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Recently we introduced the active Dyson Brownian motion model (DBM), in which N run-and-tumble
particles interact via a logarithmic repulsive potential in the presence of a harmonic well. We found that in a broad
range of parameters the density of particles converges at large N to the Wigner semicircle law as in the passive
case. In this paper we provide an analytical support for this numerical observation by studying the fluctuations
of the positions of the particles in the nonequilibrium stationary state of the active DBM in the regime of weak
noise and large persistence time. In this limit we obtain an analytical expression for the covariance between the
particle positions for any N from the exact inversion of the Hessian matrix of the system. We show that, when the
number of particles is large N � 1, the covariance matrix takes scaling forms that we compute explicitly both
in the bulk and at the edge of the support of the semicircle. In the bulk the covariance scales as N−1, while at the
edge it scales as N−2/3. Remarkably we find that these results can be transposed directly to an equilibrium model,
the overdamped Calogero-Moser model in the low-temperature limit, providing an analytical confirmation of the
numerical results obtained by Agarwal et al. [J. Stat. Phys. 176, 1463 (2019)]. For this model our method also
allows us to obtain the equilibrium two-time correlations and their dynamical scaling forms both in the bulk
and at the edge. Our predictions at the edge are reminiscent of a recent result in the mathematics literature
in Gorin and Kleptsyn [arXiv:2009.02006 (2023)] on the (passive) DBM. That result can be recovered by the
present methods and also, as we show, using the stochastic Airy operator. Finally, our analytical predictions are
confirmed by precise numerical simulations in a wide range of parameters.
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I. INTRODUCTION

An important open problem in active matter is the char-
acterization of the collective behavior of many interacting
active particles. A paradigmatic model of active systems is the
so-called run-and-tumble particle (RTP), a motion exhibited
by E. coli bacteria [1,2], driven by telegraphic noise [3–5].
Even in one dimension, and for such a stylized model, there
are only a few cases where exact results can be obtained for
a large number of RTPs [6–13]. Recently we introduced an
active version of the Dyson Brownian motion where RTPs
interact via a repulsive logarithmic potential in the presence
of a quadratic external potential. We showed that this model
is amenable to analytical treatment, at least in some regimes
[14]. In the regime of weak noise the RTPs form a well-
ordered state. In fact, in the limit of zero (active and passive)
noise, the equilibrium positions of the particles are those of
the ground state of the log gas. These coincide with the zeros
of the Hermite polynomials, as is well known in random
matrix theory [15,16]. As a consequence, for a large number
of particles N � 1, the equilibrium density of the positions
converges to the Wigner semicircle. An outstanding question
is to describe the fluctuations around this equilibrium density
profile.

For interacting particle systems submitted to passive
noise, the equilibrium measure is a Gibbs-Boltzmann weight.
It is then possible to compute the weak noise (i.e.,

low-temperature) fluctuations using an expansion of the en-
ergy functional in small displacements, such as phonons, or
spin waves [17]. In the case of active systems the stationary
measure is usually nontrivial and not of Gibbs-Boltzmann
type, so there is no energy functional, and the corresponding
calculation is much more challenging.

The aim of this paper is to provide an explicit calculation
of the weak noise fluctuations in the case of the active DBM.
Remarkably we show that the method developed here also
allows one to treat an a priori unrelated system, namely, the
overdamped Langevin dynamics of the Calogero-Moser (CM)
system in one dimension [18,19]. This CM system has been
much studied in the case of Hamiltonian dynamics due to
its integrability properties [18–23]. Much less is known in
the case of the overdamped Langevin dynamics. Recently
the latter was studied numerically, with some emphasis on
the low-temperature regime [24]. Here we obtain analytical
results in that regime. The reason why the small fluctuations
in the two systems are similar is that (1) the equilibrium posi-
tions are the same and (2) their Hessian matrices are related,
as we will explain below. For both systems, active DBM and
passive CM, we obtain the correlations both in the bulk and at
the edge of the Wigner semicircle, where they take markedly
different scaling forms at large N . Remarkably we find that
the scaling function which describes the edge behavior in our
models shares some similarities with the one for the passive
DBM which was obtained recently in the math literature [25].

2470-0045/2024/109(1)/014136(25) 014136-1 ©2024 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.014136&domain=pdf&date_stamp=2024-01-26
https://doi.org/10.1007/s10955-019-02349-6
https://doi.org/10.1103/PhysRevE.109.014136


TOUZO, LE DOUSSAL, AND SCHEHR PHYSICAL REVIEW E 109, 014136 (2024)

Let us now describe the two models that we will study
in this paper. The first model is the so-called active DBM
[14]. It describes the dynamics of N run and tumble particles
(RTPs) in one dimension, described by their positions xi(t ).
Each particle can be in two internal states σi(t ) = ±1 of
velocities, respectively, ±v0, and flips its sign with a constant
rate γ . In addition each particle is submitted to a confining
potential V (x) = λ

2 x2, which ensures that the system reaches
a stationary state at large time (which is non-Gibbsian and
nontrivial). The evolution equations read [14]

ẋi(t ) = −λxi(t ) + 2 g

N

∑
j �=i

1

xi(t ) − x j (t )
+ v0σi(t )

+
√

2T

N
ξi(t ) for i = 1, 2, . . . , N. (1)

The last term represents a thermal noise at temperature T/N ,
where the ξi(t )′s are independent standard white noises, of
zero mean and delta correlations 〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′).
The particles interact via a repulsive pairwise logarithmic
potential (i.e., a 1/x force) of strength g/N . In the case v0 = 0
this model is the celebrated Dyson Brownian motion, whose
stationary measure for any N describes the statistics of the
eigenvalues of the Gaussian beta ensemble with Dyson index
βDBM = 2g/T [15,26]. In that case the average density at large
N converges to the Wigner semicircle density with edges at
±2

√
g/λ [15,16]. Numerous results exist in the math literature

on random matrix theory concerning the universality of the
behavior, e.g., for the level spacing distribution, both in the
bulk and at the edge [27–32]. Here we will focus on the purely
active case v0 > 0 and T = 0. Note that, since the interactions
diverge at contact, the particles in that case can never cross,
hence their ordering is preserved under the dynamics. Here
we will choose x1(t ) > x2(t ) > · · · > xN (t ).

The second model is the overdamped dynamics of the
Calogero-Moser (CM) model for N particles at positions Xi(t )
in one dimension [18,19], which belongs to the more gen-
eral family of Riesz gases [33–35]. The particles interact via
a 1/X 2 potential of strength g̃2/N2 and are subjected to a
quadratic confining potential which ensures that the system
reaches Gibbs equilibrium. It is described by the equations of
motion

Ẋi(t ) = −λXi(t ) + 8 g̃2

N2

∑
j �=i

1

[Xi(t ) − Xj (t )]3

+
√

2T

N
ξi(t ) for i = 1, 2, . . . , N. (2)

Here again the ξi(t )′s are independent standard white noises,
and one can show that the particles cannot cross (see
Appendix C). Here also we choose X1(t ) > X2(t ) > · · · >

XN (t ). In both models the scaling with N of the different terms
has been chosen such that the support of the densities is finite,
i.e., independent of N , for large N .

In this paper we will study the fluctuations of the positions
of the particles in the steady state of each model. We will ob-
tain analytical results and also perform numerical simulations
of Eqs. (1) (at T = 0) and (2) (at finite T ), the steady-state
averages being obtained by time averaging of the observables.

It turns out that the weak noise limit of both models is very
similar and can be studied in the same framework. The first
model, the active DBM, has been studied in [14]. As men-
tioned in that work, there are two dimensionless parameters,

v2
0

gλ
and

γ

λ
. (3)

The weak noise limit corresponds to a small value of the

parameter v2
0

gλ . In that limit the particles remain close to their
equilibrium positions, which we denote xeq,i, and one can thus
write

xi = xeq,i + δxi, xeq,i =
√

2g

λ N
yi, HN (yi ) = 0, (4)

where the δx′
is are the small deviations from equilibrium,

which vanish as v0 → 0. A remarkable property is that the
scaled equilibrium positions y1 > y2 > · · · > yN are the zeros
of the Hermite polynomial of degree N , i.e., the roots of
HN (yi ) = 0. At large N the particles thus form a “crystal,” and
from the properties of the Hermite polynomials one can show
that the mean density ρ

eq
N (x) of particles at equilibrium (i.e.,

for v0 = 0) in the quadratic well is a Wigner semicircle, as is
also the case for the DBM. Indeed, one has [16]

ρ
eq
N (x) = 1

N

N∑
i=1

δ(x − xeq,i ) −→
N→∞

√
λ

2g
ρsc

⎛
⎝
√

λ

2g
x

⎞
⎠,

ρsc(z) = 1

π

√
2 − z2. (5)

Here we will study the fluctuations of the δxi around this equi-
librium state in the weak noise limit. In addition for technical
reason the analytical calculations will be performed in the per-
sistent limit of small γ . This allows to show that the semicircle
mean density persists in a broad range of parameters for this
model, as observed numerically in [14]. In addition we will
quantify the long-range order of the crystal.

In the CM model, it turns out, quite remarkably, that
the equilibrium positions (i.e., for T = 0) are also given in
terms of the zeros of the Hermite polynomial HN (y), namely,
one has

Xeq,i = 1

λ1/4

√
2g̃

N
yi, (6)

which leads to the T = 0 equilibrium density

ρ
eq
N (X ) = 1

N

N∑
i=1

δ(X − Xeq,i ) −→
N→∞

λ1/4

√
2g̃

ρsc

(
λ1/4

√
2g̃

x

)
.

(7)

Here we will study the fluctuations of the particle positions
around this T = 0 equilibrium. In this model there is only a
single dimensionless parameter

T

g̃
√

λ
, (8)
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and we will study the regime where this parameter is small.
These fluctuations were studied numerically in [24]. Here we
will obtain analytical results for any N , and we will compare
with the numerical results.

II. MAIN RESULTS

In this section we summarize the main results of this paper.
The detailed derivations will be presented in Secs. III–VI.
Section VII discusses the application of our method to the
passive DBM.

A. Active Dyson Brownian motion

Let us start with the active DBM. The main idea to compute
the statistics of the deviations δxi = xi − xeq,i is to consider
the small γ limit. In that limit the system has enough time to
relax to a stable fixed point corresponding to a given 
σ (t ) ≈ 
σ
in (1), before its state changes again. Hence one can write to
lowest order in v0 (and for γ = 0+) and 1 � i � N

δxi = v0

λ

N∑
j=1

(H−1)i jσ j + O
(
v2

0

)
, (9)

where λH is the Hessian matrix given below [see Eq. (39)].
It is important to note that the matrix H is independent of the
model parameters. In the stationary state the system explores
all the possible 
σ (i.e., all the possible fixed points), and a
meaningful description of the system is thus obtained by aver-
aging over all these possible fixed points, with equal weight.
One then obtains the moments

〈δxi〉 = O
(
v2

0

)
,

〈δxiδx j〉 = v2
0

λ2
(H−2)i j + O

(
v3

0

)
. (10)

It turns out that the Hessian can be diagonalized exactly for
any N in terms of Hermite polynomials [24,36]. This allows
to evaluate its inverse and obtain the more explicit formula

〈δxiδx j〉 = v2
0

λ2

N∑
k=1

1

k2

uk (yi )uk (y j )∑N
l=1 uk (yl )2

+ O
(
v3

0

)
with

uk (y) = H (k)
N (y)

H ′
N (y)

, (11)

where H (k)
N (y) denotes the kth derivative of HN (y) and we

recall that yi is the ith largest zero of HN (y).
The exact result (11) can be analyzed in the large N limit.

Let us recall that, in this limit, the mean equilibrium density
has a finite support [−xe, xe] with two edges at x = ±xe with
xe = 2

√
g/λ. One must thus distinguish between the bulk

region, i.e., far from the boundary of the support ±xe, and the
edge region, i.e., close to ±xe. The width of the edge region is
found to be xeq,i − xe = O(N−2/3).

1. Bulk

In the bulk region one finds

〈δxiδx j〉 � v2
0

λ2N
Cb

(
xeq,i

2
√

g/λ
,

xeq, j

2
√

g/λ

)
with

Cb(x, y) =
∞∑

k=1

1

k2

sin(k arccos x)√
1 − x2

sin(k arccos y)√
1 − y2

, (12)

where the index b refers to “bulk”. The sum over k can be
performed explicitly (see Appendix B), which leads to the
more explicit expression of the scaling function Cb(x, y),

Cb(x, y) = π arccos(max(x, y)) − arccos(x) arccos(y)

2
√

1 − x2
√

1 − y2
. (13)

Note that this result, as well as all the other bulk results pre-
sented below, can be rewritten using that at large N xeq,i

2
√

g/λ
=

yeq,i√
2N

� G−1(i/N ) where G(x) = ∫ x
−1 du 2

√
1−u2

π
is the cumula-

tive of the semicircle density (see, e.g., [37]).
For the variance of the displacement of a single particle this

becomes

〈
δx2

i

〉 � v2
0

λ2N
Vb

(
xeq,i

2
√

g/λ

)
with

Vb(x) = Cb(x, x) =
∞∑

k=1

1

k2

sin2(k arccos x)

1 − x2

= arccos(x)[π − arccos(x)]

2(1 − x2)
. (14)

Inside the bulk, Vb( xeq,i

2
√

g/λ
) is of order 1, and thus the variance

of particle displacements scales as 1/N .
The result for the covariance allows us to compute the

variance of the gap between particles i and i + n in the bulk,
for n � 1. In the intermediate regime 1  n  N we obtain,
e.g., for i = N/2,

〈(δxi − δxi+n)2〉 � π2

4

v2
0

λ2N2
n. (15)

The linear behavior in n of the variance can be understood
qualitatively as arising from the 1/k2 factor in the sum over
eigenmodes in Eq. (12) and can be obtained by an approxi-
mate calculation which neglects the space dependence of the
mean density; see Appendix D.

