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Structure of the active Fokker-Planck equation
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This paper solves in one and two dimensions the steady noninteractive active Fokker-Planck (FP) equation and
finds that its velocity distribution admits, under limiting cases, a dual behavior. Briefly, when the inertial
relaxation time is smaller than the orientation time, the active FP equation admits a bimodal shape, whereas
the inverse condition is seen to admit a Gaussian one. Once the velocity distribution functions are available, they
are used to find their effect on the system’s transport properties, such as its mean-square speed. In the process,
a useful mathematical identity for the first kind Bessel function as a sum of bimodal exponential functions is
spotted.
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I. INTRODUCTION

The study of active matter with translational inertia (me-
chanical mass) [1–5] or with rotational inertia (mechanical
moment of inertia) [6] or with both inertias [7–15], and
even with a generalized rotational inertia (resistance to turn)
[16] has been mainly performed by using a Langevin ap-
proach; however, a Fokker-Planck (FP) formalism could also
be exploited. In this regard, Baskaran and Marchetti [17,18]
and Enculescu and Stark [19] formulated an active Fokker-
Planck equation including translational and rotational inertia;
nevertheless, its steady solution under the assumption that
relaxation inertial times (for both translation and rotation) are
very small (equivalent to a system under high dissipation) was
only proposed. Cavagna et al. [16] introduced their spin model
with a generalized rotational inertial to understand turning
flocks behavior. By assuming that the adjacency matrix among
birds is frozen for a given timescale and only within their
model, a Boltzmann distribution in velocity and spin space
was also proposed. Steffenoni et al. [20] applied a multiple
scale analysis to the active FP equation with translational
inertia and were able to derive a velocity distribution only in
the limiting case of high dissipation; that is, the same limit as
in Refs. [17–19]. Nevertheless, their scale analysis may shed
light on finding a perturbed velocity distribution in the general
underdamped case. Vuijk et al. [21] posed a FP equation for an
active particle with translational inertia and under a magnetic
field and found its density distribution in the small-mass limit
or equivalently under the assumption of a small translational
relaxation time, as in Refs. [17–19,21]. Scholz et al. [7] ex-
perimentally characterized solid disks of a few centimeters
in length with elastic legs and able to propel after they are
vertically shaken (called vibrobots). Due to the vibrobot size,
translational and rotational inertial effects were detected and
it was observed that the vibrobots possessed a bimodal ve-
locity distribution. Additionally, and by mixing information
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from a Langevin analysis and a Fokker-Planck formalism,
Scholz et al. [7] found a fitted velocity distribution with
translational and rotational inertial effects. Note that Scholz’s
system satisfies once again the condition of small translational
relaxation time. A first attempt to analytically characterize the
inertial—in both translation and rotation—active Brownian
particle model (IABPs), using a Fokker-Planck formalism,
was recently reported by Herrera and Sandoval [22]. They
found a perturbation solution for the joint distribution of angle
and velocity from which they were able to reproduce previous
experimental bimodal behavior for the steady velocity distri-
bution with inertial effects but only in the high dissipation
limit. Other recent works using an FP formalism with only
translational inertia are Ahmad et al. [23], who find the density
profile of active Brownian particles under gravity and in the
presence of a solid wall, and Mengkai and Zhonghuai [24],
who introduced possible useful mathematical techniques to
attack the not yet available solution of the FP equation with
both translational and rotational inertia.

A result related to the current work and where a dual
behavior for the velocity distribution is spotted was recently
made by Caprini and Marconi [25]. They dealt with a high-
density interacting active system in the inertialess regime (and
hence some differences with our current reported physics),
and numerically observed that, for small reorientation times,
their system’s velocity distribution had two peaks (since in
the inertialess world an active particle immediately acquires
its propulsion speed, and, due to its high rotational noise,
the particles making the high density solid practically do not
interact, thus being affected just by the propulsion force). On
the other hand, for large reorientation times, their velocity
distribution showed a Gaussian-like behavior (since at this
regime, and due to its slow change in orientation, an active
particle making a solid will interact with its neighbors).

As it can be seen, a systematic procedure for solving the
steady noninteractive active FP equation with translational
inertia (within the IABP model) and for any value of the
translational relaxation time, is not yet available. This work
will precisely tackle this problem, and on the way it will be
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discovered that the steady FP solution is actually sensitive to
the value of the translational relaxation time, namely, when it
is large—compared with the reorientation time—the velocity
distribution becomes Gaussian, whereas when it is small (as in
all the mentioned works), the distribution becomes bimodal.
The latter procedure is carried out in one and two dimensions.
Once the velocity PDFs are available, they are used to find
possible effects on transport properties such as in the system’s
mean-square speed. All the new analytical expressions in this
work were compared with Langevin dynamics simulations
with parameters taken from experiments. It is also worth
mentioning that in the process, a mathematical identity for the
first-kind Bessel function as a function of bimodal exponential
functions was spotted. This identity turned out to be crucial for
the analytical expressions found throughout the paper.

For ease of reading, a summary of key ideas from each
section of this paper is offered: Section II poses the FP
equation for a one-dimensional model, finds a hierarchical
equation whose solution solves the steady FP equation, and
introduces a perturbation parameter ε as a ratio of inertial and
reorientation timescales. Section III analytically solves the hi-
erarchical equation (for a one-dimensional model) under two
limiting cases (ε → 0 and ε → ∞) and proves the existence
of a dual behavior of the steady velocity distribution. The
analytical results are verified by comparing them to Langevin
simulations. Section IV finds a very useful mathematical iden-
tity where the Bessel functions appear and solves the active
FP to O(ε). Section V obtains the mean square speed (MSS)
for both (Gaussian and bimodal) velocity distributions and
establishes that the MSS obtained from a Gaussian distri-
bution is smaller than the one from a bimodal distribution.
Section VI solves the FP equation in two dimensions and
shows the existence of a volcano-like distribution. Section VII
finds the speed distribution in two dimensions by using the
discovered mathematical identity thus showing its applicabil-
ity. Section VIII recovers the classical Maxwell-Boltzmann
speed for a passive system from our general expressions, and
also shows that the speed distribution for an active system is
practically Gaussian. Numerical simulations to validate the
analytical expressions are also offered. Finally, Section IX
summarizes the current findings.

