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Anomalous diffusion, non-Gaussianity, nonergodicity, and confinement in stochastic-scaled
Brownian motion with diffusing diffusivity dynamics
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Scaled Brownian motions (SBMs) with power-law time-dependent diffusivity have been used to describe
various types of anomalous diffusion yet Gaussian observed in granular gases kinetics, turbulent diffusion, and
molecules mobility in cells, to name a few. However, some of these systems may exhibit non-Gaussian behavior
which can be described by SBM with diffusing diffusivity (DD-SBM). Here, we numerically investigate both
free and confined DD-SBM models characterized by fixed or stochastic scaling exponent of time-dependent
diffusivity. The effects of distributed scaling exponent, random diffusivity, and confinement are considered.
Different regimes of ultraslow diffusion, subdiffusion, normal diffusion, and superdiffusion are observed. In
addition, weak ergodic and non-Gaussian behaviors are also detected. These results provide insights into
diffusion in time-fluctuating diffusivity landscapes with potential applications to time-dependent temperature
systems spreading in heterogeneous environments.
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I. INTRODUCTION

Diffusion and other transport phenomena in physical, bi-
ological, and other systems have always been key to other
processes such as reactions to name a few, and sometimes con-
trolling such processes is an aim that first requires establishing
the dynamics driving these phenomena. This can be achieved
by single-particle tracking (SPT) and statistical observables
such as mean-squared displacements (MSD) to characterize
the recording datasets, as well as building theoretical mod-
els that embody the detected characteristic features [1–4].
These models can be applied later to study related processes.
However, some of these models may exhibit nonergodic be-
havior where the ensemble MSD and mean time-averaged
mean-squared displacements (TAMSD) (defined in Sec. II B
more precisely) are not identical [5–14]. This requires caution
when applying theoretical models and knowledge of the exact
behavior of their statistical observables [15].

The systematic study of the diffusion processes dates back
to 1828 when Robert Brown noticed an erratic motion of
pollen granules in water [16]. The basis of the theory of
diffusion process was laid by Einstein, Smoluchowski, and
Langevin between 1905 and 1908 [2,16]. It has been shown
that the thermal motion of the molecules around a small par-
ticle (Brownian one) causes the molecules to strike into it and
make it move randomly. Experimental contributions by Perrin
and Nordlund led to a better understanding of the diffusion of
particles. According to these studies it has been established
that the Brownian diffusion has two main characteristics: (1)
the time evolution of the ensemble of the diffusive particles
follows a Gaussian distribution as predicted by Fick’s law, (2)
the MSD grows linearly over time.
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Rapid technological development in particle tracking in
biological systems has given insight into these systems and
has opened a new outlook in nanoscience and nanotechnology.
The analysis of SPT datasets has shown a deviation from the
standard Brownian behavior [2,17–20], in which the MSD
grows nonlinearly over time [21–24]. Such a phenomenon
is known as anomalous diffusion, which can be classified
into different types based on the scaling of MSD. The MSD
following the power-law form 〈x2(t )〉 � tα with 0 < α < 1
refers to subdiffusion, while the case α > 1 corresponds to
superdiffusion. Subdiffusion behavior has been observed in
a variety of systems, such as amorphous semiconductors,
subsurface aquifers, live cells, lipid bilayer membranes, and
artificially crowded systems [15,20,25–46]. The movements
in turbulent systems, weakly chaotic systems, and systems
that involve active dynamics have shown superdiffusion be-
havior [47–54]. Besides, ultraslow diffusion with logarithmic
scaling of the MSD, 〈x2(t )〉 � logγ (t ), has been demonstrated
in various systems [6,55–64]. For γ = 4, it refers to Sinai
diffusion [65,66].

The driving dynamics of anomalous diffusion are nonuni-
versal in which different dynamics can lead to the same
behavior. In this context, several stochastic models based on
various physical mechanisms have been suggested to describe
this phenomenon [6,13,14]. Examples include, continuous
time random walk (CTRW) [67,68] with scale-free waiting
time, Lévy walks and flights [8,69], fractional Brownian mo-
tion (FBM) [70–73], random walk in fractal and comblike
structures [74–78], heterogeneous diffusion processes (HDP)
with space-dependent diffusivity [79–87], and scaled Brown-
ian motion (SBM) with time-dependent diffusivity [88–96].

