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Phase-ordering kinetics of the asymmetric Coulomb glass model
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We present results for phase-ordering kinetics in the Coulomb glass (CG) model, which describes electrons
on a lattice with unscreened Coulombic repulsion. The filling factor is denoted by K ∈ [0, 1]. For a square
lattice with K = 0.5 (symmetric CG), the ground state is a checkerboard with alternating electrons and holes.
In this paper, we focus on the asymmetric CG where K � 0.5, i.e., the ground state is checkerboard-like with
excess holes distributed uniformly. There is no explicit quenched disorder in our system, though the Coulombic
interaction gives rise to frustration. We find that the evolution morphology is in the same dynamical universality
class as the ordering ferromagnet. Further, the domain growth law is slightly slower than the Lifshitz-Cahn-Allen
law, L(t ) ∼ t1/2, i.e., the growth exponent is underestimated. We speculate that this could be a signature of
logarithmic growth in the asymptotic regime.
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I. INTRODUCTION

Many systems found in nature are far from equilibrium.
We still lack a complete understanding of nonequilibrium
pattern formation in these systems. An important problem
in this context is the temporal evolution of a system which
is rendered thermodynamically unstable by a rapid quench
below the critical temperature Tc. The system does not instan-
taneously transform to its new phase—rather, small domains
of coexisting phases grow with time to reach the equilibrium
state. This evolution is usually referred to as phase-ordering
dynamics or domain growth or coarsening [1,2]. We have a
good understanding of domain growth in pure and isotropic
systems. The nature of evolution towards equilibrium depends
on whether or not the order parameter is conserved, and the
nature of defects (interfaces, vortices, monopoles, etc.) which
drive the coarsening process. Typically, nonconserved sys-
tems with short-ranged interactions are characterized by the
Lifshitz-Cahn-Allen (LCA) growth law for the domain size L
at time t : L(t ) ∼ t1/2 [1,2].

Recent interest in domain growth problems has focused
on experimentally realistic systems. Most experimental sys-
tems have disorder and frustration. Therefore, it is relevant to
study the ordering kinetics of such systems. In a system with
quenched disorder, the dynamics of the system slows down
due to the trapping of domain walls by disordered sites [3–5].
Another important system property that affects the growth is
the range of the particle-particle interaction. There have been
several analytical [6] and numerical [7,8] studies of domain
growth in systems with long-range interactions. These have
demonstrated that the growth law is modified from the LCA
law if the interactions are sufficiently long-ranged.

In this paper, we study coarsening in an important model
which combines disorder/frustration with long-range inter-
actions. We focus on the well-known Coulomb glass (CG)
model [9,10] at half-filling (K = 0.5), and also at fillings

slightly less than half (K = 0.475, 0.45). In the CG model,
the electronic states are localized due to disorder. Due to
the localization of states, the electron-electron interaction is
unscreened. The Hamiltonian for the CG model is

HCG{ni} =
N∑

i=1

(ni − K )φi

+ 1

2

∑
i �= j

e2

κ|�ri − �r j | (ni − K )(n j − K ), (1)

where N is the number of lattice sites, and ni ∈ {0, 1} is
the occupation number of the electron on site i with position
vector �ri. In Eq. (1), φi is the random energy at i, and K
is the filling factor. The charge on each electron is equal to
−e and a compensating charge of +Ke is put on each site to
maintain charge neutrality. The second term in Eq. (1) denotes
an unscreened Coulombic interaction between the charges at
sites i and j in a medium of dielectric constant κ .

At high disorder and low temperature, experiments have
shown that this system exhibits glassy behavior such as aging
[11–14], slow relaxation of excess conductance [15–17], and
memory effects [18,19]. Recent simulations of the d = 3 CG
via population annealing have shown a transition from a dis-
ordered to a glassy phase as the temperature is lowered at high
values of disorder [20]. No glassy phase was found in earlier
exchange Monte Carlo (MC) simulations done by Goethe and
Palassini [21] and Surer et al. [22]. The mean-field study of the
model also indicates the presence of a glassy phase [23–25].