II. ACTIVE SYSTEM IN ONE DIMENSION

Let us start by considering a one-dimensional dynamics
[26,27] (thought as the projection along the x axis of a two-
dimensional dynamics1) of an active Brownian particle of
mass M and zero rotational inertia, described by its transla-
tional velocity v(t ) and its instantaneous angular position ϕ(t )
in the direction of propulsion, namely,

M
dv

dt
= −RT v + RT U cos ϕ + f̃ (t ), (1)

dϕ

dt
= g̃(t ), (2)

1In this sense, a continuous rotation ∈ [0, 2π ] of the active particle
is preserved.

where RT is the resistance to translation [thus generalizing it
to be either friction (solid-wall) or drag (solid-fluid)], U is the
imposed propulsion speed and taken constant for convenience,
whereas f̃ (t ) and g̃(t ) are zero mean random variables whose
correlations are given by 〈 f̃ (t ) f̃ (t ′)〉 = 2R2

T DT δ(t − t ′) and
〈g̃(t )g̃(t ′)〉 = 2DRδ(t − t ′), where DT and DR are translational
and rotational noise intensities. By using well-known tech-
niques, the corresponding Fokker-Planck equation for the
probability distribution function (PDF), P(v, ϕ, t ) such that
P(ϕ, v, t ) : D × [0, T ] → [0, 1] with P(ϕ, v = ±∞, t ) = 0,
for Eqs. (1) and (2) can be found expressly as

∂P

∂t
= 1

τM

∂[(v − U cos ϕ)P]

∂v
+ DT

τ 2
M

∂2P

∂v2
+ 1

τR

∂2P

∂ϕ2
, (3)

where τM and τR have been defined, respectively, as the
inertial and orientational relaxation times (τM = M/RT and
τR = 1/DR). The solution of Eq. (3) is subject to the initial and
boundary B conditions, P(0) = δ(v − v0)/2π , P(ϕ, v, t ) =
P(ϕ + 2π, v, t ), and B(P, ∂P) = 0. From now on, we will
be interested in solving Eq. (3) in the steady state (t →
∞). Its PDF must satisfy the steady condition ∂P/∂t = 0
and the normalization condition

∫ ∞
−∞

∫ 2π

0 Ps(v, ϕ)dvdϕ = 1,
where Ps(v, ϕ) = P(v, ϕ, t → ∞). Taking advantage of the
periodicity of the active term, a solution of the following form
is sought:

Ps(ϕ, v) =
∞∑

n=−∞
pn(v)einϕ, (4)

where the hierarchical equation for the pn functions in its
respective Fourier space, p̃n(u) = ∫ ∞

−∞ pn(v)e−iuvdv, and af-
ter introducing p̃n = qn(u) exp(−u2DT /2τM ), to eliminate the
translational diffusive term reads

u
dqn

du
+ iuU

2
(qn−1 + qn+1) + τM

τR
n2qn = 0. (5)

Notice that Eq. (5) already indicates a coupling effect (due to
activity in the system) between functions qn, qn−1, and qn+1.
Before going on, Eq. (5) is written in dimensionless form as

ū
dqn

dū
+ iūUth

2
(qn−1 + qn+1) + εn2qn = 0, (6)

where the dimensionless variables vth = √
DT /τM , Uth =

U/vth, and ū = uvth have been introduced. Here, the parame-
ter ε = τM/τR is also introduced. This parameter will play the
role of a perturbation parameter. Note that Eq. (6) represents
the core or the main structure of the active FP equation, whose
solution will be made in the following section.

III. SOLUTION TO THE STRUCTURE OF THE ACTIVE
FOKKER-PLANCK EQUATION

The following sections will prove that the structure of the
active Fokker-Planck equation, admits under limiting cases,
two different steady PDF behaviors which depend on the
magnitude of parameter ε. When this parameter is small,
ε 	 1, the orientation relaxation time dominates on the in-
ertial time, thus causing a steady bimodal PDF whose peaks
are centered around the absolute value of the propulsion speed
(−U,U ). On the other hand, when ε 
 1, the inertial time
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dominates, thus generating a Gaussian velocity distribution
with an effective diffusivity DE = DT + U 2τR/2. Interest-
ingly, both behaviors can be obtained from the hierarchical
system Eq. (6), and a systematic procedure for finding this
dual behavior will be built in the next sections.

A. Gaussian behavior (ε � 1)

Under the limit ε 
 1, one notices that the information
beyond n � 3 in Eq. (6) can be neglected in favor to obtain
a closed system for the coefficients qn with n = 0,±1,±2.
In the same way, the contribution of the first term in Eq. (6)
can be neglected with respect to the term with parameter ε for
n � 1, that is, ũdq±n/dũ 	 n2εq±n for n � 1. Under these
considerations, Eq. (6) for n = 0,±1,±2 gives

dq0

dũ
+ iUth

2
μ1 = 0, (7)

iuU

2
[2q0 + μ2] + εμ1 = 0, (8)

iuU

2
[μ1] + 4εμ2 = 0, (9)

where function μn = qn + q−n has been introduced. By in-
troducing Eq. (9) into Eq. (8), the coefficient μ1 can be
represented as a function of q0. To order O(1/ε2) this leads
to

μ1 = − iūUthq0

ε

⎡⎣ 1

1 + ū2U 2
th

16ε2

⎤⎦. (10)

On the another hand, by taking the marginal integral with
respect to the angular variable ϕ to Eq. (4), one proves that
P(v) = ∫ 2π

0 Ps(v, ϕ)dϕ = 2πq0(v), which implies that the
velocity distribution will only depend on the coefficient q0. To
explicitly obtain this coefficient, the leading term of Eq. (10)
is substituted into Eq. (7) to finally get

dq0

dū
+ U 2

thū

2ε
q0 = 0, (11)

and whose solution is given by q0 = A exp(−U 2
thũ2/4ε). Re-

turning to the p̃ function (after applying the inverse Fourier
transform), and returning to dimensional variables, a Gaussian
behavior is finally obtained:

P(v) =
√

τM

2πDE
e− v2τM

2DE , (12)

with DE = DT + U 2τR/2. This result implies that under the
limit ε 
 1, the structure of the steady velocity distribution
of an active system is similar to a passive one but with an
enhanced effective diffusivity DE . Notice that the Gaussian
distribution given by Eq. (12) may occur under two different
scenarios: The first one when τM is finite and τR tends to zero,
and the second one when the τR is finite and τM tends to
∞. Both scenarios satisfy the condition τM 
 τR or ε 
 1.
Physically, the first situation causes a quick change in ori-
entation of the particles, thus preventing them from reaching
and maintaining their net velocity around their self-propulsion
speed. The second situation generates an opposition of the
particles to change their direction (due to their large transla-
tional inertia). This opposition generates a mismatch between

(a) (b)

FIG. 1. Gaussian behavior as ε increases. The analytical expres-
sion, Eq. (12), is represented as a red solid line whereas simulations
are indicated as blue bars. In both cases, M = 4.07 × 10−3 kg, U =
0.0929 m s−1, τM = 0.145 s, DT = 7.7 × 10−5 m2 s−1, as dictated by
experiments with vibrobots [7]. (a) ε = 1.45. (b) ε = 1.45. Notice
how the simulations tend to a Gaussian shape as the parameter
ε 
 1.

the particles’ velocities and their orientation vector, thus pre-
venting them once again from reaching and maintaining their
net velocity around their self-propulsion speed. Both scenar-
ios lead to inertial (in translation) active particles to possess
a Gaussian velocity distribution with an enhanced diffusion
coefficient DE .