2. Edge

Equation (11) can also be used to obtain the covariance
of the particle displacements in the edge region, again in the
large N limit. In that region the equilibrium positions take the
large N scaling form near the right edge xe = 2

√
g/λ for i � 1

and i = O(1),

xeq,i = 2

√
g

λ

[
1 + ai

2
N−2/3 + O(N−1)

]
, (16)

where ai is the ith zero of the Airy function, with, e.g.,
a1 = −2.3811 and for large i, ai = −[ 3π

8 (4i − 1)]2/3 +

014136-3



TOUZO, LE DOUSSAL, AND SCHEHR PHYSICAL REVIEW E 109, 014136 (2024)

FIG. 1. Shape of the total density ρ in the active DBM (model II in Ref. [14]) as a function of the parameter v2
0/gλ showing the different

regimes at large N . The dashed red line shows the semicircle. In the middle regime the wings which are visible near the edges disappear in
the limit N → +∞ and can be related to edge effects. The spatial extension of the density as a function of the parameters is also shown in the
different regimes. Its behavior for v2

0/gλ � 1 (right panel) was obtained from numerical simulations of an effective model; see Ref [14]. The
results were derived for γ → 0, but simulations suggest that they are valid beyond this limit.

O(i−4/3). The ∼i2/3 power-law behavior is consistent with the
fact that the equilibrium density vanishes as a square root
at the edge. We obtain the following result for the position
fluctuations at the edge:

〈δxiδx j〉 � v2
0

λ2N2/3
Ce(ai, a j ), (17)

Ce(ai, a j ) = 1

Ai′(ai )Ai′(a j )

∫ +∞

0
dx

Ai(ai + x)Ai(a j + x)

x2
,

where Ai(x) is the Airy function and ai is its ith zero. This
shows that the variance of the particle positions scales as
N−2/3 at the edge. Interestingly, this expression (17) is remi-
niscent of a similar result previously obtained for the (passive)
Dyson Brownian motion [25]. Note that one can check that
our formula at the edge matches correctly the formula in the
bulk (12), as we show below in Sec. V.

Let us now turn to the implications of these results on
the particle density in the bulk of the active DBM. In Fig. 1
we show the various regimes as the dimensionless param-
eter v2

0/(gλ) is varied, which were discussed in [14]. The
results obtained here allow us to describe the left part of
the figure (i.e., to the left of the red line in Fig. 1). The
important consequence of (14) is that the variance of the
position fluctuations of any particle in the bulk scales as
v2

0/(λ2N ) at large N . More precisely one can compare the
root-mean-squared displacement to the typical separation be-
tween particles

√
(g/λ)/N by considering the dimensionless

ratio √〈
δx2

i

〉
〈xi − xi+1〉 ∼ v0√

gλ

√
N, (18)

which is thus small compared to unity when v2
0/(gλ)  1/N .

This defines the regime represented on the left in Fig. 1 where
the crystal is very well ordered and the density exhibits peaks
around the equilibrium positions xeq,i. The second regime in
Fig. 1 can be identified by looking at the dimensionless ratio√〈

δx2
i

〉
xe

∼ v0√
gλN

. (19)

Clearly the semicircle density can hold only when this ratio
is small compared to unity, which means v2

0/(gλ)  N . In
this second regime 1

N  v2
0/(gλ)  N , the fluctuations are

larger but the semicircle density still holds. Note that although
the results described above were obtained strictly in the limit
γ → 0, numerical simulations strongly suggest that the scal-
ings obtained above hold for any value of γ .

It is important to note that the approximation (9) and the
above results are, strictly speaking, valid only when the typ-
ical variations of the distance between successive particles√

〈(δxi − δxi+1)2〉 is much smaller than the average distance
〈δxi − δxi+1〉. Although (15) is valid only for n � 1, we still
expect it to give the correct order of magnitude for n = 1.
Thus, we get that our results should be valid when the 1D
Lindemann-like ratio is small:

cL =
√

〈(δxi − δxi+1)2〉
〈xi − xi+1〉 ∼ v0/(λN )√

(g/λ)/N
= v0√

gλ
 1. (20)

This defines an additional line in the Fig. 1 which falls in
the middle of the intermediate regime; i.e., our detailed pre-
dictions (10)–(17) are valid for v2

0/(gλ) � 1. However, we
expect our theory to describe the system beyond this line, at
least qualitatively, as order of magnitude estimates. We have
checked numerically that this is the case in Ref. [14].

Let us now briefly describe the implications of our result
in the edge region, Eq. (17). The fluctuations are larger in that
region, and the scaling with N is different. Indeed, the dimen-
sionless ratio defined in (19) is ∼N−1/3 at the edge, instead
of ∼N−1/2 in the bulk. However, one can again consider the
relative fluctuations by comparing with the distance between
particles, which is also larger; consider, e.g., the ratios defined
in Eqs. (18) and (20). Estimating any function of the ai to be of
order unity, one finds that these relative fluctuations are small
when v2

0/(gλ)  1/N2/3, which also gives the condition for
our detailed predictions (17) to be valid.

Finally, we have tested some of the above predictions for
the active DBM numerically and have observed a very good
agreement. This is discussed later in the paper; see Secs. IV
and V and Figs. 6–10 (see also discussion at the end of the
next section in the context of the CM model).
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B. Overdamped Calogero-Moser model

The dynamics of the CM model defined in (2) converges
at large time towards a Gibbs-like equilibrium state which,
however, retains the same ordering as the particles in the initial
state; see Appendix C. Choosing X1 > . . . > XN in the initial
state, the joint PDF of the positions of the particles in this
equilibrium state can be written as

P[X ] ∼ e
− N

T ( λ
2

∑
i X 2

i + 4g̃2

N2

∑
i< j

1
(Xi−Xj )2

)
θ (X1 > X2 > . . . > XN ).

(21)

We are interested here in the correlation functions with re-
spect to this joint PDF. Note that for the observables which
are symmetric in the labels of the particles, the ordering is
immaterial. This is, however, not the case for correlations
with specified particle labels. Let us summarize our main
results, in both the low-temperature regime T/(g̃

√
λ)  N

[where at large N the support of the density remains fi-
nite and takes the Wigner semicircular form (7)] and the
high-temperature regime T/(g̃

√
λ) � N where the support

is unbounded.

1. Low-temperature regime

Let us define δXi = Xi − Xeq,i where Xeq,i are the equilib-
rium positions given in (6). For the CM model, it was shown
in [24] that the two-point correlation function takes the form
at low temperature

〈δXiδXj〉 = T

λN
(H−2)i j, (22)

with the same matrix H as in Eq. (9) above. Quite remarkably,
the relation (22) has exactly the same form as (10), and there-
fore the results above can be transposed directly to the CM
model by simply changing the prefactor.

In the large N limit, we recall that the mean equilibrium
density of the CM model is given by the Wigner semicircle
(7), which has a finite support [−Xe, Xe] with two edges at
X = ±Xe with Xe = 2

√
g̃/λ1/4. Furthermore, from the above

results, we obtain that in the bulk

〈δXiδXj〉 � T

λN2
Cb

(
λ1/4Xeq,i

2
√

g̃
,
λ1/4Xeq, j

2
√

g̃

)
, (23)

where the function Cb(x, y) is given in Eq. (12). At the right
edge the equilibrium positions take the form

Xeq,i = 2

√
g̃

λ1/4

[
1 + ai

2
N−2/3 + O(N−1)

]
, (24)

and we obtain that their fluctuations obey

〈δXiδXj〉 � T

λN5/3
Ce(ai, a j ) (25)

in the edge region, where Ce(ai, a j ) is defined in (17).
Finally, we have computed by the same method the tem-

poral correlations 〈δXi(t )δXj (t ′)〉 in the stationary state and
at low temperature for the CM model. The results are given

in Sec. VI in terms of dynamical scaling functions which
generalize the equal-time ones given above.

2. High-temperature regime

At high temperature the interaction becomes formally irrel-
evant when T/(g̃

√
λ) � N , although the order of the particle

is still retained (see Appendix G). Hence the Gibbs measure
(21), expressed in terms of scaled variables, converges to

P(X1, . . . , XN ) = 1

ZN
e− 1

2

∑
i X̃ 2

i θ (X̃1 > X̃2 > · · · > X̃N ),

Xi =
√

T

Nλ
X̃i, (26)

where ZN = 1/(N!(2π )N/2). In other words, at a given time
the particle positions X1, . . . , XN are i.i.d centered Gaussian
variables with variance

√
T/(λN ), ordered from the largest

to the smallest. When computing the particle density the or-
dering is irrelevant, so that the density in this regime is a
Gaussian with variance

√
T/(λN ). In addition, we can use

existing results on the order statistics of i.i.d. Gaussian vari-
ables [38–41] (see Appendix G where some additional results
are derived and some numerical tests are presented) to obtain
the mean and two-point covariance of the positions of the
particles. In the large N limit they take the form, in the bulk,
i.e., i, j = O(N ),

〈Xi〉 �
√

T

λN
Q−1

(
i

N

)
,

〈XiXj〉c � 2π
T

λN2

i

N

(
1 − j

N

)
e

1
2 [Q−1( i

N )]2+ 1
2 [Q−1( j

N )]2
, (27)

where Q(x) =
∫ +∞

x
dy

e−y2/2

√
2π

= 1

2
erfc

(
x√
2

)
.

Note that the one-point variance 〈X 2
i 〉c is given by the same

formula setting i = j. In particular, one finds that the higher
order cumulants are subdominant, so that the distribution of
the rescaled positions N (Xi − 〈Xi〉) are Gaussian in the limit
of large N . On the other hand, at the (right) edge of the gas,
i.e., i, j = O(1) one obtains instead, for j � i,

Xj =
√

T

λN

√
2 log N

(
1 + ζ j + cN

2 log N
+ · · ·

)
, (28)

〈ζi〉 = −ψ0(i), 〈ζiζ j〉c = ψ1( j) = 〈ζ 2
j

〉
c, (29)

where ψ0(x) = ′(x)/(x) and ψ1(x) = ψ ′
0(x) are the

digamma and trigamma functions, respectively, and cN =
− log(

√
4π log N ). As shown in Appendix G the two forms

(edge and bulk) match correctly. As detailed in Appendix G,
the position of the edge particle X1 follows a Gumbel distribu-
tion, and furthermore the distributions of the gaps Xi − Xi+1

are exponential both in the bulk and near the edge.
Note that we expect this high-temperature regime to be

more general than the current setting. Indeed, the only infor-
mation that remains about the interaction being the ordering
constraint, this should remain valid for any interaction poten-
tial of the form 1/|xi − x j |α with α > 0 (see Appendix C).
Moreover, if the external potential V (x) is not quadratic but is
instead any type of confining potential, so that an equilibrium
measure exists, then the particle positions will be the ordered
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FIG. 2. Shape of the total density ρ in the Calogero-Moser model as a function of the parameter T/g̃λ1/4 showing the different regimes at
large N . The dashed red line shows the semicircle.

set of N i.i.d. random variables drawn from the single-particle
Gibbs measure e−NV (x)/T .

3. Discussion of the crossovers

These results allow to discuss the different regimes for the
CM model as the dimensionless parameter T/(g̃

√
λ) is varied,

as represented in Fig. 2. At variance with the active DBM, the
stationary state is a Gibbs equilibrium, which makes the dis-
cussion somewhat easier. There are thus again three regimes.
The very low-temperature well-ordered crystal, with peaks
in the density (left panel in Fig 2), is obtained when the
dimensionless ratio √〈

δx2
i

〉
〈Xi − Xi+1〉 ∼

√
T

g̃

1

λ1/4
(30)

is much smaller than unity, i.e., when T/(g̃
√

λ)  1. For
higher temperature 1  T/(g̃

√
λ)  N the fluctuations are

larger but the semicircle density still holds. This is the in-
termediate temperature regime shown in the middle panel in
Fig. 2. Finally there is the high-temperature regime shown in
the right panel in Fig. 2. In that regime the width of the gas
behaves as ∼√

T/(λN ). It matches the width of the semicir-
cle ∼√

g̃/λ1/4 when T/(g̃
√

λ) ∼ N . Hence we find that the
boundary between the semicircle and the high-temperature
regime occurs for T/(g̃

√
λ) ∼ N and coincides with the do-

main of validity of the above analytical results, i.e., when√
〈(δXi − δXi+1)2〉
〈Xi − Xi+1〉 ∼

√
(T/λ) N−3/2

√
g̃ λ−1/4N−1

= 1

λ1/4

√
T

g̃

1√
N

 1.