Unlike Brownian motion, the shape of the probability den-
sity function (PDF) P(x, t ) for the particle displacement at
the time step is not always Gaussian in the aforementioned
stochastic processes. While the FBM and SBM show a
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Gaussian-like distribution, the CTRW and HDP have a non-
Gaussian distribution. Recently, a new type of non-Brownian
diffusion has been reported in the SPT experiments in a
number of biological, soft matter, and other complex systems
[97–105]. This diffusion type is known as the Brownian yet
non-Gaussian diffusion, in which, the MSD grows linearly
over time combined with a non-Gaussian PDF [18,106]. The
physical mechanism underlying this behavior can be traced
back to environmental heterogeneity. Different approaches
have been suggested to describe this phenomenon, among
which we mention the concept of superstatistics [107,108]
and diffusing diffusivity (DD) [109–111]. For superstatis-
tics, an ensemble of different Brownian particles diffuse in
different environments with given diffusion coefficients D.
In this context, the PDF of the particle displacement reads
P(x, t ) = ∫ ∞

0 P(D)G(x, t )dD where G(x, t ) is a Gaussian
PDF of individual particles and p(D) is the distribution of
local diffusivities [18,106]. For example, the function P(x, t )
corresponds to the Laplace distribution, if the distribution
p(D) has an exponential shape. However, diffusing diffusivity
is similar to the first one yet the diffusivity D(t ) continuously
fluctuates. The main difference between the two approaches
is that the superstatistics leads to non-Gaussian PDF for long
times while the DD approach shows a crossover between
non-Gaussian PDF for short times and Gaussian PDF for long
times [9].

The main objective of this paper is to answer the question
of how environmental heterogeneity affects the diffusion of
ensemble particles governing by fixed or stochastic-scaled
Brownian motion. We assume an ensemble of different
tracer particles governed by SBM, and each particle dif-
fuses in its own environment with fluctuating instantaneous
diffusivity. We analyze the characteristics of the statistical
observables MSD, TAMSD, ergodic parameter, distribution
of amplitude scatter of TAMSD, and kurtosis parameter under
these dynamics with/without confinement. This problem may
be relevant to systems with a time-dependent temperature,
such as granular gases [91,112–114], which shows long-time
subdiffusive, super-diffusive, or ultraslow behaviors with non-
Gaussian distribution for particle displacements, that cannot
be described by CTRW, HDP, or DD-FBM [115,116].

The rest of the paper is organized as follows. In Sec. II
we introduce the DD-SBM model and the physical observ-
ables used in the description. The numerical results for MSD,
TAMSD, and mean TAMSD for the cases of free and con-
fined diffusion are investigated in Sec. III A and Sec. III B,
respectively. In Sec. IV we analyze the ergodicity breaking,
amplitude scatter distribution, and kurtosis for different sce-
narios. Finally, the conclusions are presented in Sec. V.

II. FORMULATION OF THE DD-SBM MODEL
AND PHYSICAL OBSERVABLES

A. Model description and main equations

Let us consider one-dimensional moving particles driven
by Gaussian white noise ξ (t ) with time-dependent diffusiv-
ity D(t ) = D0(Doff + t/τ0)α−1 [117–120], and τ0 represents
a characteristic time for the mobility variation. The constant
Doff is added to avoid a singularity of D(t ) at t = 0. We

here fix Doff = 1. Such a diffusion coefficient may be re-
lated to the temperature H of the bath in which the particles
move and the friction coefficient γ according to the rela-
tion D(t ) = H (t )/γ (t )m, where H (t ) = H0(Hoff + t/τ0)2α−2,
γ (t ) = γ0(Doff + t/τ0)α−1, H0 = H (0) the initial tempera-
ture, and γ0 = γ (0) the initial value of the damping coefficient
[92]. The magnitude ψ (t ) = (Doff + t/τ0)α−1 decreases as the
value of τ0 gets larger, which in turn encodes a slower drop in
temperature. The case τ0 = ∞ implies a constant diffusion
D(t ) = D0 and constant temperature H (t ) = H0, which in
turn corresponds to Brownian motion. In this study, two dif-
ferent scenarios of the exponent α, deterministic and random,
will be considered. For the case of deterministic exponent, we
assume 0 � α < 2. This means that the ensemble of particles
with constant α and the magnitude ψ (t ) increases or decreases
over time for 1 < α < 2 and 0 � α < 1, respectively. For the
second scenario, the values of random scaling exponent α

for every particle will be chosen from the normal distribution
P(α) = (1/

√
2πσ 2) exp [(α − α0)2/(2σ 2)] and 0 � α0 < 2.

Here, we consider D0(t ) = y2(t ) a time random function
follows a generalized Gamma distribution, which can be gen-
erated from the Ornstein-Uhlenbeck (OU) model dy(t )/dt =
−(1/ε)[y(t ) + η(t )] where η(t ) is Gaussian white noise and ε

is the correlation time.
If x(t ) is the position of the particle at time t , then the

corresponding random walks under external force F (x) can
be described by the following system:

dx(t )

dt
= F (x) +

√
2D0(Doff + t/τ0)α−1ξ (t ), (1)

D0(t ) = y2(t ), (2)

dy(t )

dt
= −1

ε
y + 1

ε
η(t ). (3)

Stochastic processes experience external confinement is
of relevance to transport in porous media, molecule motion
in confined cells, and diffusion in brain extracellular space
[121,122]. Here, we consider the generic case of confine-
ment in harmonic potential U (x) = 1

2 k0x2. In this case the
corresponding force F (x) = − dU

dx = −k0x [38,123]. We note
that the approach combining the features of both the SBM
and DD models is pioneered in Refs. [124–126] and further
developed here and, to the best of our knowledge, it has not
been considered in the literature before.