Let us now solve Eqs. (1) and (2) using Langevin dy-
namics simulations—employing a second-order Verlet-type
algorithm [9,28]—to validate the predicted Gaussian behav-
ior. For the simulations, available experimental parameters
from vibrobots [7] (which are solid disks of order of cen-
timeters with elastic legs and vertically shaken in order
to create self-propulsion) will be used. Those parameters
are M = 4.07 × 10−3 kg, U = 0.0929 m s−1, τM = 0.145 s,
DT = 7.7 × 10−5 m2 s−1. In addition, two different artifi-
cial values for its rotational relaxation times, namely, τR =
{0.01 s, 0.05 s } will also be considered. The results are pre-
sented in Fig. 1 where the theoretical expression, Eq. (12),
is represented as a red solid line, whereas the Langevin
simulations are represented in blue bars. Notice that 2000
realizations were employed. Figure 1(a) with τR = 0.01 s and
hence ε = 1.45, indicates that the system has a steady velocity
PDF close but not equal to a Gaussian distribution. On the
other hand, Fig. 1(b) with τR = 0.05 s and hence ε = 1.91,
possesses an almost perfect Gaussian distribution. There-
fore, as the theory predicts, by increasing the parameter ε, a
Gaussian behavior has to be recovered.

B. Bimodal behavior (ε → 0)

Consider now the limiting case ε → 0 in Eq. (6) and write
it in dimensional form expressly as

dqn

du
+ iU

2
(qn−1 + qn+1) = 0. (13)

This time, the solution of this system is not trivial—as in the
Gaussian case—since now the hierarchy given by Eq. (13) is
not easy to decouple. To solve it, one can differentiate Eq. (13)
with respect to u and introduce in the resulting equation infor-
mation available from Eq. (13) for the functions qn−1 + qn+1.
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After these steps, a second-order equation for qn is obtained:

d2qn

du2
+ U 2

4
[2qn + qn+2 + qn−2] = 0, (14)

where n ∈ [−N, 0, N] being N ∈ Z+, a truncation number. By
introducing function μn = qn + q−n, the hierarchical Eq. (14)
takes the form

d2μn

du2
+ U 2

4
[2μn + μn+2 + μn−2] = 0, (15)

where, this time, n ∈ [0, N]. In this way, one can see that
μ0 = 2q0, μn + μ−n = 2μn, and μ−n = μn; thus after this
change of variable, only N equations need to be decoupled.
Notice that Eq. (15) is not a closed system, thus for this case,
the steady velocity PDF contained in q0 now depends on all
the nodes, which implies solving the infinite coupled system
given by Eq. (15). To decouple this system, one first rewrites
it in matrix form expressly as

Ẍ + U 2

4
AX = 0, (16)

where

A =

2 0 1 0 0 0 0 . . .

0 3 0 1 0 0 0 . . .

2 0 2 0 1 0 0 . . .

0 1 0 2 0 1 0 . . .

0 0 1 0 2 0 1 . . .

0 0 0 1 0 2 0 . . .

0 0 0 0 1 0 2 . . .
...

...
...

...
...

...

, (17)

which represents the system’s coupling matrix and X =
(q0, μ1, μ2, . . .)T is the solution vector of the system. Since
Eq. (16) is an infinite system, it is necessary to truncate it to a
certain order N . As shown later, the order in which it should be
truncated is linked to the magnitude of the propulsion speed
U in the system. Let us express the coupling matrix as A =
PDP−1, where P represents the matrix of eigenfunctions of
A, and whose general form is

P =

a 0 b 0 . . .

0 c 0 d . . .

e 0 f 0 . . .

0 g 0 h . . .
...

...
...

...

, (18)

with P−1 being its inverse matrix, and D its diagonal matrix
of eigenvalues. Finally, by using linear algebra tools, one can
decouple Eq. (16) as

Z̈ + U 2

4
DZ = 0, (19)

where Z = P−1X is now the decoupled vector. Note how
system (19) has acquired a simple oscillator form. Thus the
solution for q0 will be

q0 =
N∑

i=0

ciZi, (20)

(b)(a)

FIG. 2. Bimodal behavior as ε decreases. The analytical ex-
pression, Eq. (23), is represented in red solid lines, whereas the
simulations are in blue bars. For both cases (ε = 0.072 and ε =
0.145, respectively), only N = 7 eigenvalues have been used to plot
the analytical bimodal distribution function. An excellent agreement
between theory and simulations can be observed.

where ci are constants, N is the number of functions one wish
to consider, and where each function Zi in Eq. (20) is given by

Zi = Aie
iuU

2

√
wi + Bie

−iuU
2

√
wi , (21)

where wi is the ith eigenvalue of A. After introducing the
appropriate value of each ci to satisfy the normalization condi-
tion, it is possible to verify that q0 has the following structure:

q0 = 1

2N

N∑
i=1

[
e

iuU
2

√
wi + e

−iuU
2

√
wi

]
. (22)

Returning it to p̃ functions, and applying an inverse Fourier
transform, one arrives at the steady velocity distribution for
an active system in the limit ε → 0, explicitly,

P =
√

τM

8πDT N2

N∑
i=1

⎡⎣e−
τM

(
v− U

√
wi

2

)2

2DT + e−
τM

(
v+ U

√
wi

2

)2

2DT

⎤⎦,

(23)

where the exponential functions in the summation represent a
typical Gaussian bimodal symmetric distribution. Therefore,
Eq. (23) is simply a superposition of N symmetric bimodal
functions, whose mean values depend on the eigenvalues of
A. Once again, let us validate Eq. (23) by comparing it to
Langevin simulations of Eqs. (1) and (2). This system is
numerically solved using the same experimental parameters as
in Sec. III A. In addition, to satisfy the condition ε → 0, the
values τR = 1 s implying ε = 0.145, and τR = 2 s implying
ε = 0.072 have been artificially chosen. The results for these
cases can be seen in Fig. 2, where the theoretical expression,
Eq. (23), is represented as red solid lines, whereas Langevin
simulations are indicated in blue bars. An excellent agreement
between theory and simulations can be appreciated. For both
cases, only N = 7 eigenvalues have been used. Notice how
the peaks of the bimodal distributions are located around the
absolute value of the propulsion speed (−U,U ). This is due
to the fact that under the limit τM 	 τR, an active particle is
seen to maintain its propulsion around U .