(31)

4. Comparison with Ref. [24]

We can compare our results, in particular Eqs. (23) and
(25), with the ones obtained numerically for the CM model
in [24]. In that work they study the same displacement cor-
relations either by (1) numerical evaluation of the Hessian or
(2) direct Monte Carlo simulations, and they compare both
methods with a good agreement for lower temperature Their
conventions are different from ours, so we start by giving
the corresponding dictionary. Denoting for convenience zi the
positions of the particles denoted xi in [24] (they set to unity

their parameter g) we can identify

zi√
2N

= λ1/4

2
√

g̃
Xi, (32)

both sides being dimensionless and of order unity in the bulk
at equilibrium. In fact, one has zeq,i = yi, where yi is the ith
root of the Hermite polynomial HN (y). This then leads to the
following identification for the parameter β (analogous to the
Dyson index for the DBM):

β = 2g̃
√

λ

T
. (33)

In the bulk our result then leads to, in their notation,

〈δziδz j〉 = 1

Nβ
Cb

(
zeq,i√

2N
,

zeq, j√
2N

)
, (34)

where we recall that the function Cb(x, y) is given in Eq. (12).
Forming the dimensionless ratios we see that our prediction is
that in their conventions the three regimes in the bulk in Fig. 2
are (1) the regime with peaks for β � 1, (2) the semicircle
regime for 1/N � β � 1, and (3) the high-temperature regime
for β � 1

N . Similarly at the edge we predict

〈δziδz j〉 � 1

βN2/3
Ce(ai, a j ), (35)

where Ce is given in (17).
In the Fig. 3(a) we show the mean particle density for the

CM model for β = 4 obtained by direct simulation of the
Langevin dynamics (2). The density exhibits clearly visible
peaks, in agreement with our theoretical prediction for β = 4
(see the left panel of Fig. 2). We note that this is qualitatively
different from the numerical results shown in Ref. [24] [see
their Fig. 1(a)], which shows instead a rather smooth density
profile.

In Fig. 3(b) and in Figs. 4 and 5 we have compared some
of our large N theoretical predictions with the results from an
explicit numerical calculation of the Hessian. We find that the
convergence in N is very fast in the bulk (∝ N−1) and slower
at the edge (∝ N−1/3). Our large N analytical predictions can
also be compared with the results of [24], more precisely with
their Figs. 3(a), 6(a) 9(a), 10(a), and 10(b). For instance, we
provide the exact analytical value for the scaled variance of
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(a) (b)

FIG. 3. The left figure shows the (a) density for the CM model for β = 4, obtained by direct simulation of the Langevin dynamics (2).
We use the notations summarized in the text around (32). The peaks are clearly visible as predicted for β > 1; see left panel of Fig. 2. It is
analogous to Fig. 1(a) in [24], where, however, the peaks cannot be seen for the same values of N . (b) Comparison between (1) the scaled
variance in the bulk (22) as a function of the scaled equilibrium position yi/

√
2N computed by inverting the Hessian for different values of N

and (2) the scaling form predicted at in large N in (23) (dashed black line), recalling that Vb(x) = Cb(x, x). This figure should be compared
with the Fig. 9(a) in [24].

(a) (b)

FIG. 4. (a) Scaled variance of the midpoint position zi=N/2 for the CM model for various values of N . We use the notations summarized
around (32). The blue crosses correspond to the numerical inversion of the Hessian. The dashed black line is our analytic prediction of the
value V (0) = π 2/8 in the large N limit; see Eq. (67). The inset shows the difference, with the dotted black line showing a 1/N decay. This
figure corresponds to Fig. 6(a) in [24]. (b) A similar plot for zi=1 that represents the scaled variance of the edge particle. The dashed black line
corresponds to our prediction N2/3β〈δz2

1〉 = I = 1
Ai′ (a1 )2

∫ +∞
0 dx Ai(a1+x)2

x2 � 1.12481 . . . [see Eq. (17)]. The inset shows the difference, with the

dotted black line showing a 1/N1/3 decay. This figure corresponds to their Fig. 3(a).

(a) (b)

FIG. 5. (a) Covariance between the edge particle 1 and particle i as a function of i/N for N = 104. The edge and bulk predictions at large
N are also shown. For i = O(1) it matches quite well with the edge analytical result, while for i = O(N ) it matches well with the bulk result.
This figure corresponds to Fig. 10(a) in [24]. (b) Similar plot vs the scaled equilibrium positions yi/

√
2N of the scaled covariance between the

central particle and particle i. It corresponds to Fig. 10(b) in [24].
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the midpoint in the large N limit, which is π2/32 � 0.308425
for β = 4, which turns out to be amazingly close to the
quoted measured value 0.3084 [see their Fig. 6(a) and our
Fig. 4].

Finally, note that the Figs. 3–5 contain comparison of our
large N prediction with the results from an explicit numerical
calculation of the Hessian, hence they also provide a check of
our predictions for the active DBM presented in the previous
section.

III. DERIVATION OF THE RESULTS FOR FINITE N

A. Active Dyson Brownian motion

The goal of this section is to derive Eq. (10), which relates
the covariance of particle displacements in the active DBM
with respect to their equilibrium position, δxi = xi − xeq,i, to
the Hessian of the potential. We start by recalling that the
vector of equilibrium positions 
xeq is the solution of the
equation

∂V ADBM

∂
x (
xeq ) = 0 with

V ADBM(
x) = λ

2

∑
i

x2
i − 2g

N

∑
i< j

log |xi − x j |, (36)

which satisfies xeq,1 > · · · > xeq,N . It is well known that the
solution of this system is given by the roots of the Hermite
polynomial HN (x) as [14,42]

xeq,i =
√

2g

λN
yi with HN (yi ) = 0. (37)

We will denote δ
x the vector formed by the displacements
δxi, and 
σ the vector of σi. The first assumption that we
make is that the typical fluctuations of the gaps δxi − δxi+1 are
small compared to the typical size of the gaps xeq,i − xeq,i+1 ∼√

g/λ/N . This allows us to linearize the dynamics around 
xeq:

∂δ
x
∂t

= −∂V ADBM

∂
x (
xeq + δ
x) + v0 
σ (t ) � −λHδ
x + v0 
σ (t ),

(38)

with the Hessian matrix

λHi j = ∂2V ADBM

∂xi∂x j
(
xeq ) = δi j

⎡
⎣λ + 2g

N

∑
k �=i

1

(xeq,i − xeq,k )2

⎤
⎦

− (1 − δi j )
2g

N

1

(xeq,i − xeq, j )2

= λ

{
δi j

⎡
⎣1 +

∑
k �=i

1

(yi − yk )2

⎤
⎦

− (1 − δi j )
1

(yi − y j )2

}
. (39)

Note that the matrix H is only a function of the Hermite roots
yi and is thus independent of the model parameters.

We then make a second assumption by considering the
limit γ → 0. In [14] we showed that, as long as 
σ remains
fixed, (38) has a unique fixed point, towards which the system

converges (with a relaxation time ∼1/λ) until one of the σi

changes, at which time the system starts to converge to a new
fixed point. Thus, if γ is small enough (typically γ  λ/N),
the system will spend most of its time close to a fixed point.
Therefore we can write that at any given time

δ
x � v0

λ
H−1 
σ , (40)

where 
σ is drawn uniformly among all possible values (since
all the 
σ have the same probability to be visited over a suffi-
ciently large time window); i.e., the σ ′

i s are independent and
take the value ±1 with equal probability. From (40) we can
compute the mean and covariance of δxi = xi − xeq,i (using
〈σi〉 = 0 and 〈σiσ j〉 = δi j), leading to

〈δxi〉 � 0, (41)

〈δxiδx j〉 � v2
0

λ2

∑
k,l

(H−1)ik (H−1) jl〈σkσl〉 = v2
0

λ2
(H−2)i j . (42)

The relation in Eq. (42) is the first important result of this
paper. The rest of the paper will mainly focus on the inversion
of the matrix H to obtain more explicit expressions for the
covariance and related quantities. Before that, let us make two
important comments on this result.

First, we need to go back to the two assumptions that
we made, namely, δxi − δxi+1  √

g/λ/N and γ → 0. The
domain of validity of the first assumption was discussed in
Sec. II A, and it is confirmed by numerical simulations; see
Fig. 6. The second approximation seems quite restrictive.
However, numerical simulations show that the covariance is a
monotonically decreasing function of γ , so that (42) gives an
upper bound on the covariance for generic γ (see Fig. 6 where
a fit for the dependence in γ is also proposed). Although we
were not able to prove this analytically, one can get a good
intuition of why this is true by looking at the N = 1 case [43].
Indeed, in this case the distribution of positions has a finite
support [x−, x+], where x± = ±v0/λ is the fixed point corre-
sponding to σ = ±1, respectively. When γ  λ, the density
is concentrated at the edges x±, but as γ increases it becomes
more and more concentrated around 0. For arbitrary N , this
effect can be understood by the fact that, when γ becomes
large, particles will not have time to reach fixed points which
are far from their equilibrium position before 
σ changes again,
and therefore they will become more and more localized. In
the limit γ → +∞, the 
σ term in (38) averages to zero and
δ
x simply relaxes to 0.

Finally, note that (42) has a fairly general form and could
also apply to other systems of interacting run-and-tumble par-
ticles in the weak noise, long persistence time limit. The only
restrictive requirement is that the particles should remain close
to their equilibrium position when v0 is small. Keeping this in
mind, this result should remain valid in some regime when
considering other types of confining potential and other forms
of diverging repulsive interactions [e.g., interaction forces of
the form sgn(xi − x j )|xi − x j |−α with α > 0 as in the Riesz
gas].
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(a) (b) (c)

FIG. 6. Test of the range of validity of the weak noise and small γ regimes at finite N . (a) Ratio between the variance obtained from
numerical simulations of Eq. (1) at T = 0 with N = 100 particles and the theoretical prediction (42) at γ = 0, as a function of γ , for different
particle indices. We used v0 = 0.1, g = 1, and λ = 1. For every particle the variance is a decreasing function of γ and exhibits a plateau for
γ � 1. More precisely, for the edge particle (i = 1) it is very well fitted by a (1 + cγ )−1 decay with c = 1

2 , while for bulk particles a larger
value of c (of the order of 1) gives a reasonable agreement. For a single particle, this functional form (1 + cγ )−1 with c = 2 is exact for all γ

[43]. (b) Variance of the position of particle 1 for N = 2, as a function of γ , for different values of v0 (and g and λ = 1). The horizontal red
solid line shows the prediction for γ → 0 given in (58). For small v0 the data are fitted very well by the function 5/8

1+c2γ
with c2 � 1.648 . . ..

(c) Same plot for the covariance of particles 1 and 2.

B. Calogero-Moser model

We now turn to the CM model, for which a relation very
similar to (42) was proved in [24]. For this model the potential
reads

V CM( 
X ) = λ

2

∑
i

X 2
i + 4g̃2

N2

∑
i< j

1

(Xi − Xj )2
. (43)

Recalling that Xeq,i = 1
λ1/4

√
2g̃
N yi, where the yi are the zeros of

the Hermite polynomial HN (y), the Hessian of this potential is

∂2V CM

∂Xi∂Xj
( 
Xeq ) = δi j

⎡
⎣λ + 24g̃2

N2

∑
k �=i

1

(Xeq,i − Xeq,k )4

⎤
⎦

− (1 − δi j )
24g̃2

N2

1

(Xeq,i − Xeq, j )4
(44)

= λ

{
δi j

[
1 +

∑
k �=i

6

(yi − yk )4

]

− (1 − δi j )
6

(yi − y j )4

}
= λ(H2)i j . (45)

The last equality is nontrivial and uses the fact that the yi are
the zeros of the Hermite polynomials. It was proved in [24].

As discussed in detail below in Sec. III C, it turns out that
the eigenvalues of H are simply the N first strictly positive
integers k = 1, 2, . . . , N . We denote by ψk the correspond-
ing normalized eigenvectors, with components (ψk )i with i =
1, 2, . . . , N such that

N∑
j=1

Hi j (ψk ) j = k (ψk )i. (46)

For small displacements δXi = Xi − Xeq,i one can linearize
the equations of motion (2) around the equilibrium positions,

which gives

d

dt
δXi(t ) = −λ

N∑
j=1

(H2)i j δXj +
√

2T

N
ξi(t ). (47)

Taking the Fourier transform with respect to time one thus
obtains by inversion in the frequency domain

δX̂i(ω) =
√

2T

N

N∑
j=1

[iω1N + λH2]−1
i j ξ̂ j (ω), (48)

where 1N is the N × N identity matrix, δX̂i(ω) =∫∞
−∞ eiωtδX̂i(ω) dt , and ξ̂ j (ω) is a Gaussian white noise

with correlations 〈ξ̂i(ω)ξ̂ j (ω′)〉 = 2πδi j δ(ω + ω′). We thus
obtain the correlations at equilibrium

〈δXi(t )δXj (t
′)〉 = 2T

N

∫
dω

2π
e−iω(t−t ′ )[ω21N + (λH2)2]−1

i j

= 2T

N

N∑
k=1

(ψk )i(ψk ) j

∫
dω

2π

e−iω(t−t ′ )

ω2 + (λk2)2

= T

λN

N∑
k=1

e−λk2|t−t ′|

k2
(ψk )i(ψk ) j . (49)

In the following sections, we will discuss the equal-time corre-
lations [hence forgetting the time dependence δXi(t ) → δXi].
We will come back to the time-dependent correlations in
Sec. VI. In the case of equal-time correlations, t = t ′, (49)
simply becomes (see also [24])

〈δXiδXj〉 = T

λN
(H−2)i j . (50)

Surprisingly, this is the same as (42) for the active DBM with
only a different prefactor. Therefore the fluctuations in the two
models can be studied simultaneously by inverting the matrix
H. Note, however, that this result is more general in the case of
the CM model, since here we assumed only that the parameter
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T/g̃
√

λ is small. We will see that (50) actually gives quite
accurate results up to relatively high temperatures.