B. Definition of the main observables

We investigate the properties of diffusing particles gov-
erned by the system (1)–(3) using the concepts of mean-
squared displacement and time-averaged mean-squared dis-
placement. The MSD measures the average of the squared
particle position over an ensemble of diffusing particles
[2,13,127]:

〈x2(t )〉 =
∫ +∞

−∞
x2P(x, t )dx, (4)

where P(x, t ) is the probability density function to find the
particle at position x at time t , while the TAMSD for a trajec-
tory xk (t ) of the kth particle for a time span T is defined as
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follows:

δ2
k (�) = 1

T − �

∫ T −�

0
[xk (t + �) − xk (t )]2dt, (5)

where � is the lag time. For an ensemble of N diffusing
particles, unlike the ensembled MSD, the realizations δ2

k (�)
for each trajectory xk (t ) at every lag time � are random and
a scatter of magnitudes between different δ2

k (�) arises. This
scatter is not invariant in all diffusion processes. Thus, the
statistical characteristics of the realizations δ2

k (�) are crucial
in determining the underlying dynamics of some anomalous
diffusion data. These characteristics can be indicated by the
following observables. The mean TAMSD 〈δ2(�)〉 over the
ensemble of independent TAMSD realizations reads as [2]

〈δ2(�)〉 = 1

N

N∑
k=1

δ2
k (�). (6)

If 〈x2(t )〉 = lim �
T →0〈δ2(�)〉, then the process is called er-

godic. The amplitude scatter around the mean 〈δ2(�)〉 can be
quantified by the ergodicity-breaking parameter EB [127]:

EB = lim
T →∞

EB(�), (7)

where EB(�) = 〈ζ 2(�)〉 − 〈ζ (�)〉2 and ζ (�) =
δ2(�)/〈δ2(�)〉. Besides, it characterizes the irreproducibility
of the stochastic process at hand. The other indicator is the
probability density function φ(ζ ) that is used to quantify
the deviation of TAMSD between individual trajectories
[127]. For ergodic processes, EB approaches zero and
φ(ζ ) → δ(ζ − 1) for long measurement times T . One
example of the ergodic processes is the classical Brownian
motion (BM) for which

EB(�) = 4�

3T
, (8)

and EB = 0 as �/T → 0 [13]. This means that Brownian
motion is a fully reproducible process at a long measurement
time. Besides, the distribution of the amplitude fluctuations at
a given lag time � for BM approaches a Gaussian distribution
for finite T and a δ function when T → ∞ [71,128]. To check
whether the time evolution of PDF of the underlying stochas-
tic process has a Gaussian shape or not the kurtosis parameter
is often used. Like the ergodicity-breaking parameter EB, its
definition is based on moments according to the following
form [110,129]:

Kurtosis = 〈δ4(�)〉
〈δ2(�)〉2

, (9)

where δ4(�) = 1
T −�

∫ T −�

0 [x(t + �) − x(t )]4dt . If the value
of the kurtosis equals 3, the distribution is Gaussian. The kur-
tosis for BM, FBM, and SBM equals 3; however, it deviates
from this value for CTRW and HDP [13].

III. RESULTS: MSD AND TAMSD

A. Free DD-SBM

1. The case of fixed scaling exponent of diffusivity

To understand the impact of random diffusivity on SBM
we list here some results for SBM with constant D0 = D(0),
the initial diffusion coefficient, and constant exponent scaling
α, as obtained in Refs. [89,130]. Generally, for a given fixed
D0 and fixed exponent α > 0, at short times t � τ0 the MSD,
〈x2(t )〉 ∼ 2D0t , grows linearly, while it scales as 〈x2(t )〉 ∝ tα

at long times t 
 τ0 [92]. Namely, SBM exhibits long-time
subdiffusion behavior for 0 < α < 1, and long-time superdif-
fusion behavior for α > 1. For the TAMSD, the expression
〈δ2(�)〉 � 2D0� is obtained for � � T � τ0, and the pro-
cess is ergodic in the limit of short measurement times, while
at longer lag times τ0 � � � T the TAMSD depends on the
measurement time T , 〈δ2(�)〉 � (2D0�)/α(T/τ0)1−α , which
reflects an aging phenomenon [90,92]. A similar phenomenon
has been observed in the subdiffusive CTRW [127]. The
long-time scalings of MSD and TAMSD show fundamentally
different scalings of (lag) time dependence, and the SBM is
weakly nonergodic in this case [131]. For α = 0, the MSD
has long-time logarithmic scaling, 〈x2(t )〉 � log(t ), while the
mean TAMSD has a mixed power-law-logarithmic scaling
〈δ2(�)〉 � 2D0τ0(T/�) log(T/�) for long lag time measure-
ments [130]. It should be emphasized that the base of the log
function is 10 throughout the paper, including the log scales in
the figures. Similar to the case α > 0, the system also shows
short-time ergodic behavior, 〈δ2(�)〉 = 〈x2(t )〉 � 2D0�, for
α = 0 [92].