At this stage, we can argue that a bimodal behavior will
occur in two different scenarios: the first one when τM is finite
and τR tends to ∞, and the second one when τR is finite and
τM tends to zero. Physically, the first situation involves a very
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slow change in the direction of propulsion that causes the
particle to maintain its speed around its self-propelled speed.
The second situation occurs when the translational inertia is
small and does not generate a delay between the velocity
vector and the orientation vector. Both situations imply a
preference of the active particle to have a velocity magnitude
around its self-propelled speed due to the alignment between
its velocity vector and its orientation vector, thus generating
the observed bimodal behavior. Although it is not shown in
the paper, it was observed that the number of necessary eigen-
values to obtain the bimodal distribution (as in Fig. 2) depends
on the propulsion value U . In other words, the higher the
propulsion, the more eigenvalues will be needed to correctly
adjust the theoretical expression, Eq. (23), to the numerical
results.

IV. SOLUTION TO THE ACTIVE FOKKER-PLANCK
EQUATION FOR ε << 1

In Sec. III A, the steady solution to the active Fokker-
Planck equation for the case ε = 0 has been obtained. As
a result, a perfect bimodal behavior profile for the steady
velocity PDF has been elucidated. But, What does the O(ε)
solution looks like? To answer this, let us nondimensionalize
Eq. (3), apply to the resulting equation a Fourier transform,
and finally to employ perturbation and characteristic methods.
After all these steps, one proves that the dimensional steady
velocity distribution solution to Eq. (3), in Fourier space and
to O(ε), is given by

P̃(u, ϕ) = 1

2π
e− DT u2

2τM e−iuU cos ϕH (u, ϕ), (24)

with

H (u, ϕ) = 1 + ε

(
iuU cos ϕ − u2

2
U 2 sin2 ϕ

)
. (25)

This new steady velocity profile in Fourier space is still
a function of the angular variable. To remove this angular
dependence, one has to apply its angular marginal, P̃(u) =∫ 2π

0 P̃(u, ϕ)dϕ. The latter step and its velocity distribution
form in velocity domain, are not obvious steps. The next
section will precisely deal with this.

A. A new mathematical identity

Let us consider the leading-order distribution from
Eq. (24),

P̃(u, ϕ) = 1

2π
e− DT u2

2τM e−iuU cos ϕ, (26)

and now let us explicitly obtain its marginal integration with
respect to the angle ϕ. Using the integral definition of the
zero-order Bessel function, J0(x) = (1/2π )

∫ 2π

0 e−ix cos ϕdϕ,
into Eq. (26); the leading order velocity distribution can be
written as

P̃(u) = e− DT u2

2τM J0(uU ). (27)

Comparing this expression with the distribution obtained in
Sec. III B, specifically with Eq. (23) but in Fourier space, one

(c) (d)

(a) (b)

FIG. 3. Comparison between the exact zero-order Bessel func-
tion J0(ax) with a = 1 (black solid lines) and Eq. (28), for N =
[5, 10, 15, 20] eigenvalues (red dotted lines). Notice how the number
of eigenvalues N , used in Eq. (28), generate N peaks in the red dotted
functions. Clearly, as N → ∞, the mathematical identity is satisfied.

encounters the following mathematical identity:

J0(x) = 1

2N

N∑
j=1

[e
−ix

2
√

w j + e
ix
2
√

w j ], N → ∞, (28)

where wi is the ith eigenvalue of matrix A. This time, the
Bessel function is expressed as an infinite sum of imaginary
exponential functions whose arguments contain the eigenval-
ues of matrix A. To visualize and corroborate this important
result, Eq. (28) is compared with the exact zero-order Bessel
function J0(x). This is shown in Fig. 3 where the exact Bessel
function is shown in black solid lines, whereas Eq. (28) for
N = [5, 10, 15, 20] eigenvalues is plotted in red dotted lines.
Clearly, as the number of eigenvalues increase, the identity
perfectly matches the function J0(x). Notice that the impor-
tance of this identity relies on the fact that one can now
express a Bessel function as a sum of exponential functions
rather than a more complicated classical series form. A formal
proof of Eq. (28) is also contained in Appendix A.

Before closing this section, notice that by using Eq. (28)
and known properties of Bessel functions, it is possible to
express higher-order first-kind Bessel functions as a sum
of exponential functions. For example, to get an iden-
tity for J1(x), it is necessary to use the property J1(x) =
−(d/dx)J0(x) and Eq. (28), which leads to

J1(x) = 1

2N

N∑
j=1

(√
w j

2i

)
[e

ix
2
√

w j − e− ix
2
√

w j ]. (29)

The importance of these identities will be shown in the
following sections.
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B. Steady velocity distribution to O(ε)

By applying the angular marginal integral to Eq. (24), one
gets in Fourier space

P̃(u) = e− DT u2

2τM

[
J0(uU ) + ε

uU

2
J1(uU )

]
. (30)

Taking its inverse Fourier transform, the velocity distribution
takes the form

P(v) = 1

2π

[
I1(v) + εU

2
I2(v)

]
, (31)

with

I1(v) =
∫ ∞

−∞
e− DT u2

2τM J0(uU )eiuvdu, (32)

and

I2(v) =
∫ ∞

−∞
ue− DT u2

2τM J1(uU )eiuvdu. (33)

As can be seen, Eqs. (31)–(33) indicate that a closed form for
the steady velocity seems impossible; however, by taking ad-
vantage of Sec. IV A, it is possible to overcome this situation.
In this way, one only needs to substitute Eqs. (28) and (29)
into the previous integrals to verify that