The CG model is equivalent to an Ising antiferromagnet
(AF) with spins interacting via the Coulombic interaction.
In d = 3, equilibrium studies at half-filling (symmetric CG)
have shown that the CG is in the same universality class
as the random field Ising model (RFIM) with ferromagnetic
nearest-neighbor (nn) interactions [21]. The system undergoes
a second-order phase transition from a paramagnetic phase to
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an AF phase at zero and finite disorders. At zero disorder, the
critical exponents of the CG match those of the d = 3 nn Ising
model [26,27]. For disorder amplitudes less than the critical
disorder, the critical exponents are those of the d = 3 nn
RFIM.

In d = 2, at zero disorder, it has been found that the critical
exponents of the CG match those of the d = 2 nn Ising model
[26,28]. However, unlike the d = 2 nn RFIM, the CG shows
a transition from a disordered to a charge-ordered phase at
T = 0 as the disorder becomes less than a critical value [29].

To the best of our knowledge, there have been far fewer
studies of dynamical properties of the CG. In recent work
[30], we investigated the ordering kinetics of the d = 2 sym-
metric (K = 0.5) CG at zero and small disorder. In conformity
with experiments, the composition of the CG is conserved
during the evolution. However, the relevant order parameter
(staggered magnetization) is a nonconserved variable [31].
For zero disorder, the CG system obeyed the LCA growth
law [30]. Thus, in spite of frustration due to the long-range
Coulomb interaction, the CG kinetics is the same as that of
the nn AF. At nonzero disorder, the system showed a transition
from power law to logarithmic growth similar to that observed
in the nn RFIM [32].

In this paper, we focus on the effect of composition asym-
metry on the ordering kinetics of the CG, i.e., we consider
filling fractions away from K = 0.5. We point out that the
Hamiltonian in Eq. (1) is invariant under the transformation
K → 1 − K and ni → 1 − ni. Thus, the case with surplus
electrons (K > 0.5) is equivalent to the case with surplus
holes with composition 1 − K . Therefore, without loss of
generality, we consider the case with K � 0.5. For simplicity,
we consider the case with no external disorder. The internal
frustration of the system already yields rich phenomenology,
which we will discuss in this paper.

This paper is organized as follows. In Sec. II, we give
details of our numerical simulations. In Sec. III, we present
detailed numerical results. In Sec. IV, we conclude this paper
with a summary and discussion.

II. SIMULATION DETAILS

Recently, Rademaker et al. [33] used mean-field theory
to obtain a finite temperature phase diagram for the d = 2
CG model over a range of average particle density. Using
their phase diagram as a reference point, we have studied
ordering kinetics at K = 0.45, 0.475, 0.50. The first two com-
positions differ only slightly from half-filling, and we assume
that the critical temperature (Tc) is approximately the same
for all three K values. From the phase diagram proposed
by Rademaker et al., one can see that the ground state has
checkerboard order close to half-filling. This implies that one
can still use staggered magnetization as an order parameter
for K = 0.45 → 0.5. For K � 0.4, the phase diagram shows
that the ground state has a stripe order. The ground states
become more exotic as K is reduced further. For this reason,
we have chosen K = 0.45 as the lower limit of asymmetry for
our simulation.

Before proceeding further, it is useful to formulate the
CG Hamiltonian in spin language. We introduce the usual
spin notation: Si = 2ni − 1. Then, Eq. (1) with φi = 0 can be

written as

HCG{Si} = 1

8

∑
i �= j

e2

κ|�ri − �r j | (Si + 1 − 2K )(S j + 1 − 2K ),

Si = ±1. (2)

For half-filling (K = 0.5), the constant factor 1 − 2K = 0.
We would like to compare domain growth in the d = 2 CG
with a system in which the Coulombic interaction is screened,
i.e., charges (spins) interact via a short-range potential. The
latter is modeled by a nn AF with charge neutrality. The
Hamiltonian can be written as

HAF{Si} = J
∑
〈i j〉

(Si + 1 − 2K )(S j + 1 − 2K ), Si = ±1,

(3)

where J > 0 is the strength of the nn interaction, and 〈i j〉
denotes nn pairs. We will subsequently use the term “CG” to
refer to the model in Eq. (2), and the term “AF” to refer to the
model in Eq. (3).