C. Inverting the Hessian: A general formula

From now on we will present the derivation of the results
for the active DBM. Everything that follows can be easily
transposed to the overdamped CM model by replacing the
prefactor v2

0/λ
2 by T/(λN ).

It turns out that the matrix H can be diagonalized exactly
using Hermite polynomials (see [24,36]). Its eigenvalues are
simply the integers from 1 to N , and the normalized eigen-
vector ψk associated with the eigenvalue k has components
given by

(ψk )i = uk (yi )√∑N
j=1 uk (y j )2

,

uk (y) = H (k)
N (y)

H ′
N (y)

= 2k−1 (N − 1)!

(N − k)!

HN−k (y)

HN−1(y)
. (51)

The proof is recalled in Appendix A. Using the eigenvector
decomposition

(H−2)i j =
N∑

k=1

(ψk )i(ψk ) j

k2
, (52)

we obtain, in the case of the active DBM,

〈δxiδx j〉 = v2
0

λ2

N∑
k=1

1

k2

uk (yi )uk (y j )∑N
l=1 uk (yl )2

with uk (y) = H (k)
N (y)

H ′
N (y)

. (53)

In particular the variance of the displacement for a single
particle is given by

〈
δx2

i

〉 = v2
0

λ2

N∑
k=1

1

k2

uk (yi )2∑N
l=1 uk (yl )2

. (54)

Note that, since HN (−x) = (−1)N HN (x), we have the symme-
try 〈δxiδx j〉 = 〈δxN−i+1δxN− j+1〉. From (54) we can already
deduce the average of the variance over all particles for any
N , as well as its large N limit:

1

N

N∑
i=1

〈
δx2

i

〉 = v2
0

λ2N

N∑
k=1

1

k2
� π2

6

v2
0

λ2N
. (55)

The goal of the next section is to simplify the expressions (53)
and (54) in different limits. A convenient starting point is the
differential equation satisfied by the Hermite polynomials

H ′′
N (x) = 2xH ′

N (x) − 2NHN (x). (56)

Differentiating k times the above equation, evaluating it at x =
yi and dividing both sides by H ′

N (yi ) we obtain the recurrence
relation

uk+2(yi ) = 2yiuk+1(yi ) − 2(N − k)uk (yi ), (57)

with initial conditions u0(yi ) = 0 and u1(yi ) = 1, which al-
lows us to determine uk (yi ) [note that the recursions stops
since uN+1(yi ) = 0]. Although this recursion relation does not

have a simple solution in general, we will see in the next
section how an approximate version of this equation can be
used to obtain an asymptotic expression for (53) and (54) in
the large N limit.

As a side remark, a different approach would consist in
diagonalizing H approximately for large N , as done, e.g., in
[26] (chap. 5.4) for the DBM, by assuming the density to
be uniform in the bulk, using plane waves, and computing
the inverse of the Hessian (very much as a calculation of
displacements using phonons in a solid). This approach gives
less accurate results than the one presented below, but it is
somewhat simpler to implement and also more general, so we
give the main ideas in Appendix D.

The special cases N = 1 and N = 2. Below we will mainly
focus on large values of N . However, (53) is also valid at

small N . In particular for N = 1 it gives 〈δx2
1〉 = v2

0
λ2 . This is

indeed the γ → 0 limit of the result obtained in [43], 〈δx2
1〉 =

v2
0

λ2
1

1+2 γ

λ

. Note that the variance is a decreasing function of γ ,
as discussed previously. For N = 2 one obtains

〈
δx2

i

〉 = 5

8

v2
0

λ2
(i = 1, 2), 〈δx1δx2〉 = 3

8

v2
0

λ2
. (58)

These results are compared to simulations in Fig. 6. Both the
variance and covariance seem to converge to the predicted
result as γ → 0 for small values of v0.

IV. LARGE N LIMIT IN THE BULK

We first notice that the factor uk (yi )uk (y j )/
∑N

l=1 uk (yl )2

in (53) is always smaller than 1 (this can be shown using
uk (yi )uk (y j ) < 1

2 [uk (yi )2 + uk (y j )2]). Hence the sum over k in
(53) is convergent and bounded by

∑
k�1 1/k2. As a result

we can obtain an asymptotic expression for N → +∞ by
focusing on values of k such that k  N . In fact, we will see
that it is dominated by k = O(1) in the bulk, and k = O(N1/3)
at the edge.

We will now simplify Eqs. (53) and (54) in the limit of
large N . We give here only the leading order, which is suf-
ficient for our present considerations. The results below can
also be obtained using the Plancherel-Rotach formula.

We start by rescaling (57), introducing yi = √
2Nri and

uk (yi ) = (2N )
k−1

2 vk (ri) to obtain

vk+2(ri) = 2rivk+1(ri) −
(

1 − k

N

)
vk (ri). (59)

Since we can focus on k  N , we can simplify the recurrence
relation (59) and get rid of the term proportional to k/N in
(59), leading to

vk+2(ri) = 2rivk+1(ri ) − vk (ri). (60)

It turns out that this scaling together with this approximation
are adapted to the bulk, i, j ∼ N , on which we now focus (and
we recall that the relevant values of k are of order unity).
One can check that this approximation leads to a relative
error of order O( 1

N ) in the bulk. We then recognize that the
simplified equation (60) is the recursion relation satisfied
by the Chebyshev polynomials of the second kind Uk (ri)
[44]. Since v1(ri) = 1 = U0(ri) and v2(ri ) = 2ri = U1(ri), we
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obtain vk (ri ) = Uk−1(ri) for all k � 1:

uk (yi ) = (2N )
k−1

2 Uk−1

(
yi√
2N

)

� (2N )
k−1

2

sin
[
k arccos

( yi√
2N

)]
√

1 − y2
i

2N

, (61)

up to an error of order O( 1
N ) (for the second identity we have

used the fact that |yi| <
√

2N for all i). When plugging this
result into Eq. (53) we see that the factors (2N )

k−1
2 simplify

between the numerator and the denominator. Additionally,
for large N , the density of the roots of Hermite polynomials
converges to the Wigner semicircle density. Therefore, we can
replace the sum over all Hermite roots in the denominator of
Eq. (53) by an integral over the semicircle density to obtain

N∑
l=1

Uk−1

(
yl√
2N

)2

� N
∫ 1

−1
dx

2
√

1 − x2

π
Uk−1(x)2 = N

(62)
[the error made by replacing the sum by an integral is again
of order O( 1

N )]. The last equality comes from the fact that the
Chebyshev polynomials of the second kind are orthonormal
with respect to the Wigner semicircle measure [but it can also
be shown through an explicit computation using the second
expression in (61)].

This leads to the following expressions for the covariances,
valid in the large N limit away from the edges [extending
the sum to +∞ instead of N again leads to an error of order
O( 1

N )]:

〈δxiδx j〉 � v2
0

λ2N
Cb

(
xeq,i

2
√

g/λ
,

xeq, j

2
√

g/λ

)

Cb(x, y) =
∞∑

k=1

1

k2
Uk−1(x)Uk−1(y)

=
∞∑

k=1

1

k2

sin(k arccos x)√
1 − x2

sin(k arccos y)√
1 − y2

. (63)

This can also be written (see Appendix B for a derivation)

Cb(x, y) = π arccos(max(x, y)) − arccos(x) arccos(y)

2
√

1 − x2
√

1 − y2
.

(64)
For x � y this reads

Cb(x, y) = arccos(x)[π − arccos(y)]

2
√

1 − x2
√

1 − y2
. (65)

For the variance of the position for a single particle, one finds

〈
δx2

i

〉 � v2
0

λ2N
Vb

(
xeq,i

2
√

g/λ

)
,

Vb(x) =
∞∑

k=1

1

k2
Uk−1(x)2 =

∞∑
k=1

1

k2

sin2(k arccos x)

1 − x2

= arccos(x)[π − arccos(x)]

2(1 − x2)
, (66)

the total relative error being of order O( 1
N ) in both cases. We

recall that xeq,i =
√

2g
λ N yi ∈ (−2

√
g/λ, 2

√
g/λ), and therefore

Cb(x, y) and Vb(x) are defined on (−1, 1)2 and (−1, 1), re-
spectively. Near x = 0, the function Vb(x) has a minimum and
behaves as

Vb(x) = π2

8
+
(

π2

8
− 1

2

)
x2 + O(x4). (67)

For particles which are close to the edge (i.e., i  N), x is
very close to 1 and therefore Cb(x, y) and Vb(x) diverge. For
instance, one finds

Vb(1 − ε) = π

2
√

2ε
− 1

2
+ 7π

24
√

2

√
ε − ε

3
+ O(ε3/2). (68)

For Cb(x, y) with x = 1 − ε � y, one finds

Cb(1 − ε, y) = (π − arccos y)

2
√

1 − y2
+ O(1), (69)

which remains finite at the edge when considering only one of
the particles near the edge. By contrast, if one considers two
particles near the edge, i.e., if in addition y = 1 − δ, one finds
the diverging expression

Cb(1 − ε, 1 − δ) = π

2
√

2 max(ε, δ)
+ O(1). (70)

We will come back to this limit in the next section where we
study the edge region.

One can also write the expansion for Cb(x, 0) for x  1,
i.e., for the covariance between a particle at x = 0 and a
particle close to x = 0. In this case one gets

Cb(x, 0) =

⎧⎪⎨
⎪⎩

π arccos x
4
√

1−x2 , x � 0

π (π−arccos x)
4
√

1−x2 , x � 0

= π2

8
− π

4
|x| + π2

16
x2 − π

6
|x|3 + O(x4), (71)

which explains the cusp observed in Figs. 5 and 8. In general
when x and y are small and of the same order, one has

Cb(x, y) = π2

8
− π

4
|x − y| + π2

16
(x2 + y2)

− xy

2
+ higher order. (72)

In the bulk these expressions are in very good agreement
with the results obtained by diagonalizing the Hessian nu-
merically, as well as with numerical simulations for the active
DBM for small γ , even for large values of v0, of order O(1)
(see Fig. 7 for the one-particle variance and the left panel of
Fig. 8 for the covariance). As one gets closer to the edges, the
large N approximation above becomes less accurate.

Finally the expression of the covariance can be used to
obtain the variance of the distance between two particles.
Indeed,

〈(δxi − δxi+n)2〉 = 〈δx2
i

〉+ 〈δx2
i+n〉 − 2〈δxiδxi+n〉. (73)
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(a) (b) (c)

FIG. 7. Results for the active DBM: comparison of the numerical simulations of Eq. (1) at T = 0, with our analytical predictions.
(a) Rescaled variance of the particle position xi as a function of xi/2

√
g for N = 100, λ = 1, g = 1, v0 = 0.1, and different values of γ .

The results of the simulations are compared with those obtained (1) by exact inversion of the Hessian matrix and (2) with the asymptotic
expression for large N given in (66). As expected the agreement is good for small values of γ . (b) Same plot for the large value v0 = 1. The
agreement decreases near the edges but remains good in the bulk. (c) Expansion of Vb(x) around x = 0 [see Eq. (67)] and around x = 1 the
edges [see Eq. (68)].

For 1  n  N it turns out that one can use the above results
to estimate the r.h.s. of (73). This leads to

〈(δxi − δxi+n)2〉 � v2
0

λ2N
Db

(
xeq,i

2
√

g/λ
,

xeq,i+n

2
√

g/λ

)
,

Db(x, y) = Vb(x) + Vb(y) − 2Cb(x, y). (74)

This expression is valid for n = αN with α = O(1), i.e., on
mesoscopic scales in the bulk. In the limit where α → 0, i.e.,
when x − y  1, one has

Db(x, y) = π

2

|x − y|
(1 − x2)3/2

+ O[(x − y)2]. (75)

Using the expression for the semicircle density ρ(x) =√
λ
g

√
1−[x/(2

√
g/λ)]2

π
together with the fact that xeq,i − xeq,i+n �

n/[Nρ(xeq,i )], Eqs. (74) and (75) lead to

〈(δxi − δxi+n)2〉 � v2
0

4π2g2ρ(xeq,i )4

n

N2
. (76)

As shown in Appendix D, this expression coincides with
the result obtained by a plane wave approximation given in
Eq. (D2). In the case where x and y are close to 0, one can
easily get the next order of the expansion, namely,

Db(x, y) = π

2
|x − y| − 1

2
(x − y)2 + higher order, (77)

which leads to

〈(δxi − δxi+n)2〉 � π2

4

v2
0

λ2N

[
n

N
− 1

2

( n

N

)2
]
, i = N/2.

(78)

Let us recall that the above results are valid for n = αN
with α  1. However, it is important to note that it is incorrect
for n = 1, i.e., to compute the variance of the gaps, and more
generally for n = O(1). This is because we have studied the
recursion (59) only to leading order at large N . This is suffi-
cient to obtain the covariance at large N , but in the calculation
of (74) for n = O(1) there are cancellations of the leading
order of each term and one needs a more precise estimate
(which we have not obtained here). These considerations are
in agreement with numerical simulations; see Fig. 9.

In the range 1  n  N , however, the prediction (78)
agrees very well with numerical simulations for small values
of γ [see Fig. 9(a)]. The result in (76) gives us two important
pieces of information. First, we see that the variance of the
distance between two particles increases linearly with the
distance. This is to be compared with the standard DBM
for which it increases logarithmically [26]. Second, while
the variance in the position of a particle scales as 1/N , the
variance of the gap between two neighboring particles scales
as 1/N2. This means that the particles fluctuate collectively.