For unbiased DD-SBM, we consider two cases of ini-
tial condition for y(t ), equilibrium and nonequilibrium. For
the case of equilibrium initial condition, the initial value
y(0) of the OU process y(t ) is chosen randomly from
the distribution f (y) = exp(−y2)/

√
π . Thus, the process is

stationary and the autocorrelation function of the diffu-
sivity is 〈√D0(t1)D0(t2)〉 = 〈y(t1)y(t2)〉 = (1/2ε) exp[−(t1 −
t2)/ε]. By integrating Eq. (1) for x(0) = 0, we obtain the
expression

〈
x2(t )

〉 = 2
∫ t

0

√
ψ (t1)dt1

∫ t

0

√
ψ (t2)dt2〈

√
D0(t1)D0(t2)〉

× 〈ξ (t1)ξ (t2)〉

= 2
∫ t

0
dt1ψ (t1)〈D0(t1)〉

= 1

ε

∫ t

0
dt1ψ (t1)

= τ0

εα
((1 + t/τ0)α − 1), (10)

where ψ (t ) = (Doff + t/τ0)(α−1). According to Eq. (5), the
TAMSD reads as

〈δ2(�)〉 = 1

T − �

∫ T −�

0

〈
(x(t + �) − x(t ))2〉dt

= 1

T − �

∫ T −�

0
[〈x2(t + �)〉 − 2〈x(t )x(t + �)〉

+ 〈x2(t )〉]dt, (11)
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FIG. 1. Ensemble averaged MSD (green “light” gray curves) 〈x2(t )〉, TAMSD δ2
k (�) (thin red curves) of 500 individual trajectories, and

mean TAMSD 〈δ2(�)〉 (solid blue curves) for unconfined DD-SBM system (1)–(3) with nonequilibrium and equilibrium initial conditions
for y(t ). The upper panels (a1–c1) correspond to the case of equilibrium initial value which is chosen randomly from the distribution f (y) =
exp (−y2)/

√
π , while the lower panels (a2–c2) refers to the case of nonequilibrium initial condition D(0) = 0. The panels are plotted for

different values of the fixed scaling exponent α. Other parameters: τ0 = 1, ε = 1, and Doff = 1. The total measurement time for the TAMSD is
T = 103.

where

〈x(t )x(t + �)〉 =
∫ t

0

√
ψ (t1)dt1

∫ t+�

0

√
ψ (t2)dt2

× 〈
√

D0(t1)D0(t2)〉〈ξ (t1)ξ (t2)〉

= τ0

εα

[(
1 + t

τ0

)α

− 1

]
, (12)

which in turn implies that

〈x2(t + �)〉 − 2〈x(t )x(t + �)〉 + 〈x2(t )〉

= τ0

εα

(
1 + t + �

τ0

)α

− τ0

εα

(
1 + t

τ0

)α

. (13)

Then the TAMSD reads as

〈δ2(�)〉 = τ0

εα(α + 1)(T − �)

[
1 +

(
1 + T

τ0

)α+1

−
(

1 + �

τ0

)α+1

−
(

1 + T − �

τ0

)α+1
]
. (14)

Following the same way, the MSD for α = 0 has the formula

〈x2(t )〉 = τ0

ε
log

(
1 + t

τ0

)
, (15)

and

〈δ2(�)〉 = τ0
2

ε(T − �)

[(
1 + T

τ0

)
log

(
1 + T

τ0

)

−
(

1 + �

τ0

)
log

(
1 + �

τ0

)

−
(

1 + T − �

τ0

)
log

(
1 + T − �

τ0

)]
. (16)

These results are consistent with their correspondings for the
SBM [92]; however, their magnitude is significantly affected
by the correlation time ε. The corresponding numerical sim-
ulations to this case are presented in the upper panels of
Fig. 1 for three values of the scaling exponent, α = 0, 0.5, 1.5,
with small characteristic time, τ0, equaling 1. The simula-
tion results show consistency with the theoretical results, in
which for α = 0, 〈x2(t )〉 ∝ log(t ) and 〈δ2(�)〉 ∝ � log(T/�)
at long times, while 〈x2(t )〉 ∝ t and 〈δ2(�)〉 ∝ � at short
times. For α > 0, 〈x2(t )〉 ∝ tα at long times and 〈x2(t )〉 ∝ t
at short times. The mean TAMSD 〈δ2(�)〉 ∝ � for both short
and long times.