The details of our simulation are as follows. We study
coarsening via Monte Carlo (MC) simulations [34,35] of the
CG and AF with Kawasaki spin-exchange kinetics. (We will
shortly discuss this kinetics in detail.) We use a square lattice
of size N = A2, and employ periodic boundary conditions
in both directions. To cope with the long-range Coulomb
interactions in Eq. (2), we have used the Ewald summation
technique [36]. The simulation of long-range interactions is
computationally much more demanding than that of nn in-
teractions. This restricts the size of the CG to A = 512. The
corresponding size of the AF is A = 2048.

The initial configuration was prepared by randomly as-
signing KN sites with value Si = +1, and (1 − K )N sites
with Si = −1. This mimics the disordered state at high T .
The system was rapidly quenched at time t = 0 from the
disordered state (T 
 Tc) to a low-T state (T = Tc/2). As the
number of electrons in the system is conserved, the stochas-
tic kinetics used to study the ordering process is Kawasaki
spin-exchange kinetics [1]. A pair of opposite spins Sn and Sm

(which are nearest neighbors) are chosen at random for spin
exchange. This exchange is done with probability p, given by
the Metropolis algorithm [34,35]:

p = 1, �nm � 0,

= e−β�nm , �nm > 0, (4)

where �nm denotes the change in energy due to the spin ex-
change, and β = 1/(kBT ) (Boltzmann constant kB = 1). The
energy change for the CG can be computed from Eq. (2) as
follows:

�CG
nm = 1

4
(Sm − Sn)(εn − εm) − e2

κrnm
. (5)

In Eq. (5), εn denotes the single-particle Hartree energy:

εn =
∑
j �=n

e2

κrn j
(S j + 1 − 2K ). (6)

The εi’s are computed at the beginning of the simulation
and updated as the spin exchanges take place. The advantage
of using the εn’s is that they are updated only when a spin
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FIG. 1. Schematic of ground states of the (a) CG and (b) AF
with slightly asymmetric composition: K � 0.5. The circles de-
note electrons, and the bars denote holes. The surplus holes are
colored red.

exchange attempt is successful. This standard method for the
long-range model significantly decreases the computational
time needed for an update. A single Monte Carlo step (MCS)
corresponds to N attempted updates.

The corresponding expression for �nm for the AF is con-
siderably simpler, as expected. We use Eq. (3) to obtain

�AF
nm = J (Sm − Sn)

⎛
⎝ ∑

Ln �=m

SLn −
∑
Lm �=n

SLm

⎞
⎠, (7)

where Ln refers to the nn of site n.
All the statistical data presented in this paper has been

averaged over 20 independent runs for the CG. The energies
and temperatures of the CG system are calculated in units of
e2/(κa), where a is the lattice constant. The critical tempera-
ture for the CG at half-filling [26,28] is Tc � 0.1042 e2/(κa).

For the AF, the statistical results were obtained by averag-
ing over 10 independent runs. In this case, the unit of energy
is J , and Tc � 2.269 J .

III. DETAILED NUMERICAL RESULTS

In earlier work, we have established that both the CG
and AF in d = 2 at K = 0.50 follow the LCA growth law
[30]. We now investigate the role of excess electrons/holes or
asymmetry in ordering kinetics. Without loss of generality, we
consider the case with excess holes (K < 0.5). As discussed

earlier, we only consider the slightly asymmetric case (K >

0.45), so that the system still has a checkerboard-like ground
state. The excess holes are distributed uniformly throughout
the system in both the CG and AF. These two situations are
shown schematically in Fig. 1. In the CG, the excess holes
form a periodic structure to minimize the Coulombic energy.
No such periodicity is seen in the AF. The presence of excess
holes at the domain interfaces slows down domain growth
for both models. As mentioned earlier, the appropriate order
parameter in this problem is not the composition (which is
conserved) but rather the staggered magnetization (which is
not conserved):

σi = (−1)ix+iy Si. (8)

The conserved composition plays the role of an auxiliary slow
variable. A complete description of the kinetics is provided by
Model C in the terminology of Hohenberg-Halperin [31,37].

In Fig. 2, we present evolution snapshots of σ domains at
K = 0.45 for the CG. The excess holes, which can correspond
to either σi = +1 or σi = −1 (depending on the location) are
seen to be uniformly dispersed as impurities in the domains
of Fig. 2. In Fig. 3, we compare domain morphologies at
different filling factors (at t = 103 MCS) for the CG and AF.
For both models, one sees that domain growth slows down as
the number of excess holes or domain impurities increases.
(Notice that the snapshots for K = 0.50 do not show a per-
fect checkerboard structure either—this is a consequence of
thermal fluctuations in the equilibrated bulk domains.)