I1(v) = 1

2N

√
π

a

N∑
j=1

[e− (v−b j )2

4a + e− (v+b j )2

4a ], (34)

and

I2(v) = 1

4Na

√
π

a

N∑
j=1

(√
ω j

2

)
[s je

− s2
j

4a − h je
− h2

j
4a ], (35)

where s j = v + b j , h j = v − b j , b j = U
2
√

w j , a = DT /2τM ,
and i is the imaginary number. With the latter result it is
now possible to have a closed steady velocity PDF form
summarized by Eq. (31). Let us validate this expression by
comparing it to Langevin simulations. To do so, let us take
the following available experimental [7] parameters: M =
1.57 × 10−3 kg, τM = 0.33 s, DT = 2.2 × 10−4 m2 s−1, τR =
1.69 s. In addition, four different propulsion speeds U =
(0.087, 0.2, 0.5, 0.8) m/s are also considered. Notice that,
for this vibrobot, ε = 0.19, hence according to our theory
(ε 	 1), this vibrobot has to have a bimodal distribution
which is experimentally corroborated in Ref. [7]. The results
can be visualized in Fig. 4, where the red solid lines represent
the theoretical expression, Eq. (31), with N = 14 eigenval-
ues. The yellow dashed lines represent the perfect bimodal,
Eq. (23), and the blue bars represent the numerical results. In
all cases, the difference between the perfect bimodal, Eq. (23),
and the perturbed solution, Eq. (31), can be appreciated. The
latter being more accurate—at the extremes and in the middle
zone of the PDF—with respect to Langevin simulations. No-
tice as well, that the peaks in the perturbed solution, become
less accurate as the propulsion U grows. This may be over-
come if more orders in the perturbed solution are considered.

V. MEAN SQUARE SPEED

What about the ability of Eqs. (12), (23), and (31) to pre-
dict the system’s mean square speed (MSS)? Using the MSS

(c) (d)

(a) (b)

FIG. 4. Theoretical and numerical bimodal distributions for an
active system with parameters (taken from previous experimental
work): M = 1.57 × 10−3 kg, τM = 0.33 s, DT = 2.2 × 10−4 m2 s−1,
τR = 1.69 s; and for different proposed propulsion speeds. (a) U =
0.087 m/s, (b) U = 0.2 m/s, (c) U = 0.5 m/s, and (d) U = 0.8 m/s.
In all cases, the red solid line represents the theoretical expression,
Eq. (31). Yellow dashed line represents the perfect bimodal (ε → 0),
Eq. (23); whereas the blue bars represent the numerical results. The
numerical results verify how first-order corrections in ε improve the
adjustment between the theoretical distribution and the numerical
simulation at its extremes and at its middle zone; however, as the
propulsion increases, a mismatch between the numerical and theo-
retical maxima starts to appear, see Figs. 4(c) and 4(d). This may be
overcome if more eigenvalues are considered. The present figure uses
N = 14 eigenvalues.

definition

〈v2〉 =
∫ ∞

−∞
v2P(v)dv, (36)

and introducing Eq. (12) into it, one can show that the MSS
〈v2〉G for active matter with a Gaussian behavior in its velocity
distribution is

〈v2〉G = DE

τM
. (37)

The latter expression indicates that under this condition, our
active system behaves as a passive one but with an effective
diffusivity DE . For the bimodal case, Eq. (31) is introduced
into Eq. (36), and after certain algebraic steps, one can prove
that its respective MSS 〈v2〉B takes the following form:

〈v2〉B = 1

N

N∑
i

[
2a + b2

i − εU

2

√
wibi

]
. (38)

Let us rewrite the latter equation by employing summation
properties and the following important discovered relation for
the eigenvalues w j of A,

N∑
j=1

wk
j = (2k)!N

(k!)2 , (39)
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where k is any integer. Details on the way this relation is
obtained can be seen in Appendix A. Notice that, only after the
use of Eq. (39) can one obtain a closed theoretical expression
for 〈v2〉B, explicitly,

〈v2〉B =
[

DT

τM
+ U 2

2

(
1 − τM

τR

)]
. (40)

This expression contains the parameter ε = τM/τR as a cor-
rection in the active term, which is due to the presence of
translational inertia in the system. Notice that this correction
term can be improved if the perturbed solution, Eq. (24), is
obtained at higher orders. Let us visualize this by considering
the full expression (no approximations applied whatsoever)
reported by Sandoval [9] for the MSS of an active Brow-
nian particle with translational inertia and obtained using
a Langevin formalism. That formula expressed in current
variables reads

〈v2〉 =
[

DT

τM
+ U 2

2(1 + ε)

]
. (41)

It is worth noticing that Eq. (41) is valid for any value of ε.
Hence by applying the limit ε 	 1 to it, and considering that
1/(1 + x) = ∑∞

k=0(−1)kxk for x 	 1, one recovers Eq. (40).
This fact corroborates our theoretical procedure. Once the
analytical expressions, Eqs. (37) and (40), are available, we
proceed to validate them by using Langevin dynamics simula-
tions. Let us reproduce the MSSs for the systems analyzed
in Secs. III A and III B. The results as a function of τR

and U , can be seen in Fig. 5, where the red dots represent
the numerical results, while the black dashed lines indicate
the theory. Figure 5(a) shows the system’s MSS for τR =
{2, 1, 0.05, 0.025, 0.016} s. The first two cases, τR = {2, 1} s
or equivalently ε = {0.07, 0.14} represent a bimodal behav-
ior, while the rest τR = {0.05, 0.025, 0.016} s or equivalently
ε = {2.91, 5.83, 8.75} represent Gaussian behavior. The other
used numerical parameters for the simulations in Fig. 5 are,
respectively, the same as in Secs. III A and IV. An excellent
agreement between theory and simulations, except for the case
τR = 0.05 s, can be observed. In the latter case, there is a dif-
ference between the numerics and the theoretical expression
(37) due to the value of the perturbation parameter, which
in this case lies between the transition from a bimodal to a
Gaussian distribution. To overcome this, another methodology
able to fully solve the active Fokker-Planck equation would be
needed. Finally, Fig. 5(b) represents the MSS for the system
analyzed in Sec. IV and for different assumed propulsion
speeds, namely, U = [0.087, 0.2, 0.5, 0.8] m/s. An excellent
agreement between theory and simulations can be appreci-
ated, thus validating Eq. (40).

