9(b). Figures 9(c) and 9(d) depict the
dependence of the diode on the fraction p in the presence of
the TF, in which the diode feature originated from Bμ and Jμν .
When the magnetic field of each spin is different, shown in
Fig. 9(c), the system can still be regarded as a good diode
at p = 1. If only the coupling strengths between spins are
different, shown in Fig. 9(d), then the system has an imperfect
rectification in the TF case.
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