V. LARGE N LIMIT AT THE EDGE

In the previous section we focused on particles which are
inside the bulk of the distribution. We now want to look at
particles which are located close to the edges, i.e., with a label
i  N . Obtaining the behavior of the variance and covariance
near the edge is more difficult since Vb(x) and Cb(x, y) di-
verge as x → ±1 [see Eq. (68)]. This implies that the scaling
δx2

i ∼ 1/N breaks down in this limit. A first way to see this
is to start from the bulk result for the covariances and use
the asymptotic expansion for the largest roots of the Hermite
polynomials [45,46]. The equilibrium positions near the edge
read

xeq,i = 2

√
g

λ

[
1 + ai

2
N−2/3 + O(N−1)

]
, (79)

where ai is the ith zero of the Airy function, which for large i is
given by ai = −[ 3π

8 (4i − 1)]2/3 + O(i−4/3). For simplicity we
focus on the case of the variance. Inserting this expansion in
(63) and using the asymptotic behavior in Eq. (70), we obtain
for i � j,

〈δxiδx j〉 � π

2
√−a j

v2
0

λ2N2/3
�

j�1

[
π2

3(4 j − 1)

]1/3
v2

0

λ2N2/3
.

(80)

Therefore we find that the variance of the position of the
rightmost particle scales as N−2/3 for the active DBM, and
as N−5/3 for the Calogero-Moser model (vs N−4/3 for the
standard DBM). This is confirmed by numerical simulations
for the active DBM for small values of v0 and γ (see Fig. 9).
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(a) (b)

FIG. 8. (a) Correlations between the central particle and particle i for N = 100, v0 = 0.1, g = 1, and λ = 1. The red line shows the
prediction for Cb(

xeq,N/2

2
√

g/λ
,

xeq,i

2
√

g/λ
) from (63). (b) Correlations between the edge particle and particle i for the same parameters. The results from

simulations and numerical inversion of the Hessian are compared with both the edge-edge expression (88) and the edge-bulk expression (97),

1
N

π−arccos ( xeq,i
2
√

g/λ
)

2

√
1−( xeq,i

2
√

g/λ
)

2
(red line).

For the Calogero-Moser model this result once again agrees
with [24].

The expression (80) works very well in the intermediate
regime 1  i  N . However, for i of order 1 it is possible to
obtain a more precise formula. Let us go back to (51)–(53) and
again use the k  N approximation to compute the normal-
ization factor, but this time keeping the Hermite polynomials
at the numerator and using (62) to evaluate the denominator
(which is identical to its value in the bulk)

〈δxiδx j〉 � v2
0

λ2N

∞∑
k=1

1

k2

1

(2N )k−1

[
2k−1 (N − 1)!

(N − k)!

]2

× HN−k (yi )

HN−1(yi )

HN−k (y j )

HN−1(y j )
. (81)

We then use the asymptotic expression of Hermite polynomi-
als near the edge [47],

e−x2/2Hn(x) = π1/42n/2+1/4
√

n! n−1/12[Ai(t ) + O(n−2/3)]

(82)

with x = √
2n(1 + n−2/3t/2). Denoting tn,i =

2n2/3(yi/
√

2n − 1) we get

HN−k (yi )

HN−1(yi )
� 2(1−k)/2

√
(N − k)!

(N − 1)!

(
N − k

N − 1

)−1/12 Ai(tN−k,i )

Ai(tN−1,i )
.

(83)

(a) (b) (c)

FIG. 9. (a) Variance of the distance between the central particle i = N/2 and the particle i = N/2 + n as a function of n for λ = 1, g =
1, v0 = 1, and N = 100. The numerical simulations are performed for different values of γ . They are compared with (1) the numerical
inversion of the Hessian (black crosses), (2) the analytical prediction Db(

xeq,N/2

2
√

g/λ
,

xeq,N/2+n

2
√

g/λ
) from (74) at large N (red line) and (3) the plane wave

(linear)approximation (78) (blue line). The behavior of the variance is linear in n in the range 1  n  N . (b) Zoom of the left figure on the
small values of n. (c) Variance of the central gap as a function of N computed using the exact inverse of the Hessian (black crosses) vs using
the large N bulk approximation (74), NDb(

xeq,N/2

2
√

g/λ
,

xeq,N/2+1

2
√

g/λ
), with the sum truncated at N (full red line) or at 100 N (dashed red line). This

approximation does not converge to the exact result as N increases.
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Using Stirling’s formula (81) simplifies to (at first order in
1/N)

〈δxiδx j〉 � v2
0

λ2N

∞∑
k=1

1

k2

Ai(tN−k,i )

Ai(tN−1,i )

Ai(tN−k, j )

Ai(tN−1, j )
. (84)

We can then apply (79) [yi � √
2N (1 + 1

2 N−2/3ai )] to obtain

tN−k,i � ai + kN−1/3. (85)

Until now we only assumed k = o(N ). For k = 1, we can
Taylor expand the Airy function to first order and write

Ai(tN−1,i ) � N−1/3Ai′(ai ). (86)

This allows to estimate the denominator in Eq. (84). In the
numerator we need to take into account the terms up to k ∼
N1/3, and we can approximate the sum as a Riemann integral

〈δxiδx j〉 � v2
0

λ2N1/3

1

Ai′(ai )Ai′(a j )

×
∞∑

k=1

Ai(ai + kN−1/3)Ai(a j + kN−1/3)

k2
(87)

� v2
0

λ2N2/3

1

Ai′(ai )Ai′(a j )

×
∫ +∞

0
dx

Ai(ai + x)Ai(a j + x)

x2
, (88)

where we recall that ai is the ith zero of the Airy function. We
recover the N−2/3 scaling discussed above (80). Note that the
leading correction term is of order 1/N since going from the
integral to the sum introduces a relative error of order N−1/3.
Once again, this result directly applies to the Calogero-Moser
model after replacing v2

0 by T/N . This result is very similar
to the expression proved for the DBM in [25] where the
factor 1/k2 is replaced by 1/k. Note that here it is obtained
via different methods. For the one-particle variance, Eq. (88)
reads

〈
δx2

i

〉 � v2
0

λ2N2/3

1

Ai′(ai )2

∫ +∞

0
dx

Ai(ai + x)2

x2
. (89)

As in the bulk regime, one can directly deduce from (88)
an expression for the variance of interparticle distances near
the edge

〈(δxi − δxi+n)2〉 = 〈δx2
i

〉+ 〈δx2
i+n〉 − 2〈δxiδxi+n〉

� v2
0

λ2N2/3

∫ +∞

0

dx

x2

[
Ai(ai + x)

Ai′(ai )
− Ai(ai+n + x)

Ai′(ai+n)

]2

.

(90)

This expression is valid for i and n of order 1. Contrary to
the bulk, the variance of the gap between two particles is of
the same order as the variance of δxi. This shows that the
correlations are much weaker at the edge than in the bulk,
as one would expect. In this case the leading order terms do
not cancel, and this expression is valid even for n = 1, as can
be seen in Fig. 10(c). Interestingly, the leading relative error
seems to be of order N−2/3 (vs N−1/3 when looking at 〈δx2

i 〉;
see Fig. 4).

1. Matching from the edge to the bulk

In the limit of large i, the expression (89) for the one-point
variance should reduce to the result (80) obtained above in the
bulk. In this limit, −ai is large, and one can use the asymptotic
expression of the Airy function to write

Ai′(ai ) � − (−ai )1/4

√
π

cos

(
2

3
(−ai )

3/2 + π

4

)

� (−1)i+1 (−ai )1/4

√
π

, (91)

where in the second step we used ai � −[ 3π
8 (4i − 1)]2/3. To

evaluate the integral we further approximate x  −ai (since
the integral decays as 1/x2 for x  −ai and then exponen-
tially for x � −ai)

Ai(ai + x) � (−ai − x)−1/4

√
π

sin

[
2

3
(−ai − x)3/2 + π

4

]

� (−1)i sin(
√−ai x)√

π (−ai )1/4
. (92)

Thus we obtain∫ +∞

0
dx

Ai(ai + x)2

x2
� 1

π

∫ +∞

0
dx

sin2(
√−ai x)√−ai x2

� 1

π

∫ +∞

0
du

sin2(u)

u2
= 1

2
, (93)

and we indeed recover (80). This shows that (89) is a refine-
ment of (80) valid for any i  N . It is more precise than the
previous formula when i is of order 1. In addition

1

Ai′(ai )Ai′(a j )

∫ +∞

0
dx

Ai(ai + x)Ai(a j + x)

x2

� 1√−ai
√−a j

∫ +∞

0
dx

sin(
√−ai x) sin(

√−a j x)

x2
(94)

� π

4

√−ai + √−a j − |√−ai − √−a j |√−ai
√−a j

, (95)

and thus for i � j, (88) becomes

〈δxiδx j〉 � π

2
√−a j

v2
0

λ2N2/3
, (96)

and we indeed recover (80).

2. Correlation between the edge and the bulk

One may also want to consider the covariance between an
edge particle and a bulk particle (or between two particles at
opposite edges). For this we can go back to the bulk expres-
sion (63), in the limit (69). Although one particle is at the
edge, using this expression does not lead to any divergence,
and we obtain accurate results. One finds

〈δxiδx j〉 � v2
0

λ2N

π − arccos
( xeq, j

2
√

g/λ

)
2
√

1 − ( xeq, j

2
√

g/λ

)2 . (97)

Two cases of particular interest are the covariance between an
edge particle and a particle at the center (xeq, j = 0), for which

〈δxiδx j〉 � v2
0

λ2N
π
4 , and the covariance between two particles at
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(a) (b) (c)

FIG. 10. (a) Variance of the position of the rightmost particle x1 as a function of N , for λ = 1, g = 1, v0 = 0.1, and γ = 0.01. The
simulation results are in good agreement with the approximate expression for large N given in (89), which scales as N−2/3. (b) Same plot for
the 10th particle x10. The result is in good agreement with both (89) and (80). (c) Difference between the scaled variance of the gap between
particles 1 and 2, computed by exact numerical inversion of the Hessian matrix, and the predicted value Ig = ∫ +∞

0
dx
x2 [ Ai(a1+x)

Ai′ (a1 ) − Ai(a2+x)
Ai′ (a2 ) ]2 �

0.345302 . . . [see (90)], as a function of N . The approximation error seems to decrease as N−2/3 at large N . Simulation results for γ = 0.01
are also plotted for moderate values of N .

opposite edges (obtained by taking the limit xeq, j

2
√

g/λ
→ −1),

which gives, for i and j = O(1),

〈δxiδxN+1− j〉 � v2
0

2λ2N
. (98)

This also provides a lower bound for the covariance between
two arbitrary particles in the system.

We have tested the prediction (89) for the variance of
edge particles with numerical simulations; see Fig. 10(a) and
Fig. 10(c). In addition we have also studied the correlations
between the rightmost particle and the particle xi both at the
edge and in the bulk. This is shown in Fig. 8(b). The edge
prediction (88) is valid only when both particles are in the
bulk, and for very large values of N (due to the N−1/3 error),
which explains the discrepancy. The bulk prediction (97) on
the other hand gives quite accurate results as soon as the
particle i is far enough from the edge.

VI. FINITE-TIME CORRELATIONS FOR THE
CALOGERO-MOSER MODEL

In this section we extend the previous analysis to the study
of time correlations in the CM model at low temperature, i.e.,
T/(g̃

√
λ)  N ; see Fig. 2. The starting point of our analysis

is the formula given in Eq. (49). Substituting the explicit
expression of the eigenvectors (ψk )i given in (51) into (49)
one obtains

〈δXi(t )δXj (t
′)〉 = T

λN

N∑
k=1

e−k2λ|t−t ′|

k2

uk (yi )uk (y j )∑N
l=1 uk (yl )2

with uk (y) = H (k)
N (y)

H ′
N (y)

. (99)

We now analyze this formula in the large N limit, both in
the bulk and at the edge.

1. Bulk

In the bulk the extension of the derivation for equal-time
correlations presented in Sec. IV is rather straightforward. It

yields (keeping the same notation for the scaling function Cb

for simplicity)

〈δXi(t )δXj (t
′)〉 � T

λN2
Cb

(
λ1/4Xeq,i

2
√

g̃
,
λ1/4Xeq, j

2
√

g̃
, λ|t − t ′|

)

with Cb(x, y, t̃ ) =
∞∑

k=1

e−k2 t̃

k2
Uk−1(x)Uk−1(y). (100)

In particular, at large times, |t − t ′| � λ−1, one has [keeping
only the term k = 1 in Eq. (100)]

〈δXi(t )δXj (t
′)〉 � T

λN2
e−λ|t−t ′|, (101)

where we have used U0(x) = 1. Interestingly, this large time
behavior of correlations is independent of the position, which
indicates that it arises from a collective mode.