For the case of nonequilibrium initial condition for y(t ), the
short-time dynamics show nonergodic behavior; see the lower
panels in Fig. 1. These simulation results show a crossover
diffusion, however, the transition time significantly depends
on the values of the characteristic time τ0 and the correla-
tion time ε; see Figs. 2 and 3. In the case of ε < τ0, the
MSD initially grows with the superdiffusion scaling ∼t2.5
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FIG. 2. Ensemble averaged MSD (green “light gray” curves), TAMSD (then red curves) of 500 individual trajectories, and mean TAMSD
(solid blue curves) of free diffusive particles subject to DD-SBM dynamics (1)–(3) with fixed exponent α and the correlation time ε = 1 in
(a1–c1), ε = 10 in (a2–c2), and ε = 100 in (a3–c3). We chose α = 0 in (a1), (a2), and (a3), α = 0.5 in (b1), (b2), and (b3), and α = 1.5 in
(c1), (c2), and (c3). Other parameters: τ0 = 1 and Doff = 1. The total measurement time for the TAMSD is T = 103.

then has the Brownian scaling for t � τ0, and continues with
the anomalous diffusion scaling ∼tα for α > 0 and ultraslow
diffusion ∼ log(t ) for α = 0. In the case where the correlation
time ε is greater than the characteristic time τ0, the effects of
the nonequilibrium initial condition for diffusivity dominate
the behavior of MSD. This shows clearly, especially for the
case of α = 1.5 in Fig. 2, where the superdiffusion scaling t2.5

dominates the MSD for t < ε before recovering its standard
SBM behavior.

For both cases of equilibrium and nonequilibrium initial
conditions for diffusivity, specifically, the equilibrium case
which is not plotted here, the scatter of TAMSD is signifi-
cantly affected by ε and τ0, where the TAMSD trajectories
broadly spread as the value of ε gets larger yet the scatter
decreases with increasing τ0. This phenomenon can be at-
tributed to large jumps carried out by some particles from the
region of large diffusivity to the region of small diffusivity.
These results have been run for a small correlation time ε,
which show no influence of the random diffusivity on the
standard SBM at long times, except the marginal one for
α = 0. However, we observe an agreement with the

theoretical results for the initial equilibrium conditions of the
diffusivity, in which a strong influence on the magnitudes
of both MSD and TAMSD for large values of ε. While the
characteristic time τ0 just affects the magnitude of TAMSD. In
Fig. 2, for α = 0, the magnitude of the TAMSD increases as
the value of τ0 gets larger. However, for α > 0, at short times,
its effect is almost marginal compared to α = 0, however, the
long-time behavior is consistent with the theoretical results
of standard SBM [92], 〈δ2(�)〉 ∼ h(τ0)T α and h(τ0) ∼ τ0

α−1.
For α < 1 the mean TAMSD is directly proportional to h(τ0);
otherwise, it is inversely proportional to h(τ0).

2. The case of distributed scaling exponent of diffusivity

We, here, analyze the dynamics of the unbiased DD-SBM
system (1)–(3) with a random α following the normal distri-
bution P(α) = (1/

√
2πσ 2) exp[(α − α0)2/(2σ 2)]. This case

may be of relevance to the particle movement with a ran-
dom power-law-dependent time temperature. Accordingly, the
ensemble-averaged MSD, TAMSD, and mean TAMSD for
different values of the mean α0 and varying values of the vari-
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FIG. 3. Ensemble averaged MSD (green “light gray” curves), TAMSD (thin red curves) of 500 individual trajectories, and mean TAMSD
(solid blue curves) of free diffusive particles subject to DD-SBM dynamics (1)–(3) with fixed exponent α and the characteristic time τ0 = 1 in
(a1–c1), τ0 = 10 in (a2–c2), and τ0 = 100 in (a3–c3). We choose α = 0 in (a1), (a2), and (a3), α = 0.5 in (b1), (b2), and (b3), and α = 1.5 in
(c1), (c2), and (c3). Other parameters: ε = 1, and Doff = 1. The time series length is T = 103.

ance σ 2 are plotted in Fig. 4. In addition, the initial condition
of the diffusivity is considered to be nonequilibrium, while
the characteristic time τ0 and the correlation time ε are chosen
to be 1. The results do not show any detectable change from
the case of deterministic α exponent, where the system is still
weak and nonergodic at long times.

For all cases with α0 > 0, the long-time behavior of MSD
dramatically increases with σ � 0.2; see Figs. 4(b3) and
4(c3). For example, for α0 = 0.5 as the fluctuating intensity
σ increases the behavior of the ensemble MSD and TAMSD
and their magnitudes remain quite similar to the case of small
σ . However, the magnitude of the mean TAMSD increases
compared to the small σ . Besides, the long-time subdiffusive
exponent β increases with σ , in which β = 0.6 for σ = 0.1,
and β = 0.7 for σ = 0.2. Unlike α0 = 0, the scatter of indi-
vidual TAMSDs grows with σ but the magnitude of the effect
is similar to that observed for α0 = 0. Back in relation D(t ) =
H (t )

mγ (t ) = H0(Doff+t/τ0 )2(α−1)

γ0(Doff+t/τ0 )α−1 , where m = 1, the above findings con-
cerning the enhancement of the diffusion for σ � 0.2 may
be interpreted as follows. For case α0 = 0.5, the diffusivity

will be only affected by D0 = H0/γ0 and damping magnitude
(Doff + t/τ0)α−1, and the temperature is constant. In the case
of random scaling with α0 = 0.5, the increase of σ implies
greater temperature specifically at long times.