The phase-ordering kinetics in a system is usually charac-
terized by the equal-time correlation function [1]:

C(�r, t ) = 1

N

∑
�R

[〈σ ( �R, t )σ ( �R + �r, t )〉

− 〈σ ( �R, t )〉〈σ ( �R + �r, t )〉], (9)

where we have assumed that the system is translationally
invariant. This quantity measures the overlap of staggered
magnetization between two spins separated by �r. Here, 〈· · · 〉
indicates an average over independent runs, i.e., with differ-
ent initial conditions and noise realizations. If the system is
isotropic and is characterized by a single length scale L(t ),

FIG. 2. Domain growth in the d = 2 CG at K = 0.45. We show snapshots at different MCS for a 5122 lattice. The order parameter is the
staggered magnetization σ . The black and white regions correspond to σ > 0 and σ < 0, respectively.
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FIG. 3. The upper frames show snapshots at t = 103 MCS from domain growth in the d = 2 CG of size 5122. We show snapshots at
different filling factors K . The order parameter is the staggered magnetization σ . The lower frames show corresponding snapshots for the AF.
These frames show a 5122 corner of a 20482 lattice.

then C(�r, t ) obeys the following dynamical scaling form [1]:

C(�r, t ) ≡ C(r, t ) = f

(
r

L(t )

)
, (10)

where r is the magnitude of �r.
The characteristic domain size L(t ) is defined as the dis-

tance over which C(r, t ) decays to a fraction (say 0.2) of
its maximum value. The scaling property indicates that the
morphology is statistically self-similar in time—only the scale
of the morphology changes. We have confirmed (not shown
here) that dynamical scaling holds for both the CG and AF.
In Fig. 4(a), we plot the scaling functions for the CG with
different values of K . The data sets are seen to be in excellent
agreement. The solid line denotes the Ohta-Jasnow-Kawasaki
(OJK) function [1]:

fOJK(r/L) = 2

π
sin−1[exp(−r2/L2)]. (11)

The OJK function is an approximate result for the scaling
function of the nn ferromagnet with nonconserved kinetics.
It is obtained by modeling the pattern dynamics via the mo-
tion of domain boundaries or defects [1]. We see that the
OJK function describes the CG ordering kinetics very well,
at least for the small values of asymmetry considered here.
In Fig. 4(b), we show the scaling functions for the AF with
small asymmetry. These are also in excellent agreement with
the OJK function.

FIG. 4. (a) Scaled correlation functions, C(r, t ) vs r/L, for the
CG at t = 103 MCS and different K . The length scale L(t ) is defined
as the distance over which C(r, t ) decays to 0.2 of its maximum
value. (b) Analogous plot for the AF. The solid line in both frames
denotes the OJK function in Eq. (11).
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FIG. 5. (a) Time-dependence of the characteristic length scale, L(t ) vs t on a log-log scale, for the CG. We plot data for different K values.
The line labeled t1/2 denotes the LCA law. (b) Plot of effective exponent for CG: θeff vs t . The horizontal line denotes the LCA exponent,
θ = 1/2. (c) Analogous to panel (a), but for the AF. (d) Analogous to panel (b), but for the AF.

Next, let us investigate the time-dependence of the domain
growth law. Typically, the evolution of domains in magnetic
ordering is curvature-driven, and is governed by the equa-
tion [4,5]

dL

dt
= a(L, T )

L
. (12)

Here, a(L, T ) is the diffusion constant which, in general,
depends upon the domain size and temperature. Lai et al.
(LMV) [4] classified systems with nonconserved kinetics via
the functional dependence of a(L, T ). Consider the situation
where coarsening domains of size L encounter energy barriers
EB(L). Then, the growth dynamics is governed by thermally
activated hopping over these barriers, and the diffusion con-
stant has the form (kB = 1)

a(L, T ) = a0 exp

(
−EB(L)

T

)
, (13)

where a0 is a constant. For the usual nn Ising model with
Glauber spin-flip kinetics [1], there are no energy barriers
(EB = 0) and a(L, T ) is a constant. Then, Eq. (12) yields the
LCA growth law:

L = (2a0t )1/2. (14)

These are designated as Class 1 systems by LMV. For Class
2 systems, the barrier energy is nonzero but independent of
L: EB(L) ≡ EB. In that case, one obtains a modified LCA law
with a temperature-dependent prefactor:

L(t ) = (2a0e−βEBt )1/2. (15)

LMV and Paul et al. [38] have also considered systems
where EB(L) has a power-law and logarithmic dependence on
L, respectively. These usually occur in systems with quenched
disorder, where the boundaries of coarsening domains are
trapped by disorder sites [3–5]. In the case of power-law
barriers, the asymptotic growth law is logarithmic in time
[4]. However, for logarithmic barriers, the growth law is a
power-law in time with the growth exponent depending on the
disorder amplitude and temperature.

The plot of L(t ) versus t for the CG is shown in Fig. 5(a).
One sees that the growth is slightly slower than the LCA law
for all filling factors considered. This is clear from the plot of
the effective exponent θeff vs. t in Fig. 5(b), where

θeff = d (ln L)

d (ln t )
. (16)

This plot underestimates the LCA exponent (θ = 1/2) for
the asymmetric CG. We interpret this as a possible signal
of logarithmic growth in the asymptotic regime. Further,
the growth is slower for higher asymmetry. We will discuss
the nature of the asymptotic growth law at length shortly. The
corresponding results for the AF are shown in Figs. 5(c) and
5(d). These are consistent with the results for the CG. In ear-
lier work, Das et al. [31] have obtained similar results for the
AF, via both the kinetic spin model and its phenomenological
counterpart (Model C).

We would like to gain a better understanding of the slow-
ing down of the growth law in the asymmetric case. In this
context, following Shore et al. [39], we investigate the time
required for shrinking of a droplet on a square lattice. Here,
the relevant order parameter is the staggered magnetization
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FIG. 6. Schematic for shrinking of a square droplet (of size L2
d )

with σ = −1 in a background of σ = +1 in the CG at (a) K = 0.50
and (b) K � 0.50. We approximate HCG by the first two terms in
Eq. (17). In panel (a), there is a barrier for flipping the corner
spin. The edge subsequently peels without any further barriers. In
panel (b), impurity spins in the background/droplet yield further
Ld -dependent barriers to the peeling of the edge.

σi, so we consider the shrinking of a square droplet (σi = −1)
of size L2

d in a background of σi = +1. This is schematically
depicted in Fig. 6(a). If K � 0.5, then there will be uni-
formly scattered impurities (corresponding to excess holes)
in the bulk domains—see Fig. 3. The probability of encoun-
tering such an impurity is ph = 1 − 2K . The corresponding
shrinking experiment for K � 0.5 is schematically depicted
in Fig. 6(b).

It is convenient to rewrite the first few quadratic terms of
HCG in Eq. (2) in terms of the staggered magnetization:

HCG{σi} = −J1

∑
nn

σiσ j + J2

∑
nnn

σiσ j + J3

∑
nnnn

σiσ j + · · · ,

σi = ±1, (17)

where the subscript nnn refers to a sum over next-nearest-
neighbor pairs, and so on. In Eq. (17),

J1 = e2

4κa
, J2 = e2

4
√

2κa
, J3 = e2

8κa
, · · · . (18)

The argument below is based on the first two terms of the
right-hand side (RHS) of Eq. (17) [39], and illustrates the key
features which result in formation of energy barriers due to
excess holes.

First, consider the case K = 0.5 in Fig. 6(a). We consider
the case where decimation is initiated at the upper left corner.
The droplet shrinks by flipping a corner spin with energy
barrier 4J2. The subsequent flipping of the edge spins requires
zero energy. Thus, the time taken to decimate the square
domain is

τd = t0(Ld ) exp

(
4J2

T

)
. (19)

The decimation of droplets is the elementary process that
drives the ordering process. Therefore, we identify EB(L) in
Eq. (13) as 4J2 for the case K = 0.5. This yields the LCA
growth law in Eq. (15).

Next, consider the case K � 0.5, depicted in Fig. 6(b).
Again, the decimation is initiated at the upper left corner. The
corner flip requires energy 4J2 for the case shown in Fig. 6(b).