2. Edge

In the edge regime, using again the approximation (82) in
Eq. (99) and performing the same computations as in Sec. V
leads to

〈δXi(t )δXj (t
′)〉

� T

λN4/3

1

Ai′(ai )Ai′(a j )

×
∞∑

k=1

Ai(ai + kN−1/3)Ai(a j + kN−1/3)

k2
e−k2λ|t−t ′|

(102)

� T

λN5/3

1

Ai′(ai )Ai′(a j )

×
∫ +∞

0
dx

Ai(ai + x)Ai(a j + x)

x2
e−x2N2/3λ|t−t ′|. (103)
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(a) (b) (c)

FIG. 11. (a) Time correlations of the position of the central particle in the CM model as a function of the time difference. The results
obtained by simulating the Langevin dynamics for N = 50 particles at T = 0.01 (λ = 1 and g = 1) are in excellent agreement with the large
N expression for the bulk (100). (b) Same plot for the rightmost particle. The simulation result is in good agreement with the exact analytical
formula (99) and the large time asymptotics (101), but the comparison with the integral expression (104) would require larger values of N ,
and as discussed in the text is valid only for times of order N−2/3. (c) Same plot (rightmost particle) for N = 500 in log-log scale. The exact
analytical formula (99) is compared with the integral expression (104) (valid for τ  N2/3), the intermediate τ−1/2 regime (105) (valid for
1  τ  N2/3, but which is not very visible for this value of N), and the large time exponential decay (101) (valid for τ � N2/3). The two
relaxation regimes at the edge discussed in the text are thus clearly visible.

Hence we see that it is natural to rescale the times by a scale
O(N−2/3), which leads to the scaling form

〈δXi(t )δXj (t
′)〉 � T

λN5/3
Ce(ai, a j, N2/3λ|t − t ′|),

Ce(ai, a j, τ ) = 1

Ai′(ai )Ai′(a j )

×
∫ +∞

0
dx

Ai(ai + x)Ai(a j + x)

x2
e−x2τ .

(104)

Our results allow for a general discussion of the relaxation
mechanisms and regimes. From (104) we see that, at the
edge, the typical timescale of the correlations te is of order
O(N−2/3), which is much smaller than its counterpart in the
bulk, which is of order O(1); see Eq. (100). The relaxation
timescale te = O(N−2/3) can be understood by comparing
the effect of free diffusion with the equilibrium fluctuations,
i.e., DNte ∼ 〈δx2

i 〉 ∼ N−5/3, where DN ∼ T/N is the single-
particle diffusion coefficient [see Eq. (2)]. By contrast the
relaxation in the bulk has a collective nature, resulting in a
longer relaxation timescale of O(1). To test this picture let
us compute the large time asymptotics of the correlations at
the edge. There are actually two regimes. The first regime
corresponds to τ = O(1) but large τ � 1 (i.e., |t − t ′| �
N−2/3λ−1). Then one can perform the change of variable
u = x

√
τ and expand for large τ . This yields, to leading order,

Ce(ai, a j, τ ) �
τ→∞

1√
τ

∫ +∞

0
du e−u2 = 1

2

√
π

τ
, (105)

which is also independent of the positions, as in the bulk (99).
This algebraic decay of the scaling function at the edge is
consistent with pure diffusion and is very different for the
exponential tail found in the bulk (99). There is, however, a
second large time regime for τ � N2/3 (i.e., |t − t ′| = O(1)
in N but |t − t ′| � λ−1). In that regime the Riemann integral
approximation in (104) breaks down (the integral becomes
dominated by very small values of x), and the sum in (102)

is then dominated by the k = 1 term. This thus leads to the
same large time exponential decay as in the bulk (101). Once
again one sees that the large time correlations are uniform in
space, with no difference between the edge and the bulk.

We have checked numerically some of the above predic-
tions; see Fig. 11. The agreement is perfect in the bulk; see
Fig. 11(a). At the edge, one clearly sees the two regimes
in time discussed above for N = 50 and N = 500; see
Figs. 11(b) and 11(c).

Note that, contrary to the above sections, the results of this
section are only valid for the CM model. Indeed, since we
have taken the limit γ → 0 it is not obvious how to treat the
exact dynamics for the active DBM to obtain a similar result.

VII. COMPARISON WITH THE (PASSIVE) DBM

Let us consider now the standard DBM, to which our
method can also be applied. It is obtained by setting v0 = 0
in (1), which corresponds to parameters βDBM = 2g/T , and
with a support at large N with edges at ±2

√
g/λ. The fluctua-

tions at low temperature at the edge have been studied before
[25]. There are also some results for βDBM = 1, 2, 4, e.g., in
Ref. [37]. We will compare our results to these works.

We start by noting that for the DBM the stationary correla-
tions at low-temperature T read [by the same calculation as in
(49)]

〈δxi(t )δx j (t
′)〉 = T

λN

N∑
k=1

e−kλ|t−t ′ |

k

uk (yi )uk (y j )∑N
l=1 uk (yl )2

with uk (y) = H (k)
N (y)

H ′
N (y)

, (106)

and in particular for equal-time correlations one has

〈δxiδx j〉 = T

λN
(H−1)i j, (H−1)i j =

N∑
k=1

1

k

uk (yi )uk (y j )∑N
l=1 uk (yl )2

.

(107)
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Starting from this point we can perform the same large N
approximations as before. The difference is that now the series
does not converge, and therefore we expect the approximation
to be worse in this case. Indeed, we find that, inside the bulk,
the variance and covariance can be given by equivalents of the
above formulas, namely,

〈δxi(t )δx j (t
′)〉 � T

λN2
C̃b

(
xeq,i

2
√

g/λ
,

xeq, j

2
√

g/λ
, λ|t − t ′|

)

with C̃b(x, y, t̃ ) =
+∞∑
k=1

e−kt̃

k
Uk−1(x)Uk−1(y). (108)

This formula is valid for t̃ = O(1) in N and t̃ > 0. It is
important to note that for equal-time correlations, i.e., t̃ = 0,
the sum over k has a logarithmic divergence and the formula
breaks down. It is possible to obtain an approximate formula
for t̃ = 0 and large N using the proper cutoff kmax = N . This
leads to (see calculation in the Appendix E)〈

δx2
i

〉 � T

λN2

ln N

2
[
1 − ( xeq,i

2
√

g/λ

)2] + O(N−2). (109)

To obtain the next term O(N−2) requires us a priori to study
the recursion (59) at large N in more detail and goes beyond
the scope of this paper. Our prediction Eq. (109) can be com-
pared with the result in [37]. In that paper the stationary DBM
for eigenvalues λi is considered. It is proved in theorem 5 of
[37] that for βDBM = 1, 2, 4 the distribution of the centered
variable λi − yi converges to a Gaussian distribution at large
N with

Varλi � log N

2βN
(
1 − y2

i
2N

) . (110)

If we take into account the connection with our notations,
one has

xi = 2

√
g

λ

λi√
2N

, (111)

and one can check that (110) is identical to (109). This is
remarkable since our result is a priori derived for βDBM � 1,
as can be seen from the simple estimate of the dimensionless
ratio [for n = O(1)] given in (D5). It is thus tempting to
conjecture that in the case of the DBM this formula (110) is
valid for any β.

At the edge our method applied to the DBM gives the
stationary two-time correlations as

〈δxi(t )δx j (t
′)〉 � T

λN4/3
C̃e(ai, a j, N1/3λ|t − t ′|),

C̃e(ai, a j, τ ) = 1

Ai′(ai )Ai′(a j )

×
∫ +∞

0
dx

Ai(ai + x)Ai(a j + x)

x
e−xτ ,

(112)

and in that case there is no problem to extend this formula to
|t − t ′| = 0. The equal-time correlations are thus given by

〈δxiδx j〉 � T

λN4/3
C̃e(ai, a j ),

C̃e(ai, a j ) = 1

Ai′(ai )Ai′(a j )

∫ +∞

0
dx

Ai(ai + x)Ai(a j + x)

x
.

(113)

Our predictions (112) and (113) have the same form as the
results obtained by different methods in Ref. [25], where the
nonstationary version of the DBM was studied.

It is interesting to note that the result (113) for the DBM
can also be obtained by yet another completely different
method, using the stochastic Airy operator and perturbation
theory, in an alternative form (F7). The derivation is detailed
in Appendix F.

1. Remark

Note also that Theorem 6 in [37] gives an estimate of the
variance of the DBM for βDBM = 1, 2, 4 at the edge, which
behaves as

Var λi �
(

1

12π

)2/3 2 log i

βDBMi2/3N1/3
. (114)

This result can be recovered by taking the limit of large i in
(113) with i = j. The computation is the same as in Sec. V,
except that one needs to add a cutoff at x = −ai corresponding
to the exponential decay of the Airy function for positive
values, since the integral diverges otherwise. This gives (for
1  i  N)

〈
δx2

i

〉 � T

λN4/3

1

Ai′(ai )2

∫ −ai

0
dx

Ai(ai + x)2

x

� T

λN4/3

1

−ai

∫ (−ai )3/2

0
dx

sin2 x

x
(115)

� 3

4

T

λN4/3

ln(−ai )

−ai
�
(

1

12π

)2/3 T

λN4/3

ln i

i2/3
,

(116)

which after a rescaling using (111) coincides with (114). Once
again, it is tempting to conjecture the formula (114) is valid
for any βDBM.

VIII. CONCLUSION

In this paper we have studied in detail the active DBM
model introduced by us in [14]. We have focused on the
regime of weak active noise and large persistence time. In
that regime we have obtained the covariance of the particle
positions in the nonequilibrium stationary state to lowest or-
der in v2

0/(gλ) and for γ → 0+ for arbitrary N . This was
achieved first by relating the small displacements (the active
phonons) to the Hessian matrix, and in a second stage using
the exact spectrum of this matrix to obtain an exact expression
for the covariance matrix of these displacements in terms of
Hermite polynomials. Using the large order asymptotics of
these polynomials we were able to show that in the large N
limit these formulas for the covariance take nontrivial scaling
forms which we obtained explicitly. We found two distinct
regimes. In the bulk of the “active crystal” we find that the
covariance scales as 1/N and the scaling function involves
polylogarithm functions. In addition, we obtained a formula
for the variance of the relative displacements between two
particles of rank difference n ∼ N (i.e., separated by n − 1
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particles). It remains a challenge, however, to extend this
formula for n = O(1), in particular to obtain the statistics of
the gaps. At the edge, the covariance of the positions is larger,
i.e., it scales as N−2/3, and the scaling function involves the
Airy function and its zeros. In this case, we obtain a formula
for the variance of the relative displacements which is valid
for any n = O(1).

These predictions are consistent with the existence of three
regimes as a function of v2

0/(gλ), which are displayed in
Fig. 1, confirming the results in [14]. We have performed de-
tailed numerical simulations to confirm our finite N and large
N predictions. In addition these simulations have allowed us
to ascertain the range of parameters where the weak active
noise and large persistence time are numerically accurate. In
particular, although our results are valid only for very small
tumbling rates, the covariance appears to be a monotonously
decreasing function of γ . Hence the results of this paper
provide upper bounds for the case of arbitrary tumbling rates.
It would be interesting in the future to understand better the
effect of this parameter.

Interestingly we have unveiled a connection between
the weak noise regime of the active DBM and the low-
temperature regime of a priori unrelated equilibrium problem
(i.e., with passive noise), namely, the overdamped dynamics
of the CM model. This connection allowed us to use our pre-
dictions for the active DBM to obtain directly the covariance
matrix for the displacements in the CM model both at finite
N and at large N . In particular, the bulk and edge scaling
functions are identical in both models. We have compared
these analytical predictions with the results, mostly numerical,
of Ref. [24] and found very good agreement even up to values
of the inverse temperature parameter β = O(1).

The above connection between the active DBM and the
CM model in the weak noise regime was possible because the
covariance matrices of the displacements in both models is
proportional to the same matrix H−2 where H is the Hessian
of the DBM. Since the exact diagonalization of this matrix is
possible, the covariance could be obtained in closed form. As
an immediate extension, we also obtained the covariance for
the passive DBM, which is proportional to H−1. This allowed
us to recover by a different method the result of [25] for the
passive DBM. Along similar lines, an interesting extension of
the present work would be to consider the active CM model,
i.e., the CM model with Brownian noise replaced by run-and-
tumble noise. Indeed, in that case the covariance matrix will
be proportional to H−4, and very similar formulas could be
derived for the covariances at low temperature. Because of
the resulting 1/k4 spectrum, we anticipate that this will lead
to interesting so-called giant fluctuations in the number of
particles in an interval; see, e.g., [48]. Such fluctuations are
commonly observed in active systems (see, e.g., [48]) but are
suppressed in the case of the active DBM (1/k2 spectrum)
because of the rigidity of the logarithmic interaction.

Note added in proof. Recently, we obtained an addi-
tional result about anomalous diffusion in the Calogero-Moser
model. See section VI of Ref. [49].
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APPENDIX A: PROOF OF (51)

For the sake of completeness we briefly recall the proof of
the expression for the eigenvectors of the Hessian matrix H
given in [36], based on the residue theorem. The statement is
that the matrix

Ai j = Hi j − δi j = δi j

⎛
⎝∑

k �=i

1

(yi − yk )2

⎞
⎠− (1 − δi j )

1

(yi − y j )2
,

(A1)

where the y′
is are the N roots of the Hermite polynomial HN (x)

and verify

Aψk = (k − 1)ψk with (ψk )i = H (k)
N (yi )

H ′
N (yi )

(i = 1, . . . , N )

(A2)
for k = 1, . . . , N . For this we introduce the function

V (k)
i (z) = (z − yi )

−2 H (k)
N (z)

HN (z)
,

i = 1, . . . , N and k = 1, . . . , N. (A3)

This is a meromorphic function of z (with N − 1 simple poles
at z = y j , j = 1, . . . , i − 1, i + 1, . . . , N , and a triple pole at
z = yi) that vanishes at least as |z|−3 when |z| → +∞, there-
fore the sum of its residues vanishes. Computing the residues
yields

Resy jV
(k)

i = (yi − y j )
−2 H (k)

N (y j )

H ′
N (y j )

for j �= i, (A4)

ResyiV
(k)

i =
⎡
⎣−

∑
j �=i

(yi − y j )
−2 + k − 1

⎤
⎦H (k)

N (yi )

H ′
N (yi )

, (A5)

where we have used the differential equation satisfied by the
Hermite polynomials (56) as well as the identity

∑
j �=i(yi −

y j )−2 = 2
3 (N − 1) − y2

i
3 (see [36]). Summing the residues and

equating the sum to zero then yields the desired result (A2).
Finally, normalizing the eigenvectors and using the fact that H
is symmetric, hence its eigenvectors are orthogonal, we obtain
the formula for H−2 given in (52).