An important remark from this section is the fact that
Eqs. (37) and (40) under their respective limits, satisfy
〈v2〉G < 〈v2〉B which may have effects on the information
transfer speed in a collection of interacting particles such as
in flocks, herds, swarms or schools. Here, information transfer
among members of the group may depend on how fast an
individual moves; in other words, information transfer may
be sensitive to whether the system possesses a Gaussian or a
bimodal velocity distribution.

(a)

(b)

FIG. 5. Theoretical and numerical MSS for an active system
as a function of rotational noise and propulsion. (a) MSS for the
system analyzed in Sec. III A but for different rotational noises,
namely, τR = {2, 1, 0.05, 0.025, 0.016} s. (b) MSS for the sys-
tem analyzed in section (4) but for different propulsion speeds
U = [0.087, 0.2, 0.5, 0.8] m/s. In both cases the red dots represent
numerical results and the black dashed lines represent theoretical
results.

VI. VELOCITY DISTRIBUTION IN TWO DIMENSIONS

So far, the core structure of the active Fokker-Planck equa-
tion has been elucidated in a one-dimensional system. Let us
then generalize the previous sections to a two-dimensional
scenario. For this case, the dynamics of an active Brownian
particle with only translational inertia, satisfies the following
Langevin dynamics:

M
dv
dt

= −RT v + RT U û + f̃ (t ), (42)

dϕ

dt
= g̃(t ), (43)

where v = (vx, vy) represents the velocity vector,
û = (cos ϕ, sin ϕ) is the orientation vector, and f̃ (t ) =
( f̃x(t ), f̃y(t )) together with g̃(t ) are zero mean random
variables whose correlation are given by 〈 f̃i(t ) f̃ j (t ′)〉 =
2R2

T DT δi jδ(t − t ′) and 〈g̃(t )g̃(t ′)〉 = 2DRδ(t − t ′).
The respective Fokker-Planck equation for the probability

distribution function (PDF), P(v, ϕ, t ), from Eqs. (42) and
(43), is given by

∂P

∂t
= 1

τM
∇ · [(v − U û)P] + DT

τ 2
M

∇2P + 1

τR

∂2P

∂ϕ2
, (44)

where ∇ = (∂x, ∂y). Its steady solution is sought by nondi-
mensionalizing Eq. (44), applying a double Fourier transform
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FIG. 6. (a) Velocity distribution P(v), for an active system
with parameters (taken from previous experiments) M = 1.57 ×
10−3 kg, τM = 0.33 s, DT = 2.2 × 10−4 m2 s−1, τR = 1.69 s, and
U = 0.087 m/s. This time, a volcano structure has appeared. (b) Pro-
jection of P(v) onto the plane vx-vy. In both figures, dark colors
indicate lower probability, whereas bright colors indicate the
opposite.

[k = (kx, ky)] and then using perturbation (ε = τM/τR 	 1)
and characteristic methods [22]. After all these steps, the
steady velocity PDF in dimensional form becomes

P̃(k, ϕ) = e− |k|2DT
2τM e−iUk·ûẼ (k, ϕ), (45)

where

Ẽ (k, ϕ) = 1 + ε

{
iUk · û − U 2

2

[
k · ∂û

∂ϕ

]2
}

. (46)

The latter velocity distribution can also be written in real
space, P(v, ϕ), expressly:

P(v, ϕ) = τM

4π2DT
e− τM

2DT
|v−U û|2 E (v, ϕ), (47)

where

E = 1 − ε

(
τM

DT

){
Uv · û − U 2

2

[
1 + τM

DT

(
v · ∂û

∂ϕ

)2
]}

.

(48)

However, to obtain its angular marginal, P(v) =∫ 2π

0 P(v, ϕ)dϕ, a numerical algorithm has to be implemented.
After this, one finds that P(v) represents a volcano-shape
distribution [Fig. 6(a)] and whose projection on the vx-vy

plane forms a disk of radius equal to the propulsion speed

U . This volcano structure means that the net speed of the
system v2 = v2

x + v2
y has a high probability to be around the

propulsion speed U . The latter is shown in Figs. 6(a) and
6(b), where a dark color code is used to represent a lower
probability, whereas a bright color code is used to indicate a
higher probability.

VII. SPEED DISTRIBUTION IN TWO DIMENSIONS

To obtain the speed distribution, Pv (v) = 2πvP(v), where
v2 = v2

x + v2
y , it is necessary to find its relation with the veloc-

ity distribution, P(v), which implies that a relation between its
respective Fourier transform, P̃(k), and its respective expres-
sion as a function of the modulus of the Fourier vector, P̃(k)
exists. In fact, by applying the Fourier transform to Eq. (47),
one gets

P̃(k) = e− DT k2

2τM

[
J0(Uk) + ε

Uk

2
J1(Uk)

]
, (49)

where k2 = k2
x + k2

y is the magnitude of vector k. The latter
implies that at least to O(ε), P̃(k) = P̃(k). Thus, by taking the
inverse Fourier transform to P̃(k), it is possible to verify—
after using the change of variables kx = k cos θ , ky = k sin θ ,
vx = v cos φ, and vy = v sin φ—that the relation between the
speed distribution P(v) and P̃(k) is given by the Hankel
transform [29]:

P(v) =
∫ ∞

0
kP̃(k)J0(kv)dk. (50)

Notice that, by definition, the Hankel transform contains a
J0(kv) function. Henceforth, if one tries to perform this in-
tegration in Eq. (49), together with a series representation for
the Bessel function, a solution with four indices would appear.
The latter fact shows the importance of the identity for J0(x)
given by Eq. (28). After introducing Eq. (49) into Eq. (50), it
is possible to rewrite the integral as

P(v) = 1

2π

[
I1(v) + ε

U

2
I2(v)

]
, (51)

where

I1(v) =
∫ ∞

0
ke− DT k2

2τM J0(Uk)J0(kv)dk, (52)

and

I2(v) =
∫ ∞

0
k2e− DT k2

2τM J1(Uk)J0(kv)dk. (53)

By using our identity, Eq. (28), the latter integrals can now be
calculated. These integrals take the form

I1(v) = 1

2aN2

N∑
j,m=1

[1 − X1F (X1) − X2F (X2)], (54)

I2(v) = 1

4aN2

N∑
j,m=1

√
w j

[√
1

a

(
1

2
− X 2

1

)
F (X1) + b1

4a

]

+ 1

4aN2

N∑
j,m=1

√
w j

[√
1

a

(
1

2a
− X 2

2

)
F (X2) + b2

4a

]
,

(55)

014140-8



STRUCTURE OF THE ACTIVE FOKKER-PLANCK … PHYSICAL REVIEW E 109, 014140 (2024)

where X1 = b1/
√

4a, X2 = b2/
√

4a, b1 = q jm/2, b2 =
s jm/2, q jm = U

√
w j + v

√
wm, s jm = U

√
w j − v

√
wm,

a = DT /2τM and where F (X ) represents the Dawson function
[29]. To conclude, Eq. (51) together with Eqs. (54) and (55),
represent the two-dimensional speed distribution for an active
Brownian particles of mass M, zero rotational inertia, and
under the limit ε 	 1. In the following section, this analytical
speed distribution will be studied and plotted under different
limits.