However, in this case, we encounter adjacent impurity spins
in the flipping of edge spins. For example, the impurity shown
in Fig. 6(b) yields an additional barrier of 4J1. In general, an
impurity yields an additional barrier α1J1 + α2J2, where the
factors α1, α2 depend on the precise location of the impurity
relative to the edge. Therefore, in the process of peeling off
the edge, we encounter the overall barrier

EB(Ld ) � 4J2 + γ (1 − 2K )Ld , (20)

where the factor γ is an average over individual impurity
barriers. Thus, the excess holes give rise to an L-dependent
barrier in the domain growth process, yielding a Class 3
system in the LMV classification scheme [4].

This will modify the asymptotic growth law to a loga-
rithmic form. The relevant growth equation is obtained from
Eqs. (12) and (13) as

dL

dt
= a0

L
exp [−4βJ2 − βγ (1 − 2K )L]. (21)

At early times (t  tc, L  Lc), we can neglect the second
term in the exponent. Then,

L(t ) � (2a0e−4βJ2t )1/2, t  tc. (22)

At late times (t 
 tc, L 
 Lc), we approximate L � Lc in the
prefactor of the RHS of Eq. (21). This yields the logarithmic
growth law:

L(t ) � 1

βγ (1 − 2K )
ln

[
a0

Lc
e−4βJ2βγ (1 − 2K )t

]
, t 
 tc.

(23)

The crossover time and length scales can be obtained by com-
parison of Eqs. (22) and (23)—they diverge as K → 1/2−.

The corresponding results for AF ordering can be obtained
by setting J2 = 0 in Eq. (21). A couple of remarks are in order
here. First, in the above discussion, we have only considered
the first two terms of HCG in Eq. (17). We do not expect
the incorporation of higher terms to change the nature of the
crossover (t1/2 → logarithmic), which is already captured in
the above discussion. However, higher terms will affect the
precise details of the crossover, viz., prefactors of growth
laws, etc. Second, for the small asymmetries considered in
our simulations, we expect the crossover to the logarithmic
regime to be substantially delayed. The only signature we see
of the asymptotic regime is the under-estimation of the growth
exponent from the LCA value, θ = 1/2. Third, it is relevant
to point out that there have been several experimental studies
[40,41] which have reported logarithmic ordering kinetics in
asymmetric mixtures. The above arguments provide a theoret-
ical basis for understanding the experimental results.

Before ending this section, we briefly address the role of
temperature (T ) in our simulations. We have presented results
for a single value of T (=0.5 Tc) for both the CG and AF. It is
clearly relevant to ask whether the numerical results would be
affected by changing T . In general, we expect similar results
for all T lying in a specific region of the phase diagram, i.e.,
if one does not encounter a phase transition while chang-
ing T . (The only quantities which would change with T are
the nonuniversal timescales and length-scales.) For T < Tc,
the system is always in the ordered phase. As T is varied,
there may be a roughening transition at some temperature TR
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[42]. For T < TR, the interface between coexisting phases is
smooth. However, for T > TR, the corresponding interface is
rough and its mean-squared fluctuation w2 depends on the
domain size L.

For the d = 2 case studied in this paper, the interface
between the up and down domains is a one-dimensional line.
For the d = 2 Ising model, the interface is known to be rough
[43,44] for all T < Tc as the one-dimensional Ising model
is only ordered at T = 0. Further, the interfacial roughness
w2 ∼ L [42]. Given the similarity of the models, it is rea-
sonable to assume that this is true for the AF and CG also.
The evolution snapshots in Figs. 2 and 3 provide pictorial
confirmation that the domain walls are rough. Thus, we expect
similar coarsening behavior for all T < Tc in d = 2. Further,
the asymptotic behavior is universal because the interfacial
thickness becomes irrelevant compared to the domain size:
w/L → 0 as t → ∞ [45]. The only T values for which we
would obtain a qualitatively different scenario in d = 2 are
T � 0. In that case, the evolving system gets trapped in
long-lived metastable states. This is a well-known problem
with low-T MC simulations of systems with complicated free
energy landscapes.