APPENDIX B: EXPLICIT FORMULA FOR THE
CORRELATIONS IN THE BULK

In this Appendix we derive the following formula, for u
and v in (0, π ):

∞∑
k=1

sin(ku) sin(kv)

k2
= 1

2
[π min(u, v) − uv], (B1)

from which one obtains the formula (13). Before providing
the derivation of this relation, let us note that it is related to the
correlator of the standard Brownian bridge B(t ), with B(1) =
B(0) = 0, which reads

B(t )B(s) = min(s, t ) − st . (B2)

Here one has u = πt , v = πs and
∑∞

k=1
sin(ku) sin(kv)

k2 =
π2

2 B(t )B(s). To understand the connection, let us recall
that B(t ) admits the Fourier decomposition B(t ) =∑

k�1 bk sin(πkt ), where the bk are independent centered
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Gaussian random variables of variance Var(bk ) =
2/(π2k2) (which follows from the Brownian measure
∼ exp(−1/2

∫ 1
0 dx[dB(x)/dx]2) [50].

Note that one can write, with θx = arccos x,

Cb(x, y) = dθx

dx

dθy

dy

1

2
[π min(θx, θy) − θxθy]. (B3)

This formula is reminiscent of the ones obtained in [51] for
the correlations of fermions in a quadratic well. Apart from
the two density factors, it is the analog of the formula (16)
in [51] for the correlations of the Gaussian free field on a
circle (with vanishing conditions at the boundary). Here this
logarithmically correlated field is replaced by a Brownian
bridge, as discussed above (since 1/k there is replaced by 1/k2

here). Note also the resemblance with the formula in Eq. (15)
in [51], which likewise contains two density factors.

Let us first show for θ ∈ (0, 2π )

∞∑
k=1

sin(kθ )

k
= Im

( ∞∑
k=1

eikθ

k

)
= Im[− ln(1 − eiθ )]

= −Im

{
iθ

2
+ ln

[
− 2i sin

(
θ

2

)]}

= −1

2
(θ − π ). (B4)

There is a discontinuity at θ = 2nπ for any n ∈ Z (including
θ = 0). In particular for θ ∈ (−2π, 0) one should replace
θ → θ + 2π , leading to

∞∑
k=1

sin(kθ )

k
= −1

2
(θ + π ). (B5)

Then, for u, v ∈ ([0, π ), one has

∞∑
k=1

sin(ku) sin(kv)

k2
= 1

2

∞∑
k=1

cos[k(u − v)]

k2

− 1

2

∞∑
k=1

cos[k(u + v)]

k2
. (B6)

We thus need to compute
∑∞

k=1
cos(kθ )

k2 for θ ∈ (−2π, 2π ). But
we know that

∂θ

∞∑
k=1

cos(kθ )

k2
= −

∞∑
k=1

sin(kθ )

k

=
{

1
2 (θ − π ) for θ ∈ (0, 2π )
1
2 (θ + π ) forθ ∈ (−2π, 0)

. (B7)

Integrating over θ (the discontinuity at θ = 0 becomes a cusp)
and using that the sum should be π2

6 for θ = 0 to fix the
integration constant, we obtain

∞∑
k=1

cos(kθ )

k2
= |θ |

2

( |θ |
2

− π

)
+ π2

6
. (B8)

Replacing θ by u ± v, one finds for u, v ∈ (0, π )

∞∑
k=1

sin(ku) sin(kv)

k2
= 1

2

[
(u − v)2

4
− π

2
|u − v|

− (u + v)2

4
− π

2
(u + v)

]

= 1

2
[π min(u, v) − uv], (B9)

which shows (B4).

APPENDIX C: ABSENCE OF PARTICLE CROSSINGS
IN THE CALOGERO-MOSER MODEL

Consider the CM model for N = 2. The difference between
the positions of the two particles y = x2 − x1 follows

ẏ(t ) = −λy(t ) + 4g̃2

y3
+

√
2T ξ (t ), (C1)

where
√

2ξ (t ) = ξ1(t ) + ξ2(t ), hence ξ (t ) is Gaussian white
noise with zero mean and variance 1. We set λ = 1 and g̃ = 1.
Discretizing time with a time step �t we obtain

yt+�t = (1 − �t )yt + 4�t

y3
t

+
√

2T �t ηt , (C2)

where ηt is a Gaussian random variable with zero mean and
unit variance. Let us assume that at time t y > 0. We want to
know the probability that at time t + �t , y < 0, i.e., the two
particles have crossed. This is given by

P(yt+�t < 0|yt > 0) = P

(
ηt < − (1 − �t )yt√

2T �t
− 4�t√

2T �t y3
t

)

= P(ηt > f�t (yt )) = 1

2
erfc

[
f�t (yt )√

2

]
,

(C3)

f�t (yt ) = (1 − �t )yt√
2T �t

+ 4
√

�t√
2T y3

t

, (C4)

where we have used the parity of the distribution of ηt , and
erfc(x) = 2√

π

∫ +∞
x dte−t2

. Since f�t (y) has a minimum on
(0,+∞), we can get an upper bound on the probability by
simply minimizing f�t (yt ) over yt . This gives

y∗ =
(

12�t

1 − �t

)1/4

⇒ min
y>0

f�t (y) = f�t (y
∗) = 4

33/4

(1 − �t )3/4

√
T �t1/4

. (C5)

Thus one has (reintroducing g̃ and λ)

P(yt+�t < 0|yt > 0) � 1

2
erfc

[
2
√

2

33/4

√
g̃

T

(1 − λ�t )3/4

�t1/4

]

∼
�t→0

C1

√
�t e− C2√

�t (C6)
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with C1 = 33/4

4
√

2π

√
T
g̃ and C2 = 8

33/2
g̃
T . Since the number of time

steps during a fixed time interval only increases as 1/�t ,
this proves that in the continuous time limit �t → 0 the
particles cannot cross. For larger values of N , when two
particles become very close to each other the effect of the
other particles can be neglected, and so the reasoning above
still holds. Finally note that, performing the same compu-
tation for the Dyson Brownian motion, one finds that the
minimum of f�t (y) is independent of �t , and therefore one
cannot conclude in this case. More generally, if one takes an
interaction force of the form sgn(xi − x j )|xi − x j |−α and an
arbitrary external potential, one gets for small enough �t

P(yt+�t < 0|yt > 0) � 1
2 erfc

(
K�t

1
α+1 − 1

2
)

(C7)

with K > 0, and therefore the probability of crossing goes to
zero in the continuous time limit for any α > 1.

APPENDIX D: APPROXIMATE PLANE WAVE
DIAGONALIZATION APPROACH

Another approach is to diagonalize H approximately for
large N , as done, e.g., in [26] (chap. 5.4) for the DBM, by
assuming the density to be uniform in the bulk, using plane
waves, and computing the inverse of the Hessian (very much
as a calculation of displacements using phonons in a solid).
This yields with ρ the mean density (normalized to unity),
i.e., ρ = 1/(Na) where a is typical interparticle distance

(H−2)i j � 1

N

⎡
⎣1 + 2

N/2−1∑
k=1

cos
( 2πk|i− j|

N

)
(1 + 4π2gρ2k/λ)2

⎤
⎦. (D1)

Using this result as well as (73) and (10), and replacing the
sum by an integral, one can first compute the variance of the
distance between two particles in the bulk

〈(δxi − δxi+n)2〉 = 4v2
0

λ2N

N/2−1∑
k=1

1 − cos
( 2πk|i− j|

N

)
(1 + 4π2gρ2k/λ)2

� v2
0

2π2g2ρ4N2

∫ π

0

dq

π

1 − cos(nq)

q2

� v2
0n

4π2g2ρ4N2
, (D2)

where ρ is the density both at xi and xi+n, which are assumed
to be close (n  N). In the last step we have assumed n � 1.
Comparing with the numerics one finds that it is indeed a good
approximation at short distances, where it coincides with the
result of the main text (76). Note that the momentum integral
in (D2) behaves as 1/q2 at small q, at variance with the DBM,
where it is 1/q. Note that for this quantity the momentum
integral is convergent since the factor (1 − cos qn) regularizes
it at small q. This results in deformations of the equilibrium
crystal growing as

√
n with the distance n, instead of logarith-

mically for the DBM. In both cases this can be related to the
fluctuations of the number of particles in an interval.

Another interesting quantity which usually measures the
degree of translational order in a solid is the variance

〈
δx2

i

〉 = v2
0

λ2
(H−2)ii � v2

0

N

⎡
⎣λ−2 + 2

N/2−1∑
k=1

1

(λ + 4π2gρ2k)2

⎤
⎦

� v2
0

N2

∫ π

0

dq

π

1

(λN−1 + 2πgρ2q)2
� v2

0

2π2gλρ2N
,

(D3)

where as a first step we have approximated the sum by an
integral, which would be valid for gρ2  λ [the more realistic
case gρ2/λ = O(1) is treated below]. Here by contrast, for
infinite N , the momentum integral is divergent at small q.
This reflects the translational invariance of the system. This
invariance, however, is broken by the quadratic well which
leads to an additional term λ/N in the denominator. That term
regularizes the integral at small q, leading to the above result.
Although the scaling is correct, the amplitude turns out to be
inaccurate when compared with numerical simulations. The
reason for this is that this observable is dominated by large
scales and is very sensitive to the details, e.g., of the variations
of the density (and of the confining potential) at large scale.
As shown in the rest of the paper it is possible to make a more
accurate calculation which includes these effects.

However, in the bulk gρ2/λ = O(1) one needs to keep the
sum in (D3). Extending this sum to N = +∞ we obtain

〈
δx2

i

〉 � v2
0

N

[
1

λ2
+ 1

8π4g2ρ4
ψ ′
(

1 + λ

4π2gρ2

)]
, (D4)

where ψ (z) is the digamma function. Note that for λ � gρ2

this formula matches the estimate (D3). However this estima-
tion, which is more accurate in the bulk, does not significantly
improve the agreement with numerical simulations.

Let us recall that for the DBM this computation gives [26]
for n = O(1) � 1

〈(δxi − δxi+n)2〉
〈xi − xi+n〉2

� 2

βDBMπ2n2
log n, (D5)

where in our notation βDBM = 2g/T .

APPENDIX E: EQUAL-TIME CORRELATIONS
FOR THE DBM

We give here some details on the equal-time correlations
for the position of bulk particles in the case of the DBM.
As mentioned in the text, taking t = t ′ in (108) leads to a
logarithmically diverging sum. Thus in this case we do not
extend the sum to infinity, and we write instead

〈δxiδx j〉 � T

λN2
C̃b,N

(
xeq,i

2
√

g/λ
,

xeq, j

2
√

g/λ

)

with C̃b,N (x, y) =
N∑

k=1

1

k
Uk−1(x)Uk−1(y), (E1)
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FIG. 12. Difference between the scaled variance of the central
particle in the DBM computed from the Hessian and the function
prediction Ṽb,N (

yN/2√
2N

) (blue) as well as with its approximation to order
o(1) (red). The difference converges to a constant, while the leading
behavior in each of the compared terms behaves as ln N .

and for the variance

〈
δx2

i

〉 � T

λN2
Ṽb,N

(
xeq,i

2
√

g/λ

)
with

Ṽb,N (x) =
N∑

k=1

1

k
Uk−1(x)2 = 1

1 − x2

N∑
k=1

sin2(k arccos x)

k
.

(E2)

Note that in this case the functions C̃b,N (x, y) and Ṽb,N (x)
depend on N (they are of order ln N at large N). As can be seen
in Fig. 12, these results are still correct to leading order, but the
leading relative error is now of order 1/N2 (i.e., logarithmic
w.r.t. the leading order).

In the case of the variance, Eq. (E2) can be easily approxi-
mated to leading order, yielding the result (109). Indeed, one
has

∞∑
k=1

[sin2(kθ ) − 1/2]

k
= 1

4
ln(4[sin2(θ )] (E3)

and thus

N∑
k=1

sin2(k arccos x)

k
= 1

2

N∑
k=1

1

k
+ O(1) = 1

2
ln N + O(1),

(E4)
which leads to

〈
δx2

i

〉 � T

λN2

ln N

2
[
1 − ( xeq,i

2
√

g/λ

)2] + O(N−2). (E5)

Note that the presence of the O(N−2) correction can be un-
derstood, e.g., by assuming that neglecting the k/N term in the
recursion is a good approximation for k < αcN (0 < αc < 1),
which leads to such a correction.