VIII. VISUALIZING THE SPEED DISTRIBUTION

Let us now visualize and at the same time corroborate the
speed distribution, Pv (v) = 2πP(v), [where P(v) is given by
Eq. (51)] for three different cases, namely, passive particles
(U = 0)—for which the classical Maxwell-Boltzmann distri-
bution is expected, an active system with ε = 0, and an active
system with ε 	 1 but finite.

A. Passive case U = 0

Take U = 0 in Eq. (51), hence the speed distribution
reduces to

P(v) = 1

4aπN

N∑
m=1

[1 − 2X1F (X1)], (56)

where in this particular case X1 = b1/
√

4a, with b1 =
v
√

wm/2. Consider now the Dawson function F (X ) in its
series representation [29],

F (x) = −1

2

∞∑
k=1

(−1)kx2k−14kk!

(2k)!
, (57)

and introduce it in Eq. (56). After some manipulation one
finds

P(v) = 1

2aN (2π )

[
N +

∞∑
k=1

(−1)k4kk!

(2k)!(4a)k

(
v2

4

)k N∑
m=1

wk
m

]
.

(58)

Note that the eigenvalues of matrix A have appeared in the
second term of the latter expression. Thus, after using Eq. (39)
and some algebra, one finally arrives at

P(v) = 1

2a(2π )
e− v2

4a , (59)

which is precisely the classical Maxwell-Boltzmann distri-
bution for passive matter. This result validates the approach
taken in this work, since it explicitly shows how Eq. (51)
contains under a particular limit, the well-known Maxwell-
Boltzmann distribution.

B. Active system, case ε → 0

Let us now consider the leading order of Eq. (51), namely,

P(v) = 1

4aπN

N∑
m=1

[1 − X1F (X1) − X2F (X2)], (60)

where X1 = b1/
√

4a, X2 = b2/
√

4a, b1 = q jm/2, b2 = s jm/2,
q jm = U

√
w j + v

√
wm, s jm = U

√
w j − v

√
wm, and

FIG. 7. Speed distribution for a two-dimensional active system
in the limit ε → 0. The obtained distribution Eq. (61) is shown in
a red solid line; while a perfect Gaussian distribution, Eq. (63), is
drawn in a blue dashed line. Note how the speed distribution for
an active system under the limit ε → 0 seems to be practically a
Gaussian distribution.

a = DT /2τM . Using the same series expansion for the
Dawson function [Eq. (57)] and the eigenvalues property,
Eq. (39), it is possible to verify that the speed distribution,
Eq. (60), takes the form

P(v) = 1

4a(2π )

∞∑
k=0

(−1)kk!

(4a)k

k∑
n=0

U 2(k−n)v2n

(n!)2[(k − n)!]2 , (61)

which can be rewritten, after employing the binomial the-
orem as well as the property (

∑k
n=0 an)2 = ∑k

n=0 a2
n +∑k

n=0

∑k
m �=n anam, as

P(v) = 1

2a(2π )
e− 1

4a (U+v)2 − 1

4a(2π )

∞∑
k=0

(−1)kk!

(4a)k

×
k∑

n=0

k∑
m �=n

(
U k−nvn

n!(k − n)!

)(
U k−mvm

m!(k − m)!

)
. (62)

On the other hand, the series form of a Gaussian distribution
is

e− (U−v)2

4a =
∞∑

k=0

(−1)k (U − v)2k

(4a)kk!
. (63)

The latter indicates that Eq. (62) is not exactly Gaussian but
very close to it, as it can be visualized in Fig. 7, where
Eq. (62) is plotted as a red solid line, while a Gaussian
distribution, P(v) = C exp[(U − v)2/4a], where by normal-

ization, C−1 = 2ae− U2

4a + √
πaU [1 + erf (U/

√
4a)] with a =

DT /2τM , is plotted as a blue dashed line. The same numerical
values as in Sec. IV have been used. Notice that setting U = 0
implies that C−1 = 2a, thus recovering the passive Maxwell-
Boltzmann velocity distribution function, Eq. (59).

C. Active system, cases ε << 1

Let us finally visualize Eq. (51) for a finite ε. To do so,
a comparison between Langevin dynamics and Eq. (51) is
carried out. This comparison is shown in Fig. 8(a) where
different propulsions, namely, U = [0, 0.087, 0.15, 0.2] m/s
are considered and the same parameters from Sec. IV are
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(c) (d)

(a) (b)

FIG. 8. (a) Theoretical and numerical comparison for an active
system with parameters (taken from available experiments): M =
1.57 × 10−3 kg, τM = 0.33 s, DT = 2.2 × 10−4 m2 s−1, τR = 1.69 s,
and proposed propulsion speeds U = [0, 0.087, 0.15, 0.2] m/s. The
theoretical expression, Eq. (51), is represented as a solid black
line. (b) MSS for the active system in panel (a), where red
points represent the numerical results and the dashed black lines
represent the theoretical expression, Eq. (64). (c) Active system
with parameters (taken from previous experiments): M = 1.57 ×
10−3 kg, τM = 0.33 s, DT = 2.2 × 10−4 m2 s−1, U = 0.2 m/s, and
with τR = [10000, 1.69] s. Here, Eq. (51) is represented, respec-
tively, in black-solid and red-dashed lines. Notice how the maxima of
the distributions move to the right-hand side when τR → ∞. (d) MSS
for the system in panel (c).

taken into account. The number of eigenvalues used to plot the
analytical distribution, Eq. (51) (black solid lines), were N =
25. A good agreement between theory and simulations can
be observed. However, as the propulsion speed U increases,
the maximum values for Pv (v), according to the theory and
the simulations, do not perfectly match. To overcome this
observation, higher orders in the perturbation series would
have to be included. The effect of the rotational diffusion on
the steady speed distribution is also visualized in Fig. 8(c).
Here, in addition to the use of the same parameters as in
Sec. IV, a propulsion speed U = 0.2 m/s, and two different
rotational diffusivities, τR = [10000, 1.69] s, are considered.
Notice how τR = 10 000 s represents the perfect bimodal case
τR → ∞. It can be seen that as τR reduces, the speed distri-
bution is displaced to the left. This just means that a small τR

does not allow the particle to maintain its net velocity close
to its propulsion speed. Notice that the analytical, Eq. (51), is
plotted as black solid and red dashed lines, respectively. It can
also be seen that, as τR increases, the analytical solution fits
better to the simulation. Therefore, for smaller τR, while fixing
τM , higher orders in the perturbation series would be needed
to observe a better match between theory and simulations.