For d = 3, the physical situation is different as the inter-
faces are two-dimensional, and there is a nonzero roughening
temperature. For specificity, let us consider the d = 3 Ising
model. A low-T expansion by Weeks et al. [46] showed
that TR � 0.57 Tc, where Tc is the bulk phase transition tem-
perature. (There have been much more accurate estimates
provided subsequently but that is not germane to our discus-
sion.) Thus, the domain walls are smooth for T < TR and
rough for TR < T < Tc. In the rough phase, we know that
w2 ∼ ln L [42]. Then, we may expect a qualitatively different
coarsening scenario for these two temperature windows at
intermediate times. This is an interesting problem for future
investigation. Of course, the asymptotic behavior is again
universal as the interfacial roughness becomes irrelevant com-
pared to the domain scale as t → ∞.

IV. SUMMARY AND DISCUSSION

Let us conclude this paper with a summary and discussion
of our results. We have studied the domain growth kinetics of
a Coulomb glass (CG) model without any external quenched
disorder. The CG is a frustrated system due to the long-range
repulsive Coulombic interaction between electrons. The im-
portant parameter in our simulations is the filling factor K—a
system with N sites has KN electrons and (1 − K )N holes.
For K = 0.5, there are an equal number of holes and electrons
in the system. Then, the ground state is a checkerboard where
electrons and holes are placed on alternating sites. The CG
with K > 0.5 is equivalent to the CG with filling fraction
1 − K . Therefore, without any loss of generality, we consider
the CG with K < 0.5. For K � 0.5, there is a small excess of
holes. In this case, the ground state is checkerboard-like with
excess holes uniformly distributed. For K  0.5, more exotic
ground states arise, which we do not study in this paper.

We study the phase-ordering kinetics in the CG via a
kinetic spin model with long-range antiferromagnetic inter-
actions. For purposes of comparison, we also study domain

growth in the nearest-neighbor antiferromagnet (AF). A suit-
able stochastic kinetics is introduced into the system by
connecting it with a heat bath [2]. As the number of elec-
trons is conserved, the appropriate microscopic kinetics is
Kawasaki spin-exchange kinetics, where nearest-neighbor
spins are stochastically interchanged [1]. The relevant order
parameter is the staggered magnetization σ , which is a non-
conserved variable. The kinetics of this variable is coupled to
that of the conserved density field, corresponding to Model C
in the Hohenberg-Halperin framework [31,37].

Our simulations of the CG and AF with slight asymmetry
yield two important results:

(a) For both models, the domain growth morphology is uni-
versal for small values of asymmetry. The correlation function
of the σ -field is numerically indistinguishable from that for
the symmetric case, K = 0.5. Further, the scaling function
is in excellent agreement with the Ohta-Jasnow-Kawasaki
(OJK) function, which describes nonconserved ordering dy-
namics in a ferromagnet described by Model A [37].

(b) For both models, the domain growth law is somewhat
slower than the Lifshitz-Cahn-Allen (LCA) law: L(t ) ∼ t1/2.
Further, the growth law becomes slower as the asymmetry
increases.

To gain a better understanding of the growth law, we study
the energy barriers associated with shrinking of a square
droplet in a background of the other phase. Our results show
that the excess holes (impurity spins in the σ -domains) present
a length-dependent barrier to the peeling process of droplet
edges for both the CG and AF. This barrier is proportional to
the asymmetry (1 − 2K), and is absent at K = 1/2. Thus, we
expect that both the CG and AF obey the LCA growth law
at K = 1/2. However, for K � 1/2, there is a crossover to a
logarithmic law for t 
 tc, where tc → ∞ as (1 − 2K ) → 0+.
The values of 1 − 2K studied here are too small for us to
explicitly observe the logarithmic regime. However, we spec-
ulate that the under-estimation of the growth exponent from
θ = 1/2 in our simulations is a signature of the crossover to
the logarithmic regime. Clearly, much longer simulations with
larger systems (needed to avoid finite-size effects) are required
to clearly resolve this issue. In the context of the long-range
interactions considered here, these simulations would be com-
putationally very demanding.

A promising direction for further research is a study of the
ordering dynamics when the ground states are more exotic,
e.g., striped, BCC, FCC, etc. This is a regime where K is
considerably different from 1/2 [33]. Needless to say, these
exotic ground states are of great importance for applications
in materials science and metallurgy.
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