B. Confined DD-SBM

In this subsection, we characterize the dynamics of dif-
fusive particles governed by the confined DD-SBM system
(1)–(3) with the parameters τ0 = 1, ε = 1, and k0 = 0.1. Ac-
cordingly, the initial condition of the diffusivity is considered
nonequilibrium with D(0) = 0. For the case of deterministic
α scaling, we investigate the behavior of the observables for
three different values α = 0, 0.5, 1.5, while the random values
of α are also chosen from the distribution P(α) = exp[(α −
α0)2/(2σ 2)]/

√
2πσ 2 with α0 = 0, 0.5, 1.5 and σ = 0.1.

First, we outline the results for the confined standard SBM
for which the diffusivity has the form D(t ) = D0(1 + t/τ0)α−1

and D0 is constant. For α = 0 the long-time behavior of MSD
scales as 〈x2(t )〉 ∼ (D0τ0)/(k0t ) [130]. This result reflects the
effects of the temporal decay of the temperature encoded
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FIG. 4. Ensemble averaged MSD (green “light gray” curves), TAMSD (thin red curves) of 500 individual trajectories, and mean TAMSD
(solid blue curves) of free diffusive particles governed by the DD-SBM model (1)–(3) with a random exponent α following normal distribution
P(α) = (1/

√
2πσ 2) exp[(α − α0)2/(2σ 2)]. σ = 0.01 in (a1–c1), σ = 0.1 in (a2–c2), and σ = 0.2 in (a3–c3). We chose α0 = 0 in (a1), (a2),

and (a3), α0 = 0.5 in (b1), (b2), and (b3), and α0 = 1.5 in (c1), (c2), and (c3). Other parameters: ε = 1, τ0 = 1, and Doff = 1. The trajectories
length is T = 103.

in the diffusivity on the confined diffusion dynamics. The
long-time behavior of mean TAMSD shows the independence
of the lag time and exhibits an apparent plateau 〈δ2(�)〉 ∼
2D0τ0 log(T/τ0)/(k0T ) [130]. For both 0 < α < 1 and α > 1,
the short-time behavior of MSD, t � 1/k0, has the scaling
form 〈x2(t )〉 ∼ tα , which fits the long-time behavior for un-
confined SBM, while it behaves as 〈x2(t )〉 ∼ tα−1 at long
times t 
 1/k0 [89]. Similar to unconfined SBM for α > 0
the short-time behavior of the mean TAMSD grows linearly
over lag time �, while it has a pronounced plateau at long
times. We below report the results of our model.

Figure 5 represents the computer simulation of the MSD,
TAMSD, and mean TAMSD for both deterministic and ran-
dom scaling exponent α. The long-time behaviors of the
TAMSD for both cases show an agreement with the theo-
retical results for the standard confined SBM in which the
mean TAMSD has an apparent plateau [89], while it scales
as �0.85 at short times, except for the case of α = 0 in

which it has the scaling ∼� log(T/�). Unlike the lag time
independence of the mean TAMSD, the MSD shows a non-
stationary behavior at long times for all cases of deterministic
and random α, where it has a power-law decay to zero for
α < 1 and mean α0 < 1 for the case of random scaling, and
it grows indefinitely for both α > 1 and α0 > 1. These nu-
merical results are consistent with the analytical results for
the long-time behavior of MSD for confined standard SBM
in which 〈x2(t )〉 ∼ tα−1 [89]. The main difference between
confined DD-SBM and confined SBM is the short-time be-
havior, where the MSD 〈x2(t )〉 scales as t5/2. In addition,
the crossover time of the diffusion regimes for constant α

is shorter compared to the random one. Comparing the con-
fined DD-SBM and free DD-SBM dynamics we observe
that at short times the diffusive particles subjected to con-
finement have similar behavior to the long-time behavior of
the free diffusive particles before the confinement impact
getting emerged.
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FIG. 5. Ensemble averaged MSD (green “light gray” curves), TAMSD (thin red curves) of 500 individual trajectories, and mean TAMSD
(solid blue curves) of confined diffusive particles subject to DD-SBM dynamics (1)–(3). The panels (a1–c1) correspond to the deterministic
α case with α = 0, 0.5, 1.5, respectively. The panels (a2–c2) correspond to the case of random α with α0 = 0, 0.5, 1.5, respectively. Other
parameters: k0 = 0.1, σ = 0.1, ε = 1, τ0 = 1, and Doff = 1. The trajectories length is T = 103.