Remark. One can show that for any β and any N (see,
e.g., 6.18 in [26]; see [52] for generalizations) the expectation

value 〈∏
i

(z − xi )

〉
=
√

2g

λN
HN

⎛
⎝z

√
λN

2g

⎞
⎠ (E6)

is independent of β. This implies that the expectation values of
all the elementary symmetric polynomials, 〈ep(x1, . . . , xN )〉,
are independent of β. This implies a series of identities for the
moments of δxi = xi − xeq

i such as∑
i

〈δxi〉 = 0, (E7)

2
∑
i �= j

xeq
i 〈δx j〉 +

∑
i �= j

〈δxiδx j〉 = 0. (E8)

APPENDIX F: COVARIANCE AT THE EDGE FOR THE
(PASSIVE) DYSON BROWNIAN MOTION FROM THE

STOCHASTIC AIRY OPERATOR: LARGE β EXPANSION

It is useful to reconsider the stationary measure of the
DBM and study the fluctuations of the particle positions at
the edge of the gas by the method of the stochastic Airy oper-
ator (SAO); see [53–55]. In a second stage one considers the
large β limit, which, in that framework, amounts to perform
standard perturbation theory in quantum mechanics.

At the edge, the position of particle i, for i � 1, can be
rescaled as

xi = xe

2
(2 + aiN

−2/3), (F1)

where xe is the position of the edge, here xe = 2
√

g/λ, and
in the limit of large N the ai form the Airy process with
Dyson parameter β = 2g/T . We now use the fact that the Airy
process ai has the same statistics as ai = −εi where the εi are
the eigenvalues of the SAO defined as

HSAO = −∂2
y + y + 2√

β
w(y) (F2)

for y > 0 and Dirichlet boundary conditions at y = 0. Here
w(y) is a standard Gaussian white noise in y, i.e., with corre-
lations 〈w(y)w(y′)〉 = δ(y − y′). For β = +∞ the normalized
eigenfunctions of HSAO are given by

ψi(x) = Ai(x + ai )

Ai′(ai )
, (F3)

where the ai is the ith zero of the Airy function. One can thus
perform standard perturbation expansion to obtain, to second
order

−ai = εi = −ai + 2√
β

∫ +∞

0
dy

[
Ai(y + ai )

Ai′(ai )

]2

w(y)

+ 4

β

∑
k �=i

[ ∫ +∞
0 dyAi(y + ai )Ai(y + ak )w(y)

]2
Ai′(ai )2Ai′(ak )2(ak − ai )

+ O(w3). (F4)

Let us first obtain the covariances to lowest order in 1/β. For
this one does not need the terms O(w2). One obtains

〈xix j〉c = x2
e

4
N−4/3〈aia j〉c, (F5)
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and one has

〈aia j〉c = 4

β

∫ +∞

0
dy

[
Ai(y + ai )

Ai′(ai )

]2[Ai(y + a j )

Ai′(a j )

]2

. (F6)

Hence we find, using xe = 2
√

g/λ and β = 2g/T

〈xix j〉c = 2T

λN4/3

∫ +∞

0
dy

[
Ai(y + ai )

Ai′(ai )

]2[Ai(y + a j )

Ai′(a j )

]2

.

(F7)

If we compare with formula (113), i.e., 〈xix j〉c =
T

λN4/3 C̃e(ai, a j ), for the two formulas to agree we need
the following identity, which we have checked numerically
for some values of i and j using Mathematica:

2
∫ +∞

0
dy

[
Ai(ai + y)

Ai′(ai )

]2[Ai(a j + y)

Ai′(a j )

]2

= 1

Ai′(ai )Ai′(a j )

∫ +∞

0
dy

Ai(ai + y)Ai(a j + y)

y
. (F8)

It would be interesting to prove this identity. The formula (F4)
allows us to compute easily the first correction to the mean.
One finds

〈−ai〉 = −ai + 4

β

∑
k �=i

∫ +∞
0 dyAi(y + ai )2Ai(y + ak )2

Ai′(ai )2Ai′(ak )2(ak − ai )

(F9)

leading to

〈δxi〉 = 2xe

βN2/3

∑
k �=i

∫ +∞
0 dyAi(y + ai )2Ai(y + ak )2

Ai′(ai )2Ai′(ak )2(ai − ak )
. (F10)

For i = 1 one finds 〈δx1〉 > 0. Hence the size of the gas
increases as T increases (eventually at high T ∼ N the support
of the density extends to infinity [56]). Since a1 is distributed
according to the β-Tracy Widom distribution [53–55], the
quantities 〈δx1〉 and 〈δx2

1〉c can be related to the mean and
variance of that distribution.

Finally, to obtain the covariance to the next order O(T 2)
one would need to push the perturbation theory to order
O(w3).

APPENDIX G: HIGH-TEMPERATURE LIMIT
OF THE CALOGERO-MOSER MODEL

In this Appendix we study, in a more general setting, the
high-temperature limit of the CM model (denoting here xi and
zi the variables X̃i and ζi used in the text). Consider the joint
PDF

P(x1, . . . , xN ) = N! p(x1) . . . p(xN )θ (x1 > x2 > · · · > xN ),

(G1)

where
∫ +∞
−∞ dx p(x) = 1. For p(x) = e− x2

2√
2π

this corresponds to
the joint distribution of the rescaled positions of particles in
the CM model in the large temperature limit. This PDF can be
seen as drawing N i.i.d random variables from the distribution
p(x) and ordering them such that x1 > · · · > xN . Then the

marginal distribution of xi (for i = 1, . . . , N) is given by (see,
e.g., [41])

qi(x) = N!

(i − 1)!(N − i)!
p(x)

[∫ +∞

x
dy p(y)

]i−1

×
[∫ x

−∞
dy p(y)

]N−i

. (G2)

Similarly, for 1 � i < j � N the two-point marginal is

qi j (x, z) = N!

(i − 1)!( j − i − 1)!(N − j)!
p(x)p(z)θ (z < x)

×
[∫ +∞

x
dy p(y)

]i−1[∫ x

z
dy p(y)

] j−i−1

×
[∫ z

−∞
dy p(y)

]N− j

. (G3)

The cumulants of qi(x) can be obtained in the large N limit,
for i = O(N ), by computing the large deviation generating
function

1

N
log〈eNλxi〉 � max

x
[Gu(x) + λx] − [(1 − u) log(1 − u)

+ u log u],

Gu(x) = u log Q(x) + (1 − u) log[1 − Q(x)],

Q(x) =
∫ +∞

x
dy p(y), u = i/N. (G4)

In the Gaussian case one has

Q(x) = 1

2
erfc

(
x√
2

)
. (G5)

Let us define

φu(λ) = max
x

[Gu(x) + λx] = Gu(xλ) + λxλ, G′
u(xλ) = −λ.

(G6)
One has

φ′
u(λ) = xλ, φ′′

u (λ) = − 1

G′′
u (xλ)

. (G7)

Let us denote x∗ = x0, which is given by G′(x∗) = 0. We
obtain

〈xi〉 = φ′
u(0) = x∗, x∗ = Q−1(u), u = i/N (G8)

and for the second cumulant

N
〈
x2

i

〉
c = φ′′

u (0) = u(1 − u)

{Q′[Q−1(u)]}2
, u = i/N. (G9)

These results are in agreement with [38] (up to a factor 2π

which seems to be missing there). The higher cumulants are
given by N p−1〈xk

i 〉c = φ
(p)
u (0), hence the marginal distribution

of the rescaled position x̃i = N1/2(xi − 〈xi〉) of a bulk particle
is Gaussian at large N .

Similarly one can obtain the two-point covariance for two
particles in the bulk separated by a distance of order N by
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computing, for 1 � i < j � N , with i and j = O(N ) and j −
i = O(N ),

1

N
ln eN (λixi+λ j x j ) = max

x,z|x>z
[Hu,v (x, z) + λix + λ j z] − cu,v,

Hu,v (x, z) = u ln Q(x) + (v − u) ln[Q(z) − Q(x)]

+ (1 − v) ln[1 − Q(z)], (G10)

where u = i/N < v = j/N , and cu,v = u log u + (v −
u) log(v − u) + (1 − v) log(1 − v). We introduce

ψu,v (λi, λ j )

= max
x,z|x>z

[Hu,v (x, z) + λix + λ j z]

= Hu,v

(
xλi,λ j , zλi,λ j

)+ λixλi,λ j + λ j zλi,λ j ,

∂xHu,v

(
xλi,λ j , zλi,λ j

) = −λi, ∂zHu,v

(
xλi,λ j , zλi,λ j

) = −λ j .

(G11)

We find in particular

Q(x0,0) = u, Q(z0,0) = v. (G12)

We will denote x∗ = x0,0 and z∗ = z0,0. One has

∂λiψu,v (λi, λ j ) = xλi,λ j , ∂λ j ψu,v (λi, λ j ) = zλi,λ j (G13)

from which one can show that

∂λi∂λ j ψu,v (0, 0) = ∂λ j xλi,λ j |λi=0,λ j=0

= ∂x∂zHu,v

∂2
x Hu,v∂2

z Hu,v − (∂x∂zHu,v )2

∣∣∣∣
x∗,z∗

= u(1 − v)

Q′(x∗)Q′(z∗)
, (G14)

where to obtain the second equality one takes a derivative
w.r.t. λ j of both equations in (G11) and eliminate ∂λ j zλi,λ j .
Inserting the explicit form of Hu,v (x, z) given in (G10) we
finally obtain

N〈xix j〉c = u(1 − v)

Q′(x∗)Q′(z∗)
, Q(x∗) = u = i

N
,

Q(z∗) = v = j

N
, (G15)

which yields back (G9) when j − i  N .
We now focus on the right edge regime, i.e., i = O(1). In

this regime one can apply standard results from extreme value
theory [39,40]. We restrict ourselves to the Gaussian case
p(x) = e−x2/2/

√
2π , which falls into the Gumbel universality

class. One has the standard result at large N

xj =
√

2 log N

(
1 + z j + cN

2 log N
+ · · ·

)
,

cN = − log(
√

4π log N ). (G16)

The general case for the Gumbel class is obtained simply from
the change of variable NQ(x) � e−z. The JPDF of the k largest
z′

js, denoted here wk , is then universal and given by [39–41]

wk (z1, . . . , zk ) = θ (zk < · · · < z1) e−∑k
j=1 z j e−e−zk

, (G17)

which is normalized to unity. The marginal of zk is then

qk (z) = 1

(k − 1)!
e−kz−e−z

. (G18)

Note that this JPDF can be rewritten as

wk (z1, . . . , zk ) = θ (zk < · · · < z1)
k−1∏
�=1

�e−�(z�−z�+1 )

× 1

(k − 1)!
e−kzk−e−zk

. (G19)

Hence to generate the k largest points, one first chooses zk

and then the successive gaps as independent exponentially
distributed variables, with distinct parameters. It is then easy
to compute the generating function

〈eλ1z1+···+λkzk 〉k

= (k − λ1 − · · · − λk )

(1 − λ1)(2 − λ1 − λ2) . . . (k − 1 − λ1 − · · · − λk−1)
,

(G20)

where 〈. . . 〉k denotes an average w.r.t. wk in (G19). From that
formula all joint moments and cumulants can be obtained. For
instance one obtains that for j � k

〈eλz j 〉k = ( j − λ)

( j)
(G21)

independently of k as required. The two-point generating
function with j < k is then

〈eλ j z j+λkzk 〉k = ( j − λ j )

( j)

(k − λ j − λk )

(k − λ j )
, (G22)

from which the joint two point cumulants are obtained. For
λ j = −λk = λ one obtains

〈zk〉 = −ψ0(k),
〈
z2

k

〉
c
= ψ1(k), (G23)

where ψ0(x) = ′(x)/(x) and ψ1(x) = ψ ′
0(x) are the

digamma and trigamma functions respectively. The second
cumulants at distinct points are given, for j < k, by (see also
[57])

〈z jzk〉c = ψ1(k) = 〈z2
k

〉
c, (G24)

which is compatible with zk and z j − zk being independent
variables (see the remark above).

One can check that these results correctly match the re-
sults for the bulk at the boundary between the two regimes.
Indeed, for k  N the first cumulant in the bulk (G8)
becomes

〈xk〉 = x∗
k = Q−1

(
k

N

)
�

√
2 ln N

(
1 − ln

√
4π ln N + ln k

2 ln N

)
,

(G25)

which matches the edge result (G23) for k � 1 [using that at
large k, ψ0(k) = ln(k) + O(1/k)]. Using the same asymptotic
expression for x∗

k , we get for the covariance in the bulk (G15)
with k  N and j  N with j < k

〈x jxk〉c � j/N

Q′(x∗
k )Q′(x∗

j )
� 1

2k ln N
, (G26)
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FIG. 13. Rescaled average (left) and variance (right) of the position of particle i as a function of i/N at high temperatures. The dashed
black lines show the infinite temperature predictions (27).

where we have used Q′(x∗
k ) � k

N

√
2 log N . This expression

(G26) is the same as the one obtained from the edge
expression (G24) in the limit k � 1 [using the fact that at large
k ψ1(k) � 1/k].

Finally the distribution ρk (d ) of the gap between two suc-
cessive particles d = dk = xk − xk+1 in the large N limit can
be obtained (see, e.g., [38]). In the bulk region one has

ρk (d ) � NQ′(x∗
k ) e−NQ′(x∗

k )d , (G27)

which is a universal result valid for any p(x), while near the
edge one has for the Gaussian case [using the expression of

Q′(x∗
k ) given below (G26); see also [41]]

ρk (d ) � k
√

2 ln N e−k
√

2 ln Nd . (G28)

One can again check that the two expressions (G27) and (G28)
match for 1  k  N .

The results are compatible with simulations (see Fig. 13,

where we used u = i− 1
2

N for symmetry since i = 1, . . . , N) and
with an existing result for the variance of the central particle
(see [58]).
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