D. Mean square speed in two dimensions

To close this work, let us evaluate the system’s mean square
speed. Due to isotropy, one can calculate it using that 〈v2

j 〉 =

∫ ∞
−∞ v2

j P(v j )dv j together with 〈v2〉 = 2〈v2
j 〉 for j = {x, y}.

It is worth noticing that, by using numerical integration to
calculate the angular marginal to Eq. (47), it is possible to
verify that P(vx ) = P(vy) as expected. Thus by simply using
the result given by Eq. (40), one gets

〈v2〉 = 2

[
DT

τM
+ U 2

2

(
1 − τM

τR

)]
. (64)

Its plot can be seen in Figs. 8(b) and 8(d), where the MSS for
the systems considered in Figs. 8(a) and 8(c) are calculated.
In this figure, black dashed lines represent the theoretical
expression, Eq. (64), whereas red dotted lines represent the
numerical results. Notice the excellent agreement between
theory and simulations.

IX. CONCLUSIONS

This work was able to extract—after using the periodicity
of the active term, a Fourier transform, and so on—the core
structure of the active Fokker-Planck equation [Eq. (6)]. By
using that structure, this paper solved the steady FP equa-
tion using perturbation methods and analytically revealed the
condition under which a noninteractive active system presents
either a bimodal or a Gaussian velocity distribution. This
condition was shown to depend on the reorientation and
translational inertial timescales in active matter. When the
inertial time is smaller than the orientation time, the active
Fokker-Planck stationary solution admits a bimodal shape.
The inverse condition was shown to admit a Gaussian shape.
The treatment in this work of an active system with a large
inertial relaxation time closes the gap in the current literature,
where only the small-mass limit (equivalent to a high dissi-
pation condition or to a small inertial relaxation time) was
considered. The latter procedure was carried out in one and
two dimensions; in particular, in a two-dimensional (2D) envi-
ronment and for a system with its inertial time smaller than its
orientation time, a volcano-like shape for the velocity profile
was obtained. Its respective speed distribution was also ana-
lytically found thanks to a spotted mathematical identity for
the first-kind Bessel function as a sum of bimodal exponential
functions. Interestingly, this speed distribution was seen to
be very close to a Gaussian distribution. Once the mentioned
velocity distributions were available, the mean square speed
(MSS) for the system was also extracted. It was observed that
active matter with a Gaussian velocity distribution presents a
smaller MSS than a system with a bimodal velocity distribu-
tion. The latter result may have important effects in collective
animal behavior where information transfer may depend on
the members’ speed. Langevin dynamics simulations—in one
and two dimensions—were also performed and their compari-
son with the analytical results showed an excellent agreement,
thus validating the analytical findings in this work.
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TABLE I. Eigenvalues of matrix A for different N .

N 3 5 7 9 15

w1 2 2 2 2 2
w2 2 + √

3 3.176 3.950 3.9696 3.9890
w3 2 − √

3 0.824 0.050 3.7321 3.9021
w4 3.902 2.868 3.2856 3.7321
w5 0.098 1.132 2.6840 3.4863
w6 3.564 0.0304 3.1756
w7 0.436 0.2679 2.8135
w8 1.3160 2.4158
w9 0.7144 1.5842
w10 0.0110
w11 0.0979
w12 0.2679
w13 0.5137
w14 1.1865
w15 0.8244

APPENDIX A: EIGENVALUES PROPERTIES

This Appendix deals with some important properties from
matrix A (size 2N × 2N). Those properties together with
numerical analysis helped us to formulate a theoretical expres-
sion for its respective eigenvalues, as described below. First,
some of its eigenvalues—for different values of N—can be
visualized in Table I. Thus, one can notice that matrix A has
N different eigenvalues, which implies that each eigenvalue
wi has a multiplicity of two. The characteristic polynomial
associated with A, has the factorized form

P(λ) = (λ − w1)2(λ − w2)2(λ − w3)2 · · · (λ − wN )2. (A1)

However, to obtain a general analytical expression for wi

from Eq. (A1) is impossible. Instead, we employed numerical
analysis to obtain the eigenvalues of A for different N and
deduce some of its eigenvalues properties:

(1) There exist eigenvalues wi different than zero only for
N being an odd number.

(2) For any odd N , there exists one eigenvalue with the
value two. The rest of the eigenvalues change their numerical
value with N .

(3) There exists an even number of different eigenvalues
N − 1. These eigenvalues can be separated into (N − 1)/2
pairs with the property wi + w j = 4, where wi = 2 + ki and
w j = 2 − ki.

The latter observations lead to the conclusion that, for any
k ∈ Z,

N∑
j=1

wk
j = (2k)!N

(k!)2 , (A2)

which is a very useful expression that allows us to represent
analytical results in a closed form.

APPENDIX B: FIRST-KIND BESSEL FUNCTION J0(x)

This Appendix formally proves the mathematical identity
given by Eq. (28). First, rewrite Eq. (28) from the text as

J0(x) = 1

N

N∑
j=1

cos

[
x
√

w j

2

]
. (B1)

Then, by using the series expansion of cos(x) and the eigen-
values property, Eq. (39), one can proceed as follows:

1

N

N∑
j=1

cos

[
x
√

w j

2

]
= 1

N

N∑
j=1

∞∑
k=0

(−1)k

(2k)!

( x

2

)2k
wk

j

= 1

N

∞∑
k=0

(−1)k

(2k)!

( x

2

)2k N∑
j=1

wk
j

= 1

N

∞∑
k=0

(−1)k

(2k)!

( x

2

)2k (2k)!N

(k!)2

=
∞∑

k=0

(−1)k

(k!)2

( x

2

)2k
,

= J0(x), (B2)

which ends the proof. �
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