IV. ERGODICITY AND NON-GAUSSIANITY

According to the theory, both unconfined FBM and SBM
share the same anomalous diffusion behavior and Gaus-
sian PDF; however, SBM exhibits weak nonergodic behavior
versus ergodic behavior of the FBM [89,131]. This long-
time weak-nonergodic behavior of SBM is also exhibited by
CTRW and HDP [13]. The paradox is the ergodicity-breaking
parameter EB of SBM decays to zero for sufficiently long
times. Moreover, similarly to FBM, the amplitude scatter PDF
φ(ζ ) of individual TAMSD around the mean TAMSD approx-
imates a Gaussian form, yet with a broader width [89]. For
ultraslow SBM, α = 0, the magnitude EB slowly approaches
zero at long measurement times in which EB(�) ∼ 2.58

log2(T/�)
in the period τ0 � � � T [92,130]. For this process, the dis-
tribution φ(ζ ) fits with function φ(ζ ) = exp [−bζ − a/ζ ]. In
what follows we will show numerically how these observables
behave for the DD-SBM model where the diffusivity has a
nonequilibrium initial condition.

A. The ergodicity-breaking variation with lag time
measurements

The behaviors of the ergodicity-breaking parameter EB
over lag time � for both confined and unconfined DD-
SBM with deterministic exponent scaling α are sketched
in Fig. 6. For unconfined DD-SBM, we observe that EB ∼
0.5× ln−2(104/�) for α = 0, EB ∼ (10−4 × �)2α for 0 <

α < 0.5, EB ∼ 3 × (10−4 × �) ln(104/�) for α = 0.5, and
EB ≈ 4 × 10−4α2 × �/3(2α − 1) for α > 0.5 at � � 103.
Besides, when � = T it approaches the value 1 for α � 0.5
and 0.2 for 0 � α < 0.5. These observations are consistent

with the theory of standard SBM [130,131] in which for
the ultraslow regime, α = 0, the magnitude EB approaches
zero in a logarithmically slow way at large values of T ,
for the subdiffusion regime 0 < α < 0.5 it sublinearly tends
to zero, while for the subdiffusion regime 0.5 � α < 1 and
superdiffusion regime 1 < α it linearly decays to zero as for
Brownian motion α = 1. For the confined DD-SBM, at short
lag time steps � � 102, similar behavior can be observed
except for α = 0 in which the magnitude of EB becomes
smaller; however, it grows slowly at � 
 102. Moreover, due
to confinement, it does not approach the value 1 at � = T ,
which is consistent with the fact that at long lag time steps,
the magnitudes of TAMSD become more stochastic.

In Fig. 7, we plot the ergodicity-breaking parameter EB
over lag time � for both confined and unconfined DD-SBM
with random α. Comparing Figs. 7 and 6 we do not observe
any detectable change in its behavior; however, for α > 0.5
its magnitude gets larger and equals to that for α = 0.5. In
addition, for the unconfined case for α = 0 the values of EB
get smaller at � � 102, while it does not show any observable
change for the confined one.

B. The time evolution of the amplitude scatter

The amplitude fluctuations distribution φ(ζ ) of individual
TAMSD traces for both confined and unconfined DD-SBM
with random scaling exponent α for all mean α0 = 0, 0.5, and
1.5 is presented in Fig. 8. For the case of an unconfined DD-
SBM system, for both α0 = 0.5 and 1.5 the distribution φ(ζ )
approximates a Gaussian shape in which its width gets broader
as � increases. The latter result is consistent with the fact
that at long lag time steps, the magnitudes of TAMSD become
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FIG. 6. Variation of ergodic parameter, EB, versus lag time � for the values of fixed scaling exponent α given in the legends. The solid and
dashed lines correspond to the unconfined and confined process. For confined process, k0 = 0.1. Other parameters ε = 1, τ0 = 1, and Doff = 1.

more stochastic. For α0 = 0 the PDF φ(ζ ) has an asymmetric
right-skewed bell shape. It may be similar to the Gamma
distribution observed for the HDP process [79,132] and the
function φ(ζ ) = exp [−bζ − a/ζ ] which is demonstrated for
standard SBM [130]. Unlike α0 = 0.5 and 1.5, for α0 = 0
the distribution is broader, and its peak decays slowly which
corresponds to the result found in Sec. III B that for α0 = 0
the individual TAMSD trajectories deviate more randomly
compared to α0 = 0.5 and 1.5 at short lag time steps. For the
confined DD-SBM system, for α0 = 0 there is no detectable
change in the shape of the distribution φ(ζ ), except that it does
not evolve over lag time due to confinement, besides, its left
tail becomes heavier. Unlike the unconfined case, for α0 = 0.5
and 1.5, we observe that the width of the distribution becomes
wider at short lag time steps and slowly evolves over time.

FIG. 7. The parameter EB as a function of lag time �, ex-
tracted from simulated time series for both unconfined and confined
DD-SBM models with stochastic scaling exponent plotted for α. It
plots for the values α0 = 0.5, 1, 1.5, with σ = 0.1. The solid and
dashed lines correspond to the unconfined and confined process.
For confined process, k0 = 0.1. Other parameters ε = 1, τ0 = 1, and
Doff = 1.

C. Kurtosis analysis

In this subsection, we examine the Gaussian nature of the
DD-SBM process under different scenarios. So, we extract
the kurtosis from the simulated time series of both confined
and unconfined DD-SBM models with different fixed α and
plot them in Fig. 9. For all α = 1, we observe that the mag-
nitude of the kurtosis is larger than 3 at short lag time steps;
however, it approaches 3 as α → 1 at long lag time measure-
ments � 
 102. For 0 � α < 0.5, we may conclude that the
stochastic process needs large T until it reaches the Gaussian
behavior. Unlike the free DD-SBM process, the values of the
kurtosis get larger for the confined process and it significantly
increases when 0 � α < 0.5. For this case, the process shows
non-Gaussian behavior even in long-time measurements.

The variations of the kurtosis over lag time for both uncon-
fined and confined DD-SBM with stochastic scaling exponent
are presented in Fig. 10. Similar to the previous fixed α case,
we find a non-Gaussian behavior of the free DD-SBM process
at short lag time steps. However, the values of the kurtosis
get smaller and rapidly approach 3 compared to the previous
case. For the confined DD-SBM model, the main difference
is the magnitudes get smaller, otherwise, the process shows
non-Gaussian behavior all the time.

V. CONCLUSION

We have investigated the properties of particle motion
governed by DD dynamics combined with SBM. Different
scenarios have been considered: confined and unconfined dif-
fusion with fixed and distributed scaling exponent. To quantify
the underlying stochastic process of the time series measure-
ment obtained in simulation or experiment, we here focus
on studying the behavior of the observables non-Gaussianity
(kurtosis), ensemble MSD, and TAMSD, besides the indica-
tors of the individual TAMSD trajectories like mean TAMSD,
ergodicity-breaking parameter EB, and the amplitude scatter
distribution φ(ζ ).

We numerically and analytically find that the ensemble
MSD, for unconfined DD-SBM systems with fixed scaling
exponent and equilibrium initial condition of the diffusivity,
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FIG. 8. The amplitude scatter distribution φ(ζ ) of 500 different individual TAMSD traces extracted from simulated time series for
both unconfined and confined DD-SBM models with random exponent α. It plots for the values of α0 = 0, 0.5, 1.5 and lag time steps
� = 100, 101, 102. The upper and lower panels correspond to the unconfined and confined DD-SBM process, respectively. The dashed line
refers to normal distribution. Other parameters: ε = 1, τ0 = 1, σ = 0.1, and Doff = 1.

characterizes three distinguished crossover diffusion regimes:
Brownian diffusion at short times to ultraslow diffusion at
long times for α = 0, Brownian diffusion at short times to
subdiffusion motion at long times for 0 < α < 1, and Brown-
ian diffusion at short times to superdiffusion motion at long
times for 1 < α < 2. However, the mean TAMSD results
show the nonergodic behavior of the considered system, in
which it shows a linear growth with lag time � for α > 0
and sublinear enhanced growth for α = 0. These results are
somewhat consistent with the SBM’s theory [89,92,130,131].
For the nonequilibrium initial condition and for small values
of the correlation time ε of the diffusivity, the main difference
is that the process shows a crossover from superdiffusion to

normal diffusion at short-time measurements. Furthermore,
the transition time significantly depends on both the charac-
teristic time τ0 and correlation time ε, where the effects of the
nonequilibrium initial condition for diffusivity dominate the
behavior of MSD as ε gets larger. For the case of stochastic
scaling exponent α of the diffusivity, we observe that the
fluctuating intensity σ of α remarkably affects the magnitude
of TAMSD and induces a drop in the initial MSD scaling.
Besides, the MSD dramatically increases for all α > 0. For
confined dynamics, we find that the short-time mean TAMSD
scales as �1/2 for both fixed and stochastic scaling of the
diffusivity. However, it induces an increase for a short time in
the MSD scaling. The random diffusivity significantly affects

FIG. 9. Variations of kurtosis parameter versus lag time � for the values of fixed scaling exponent α given in the legends. The solid dashed
lines correspond to the unconfined confined process. For confined process, k0 = 0.1. Other parameters ε = 1, τ0 = 1, and Doff = 1.
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FIG. 10. Kurtosis parameter as a function of lag time �, ex-
tracted from simulated time series for both unconfined and confined
DD-SBM models with stochastic scaling exponent plotted for α. It
plots for the values α0 = 0.5, 1, 1.5, with σ = 0.1. The solid and
dashed lines correspond to the unconfined and confined process.
For confined process, k0 = 0.1. Other parameters ε = 1, τ0 = 1, and
Doff = 1.

the Gaussianity of the SBM process. We find that for all α = 1
the free DD-SBM has short-time non-Gaussian behavior and
long-time Gaussian behavior, however, the convergence speed
obviously depends on the value of α in which for 0 � α <

0.5, a considerable measurement time T is required to observe
the Gaussian phenomenon. For the confined case, the process
all the time shows non-Gaussian behavior.

DD-SBM processes reflect the spread of particles governed
by SBM law in heterogeneous environments. This process
may be relevant to systems with a time-dependent tempera-
ture, such as granular gases [91], diffusion on cell surfaces
[133], and diffusion in supercooled liquids [119].
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