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Spin-1/2 Ising ladder with randomly coupled rung interaction and transverse magnetic field
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The quantum spin-1/2 Ising ladder with homogeneous side rail interaction and disordered rung interaction
in the presence of a random site transverse magnetic field has been studied using the method of recurrence
relations in the high-temperature limit. The first six recurrants have been exactly calculated, and a linear
extrapolation process has been used to obtain a total of 100 recurrants. This extrapolation allows us to extend the
analysis to longer times. Both the rung coupling and the transverse field obey a bimodal distribution. The time
autocorrelation functions of the z-component dynamic spin variable have been obtained. We have considered
several cases of rung and transverse field distributions, as well as several values of the Hamiltonian parameters.
The results show that the disorder present in the rung interaction and external transverse field affects the behavior
of the temporal autocorrelation and the spectral functions in all studied cases. In addition, the interesting case
where the rung interactions and the transverse magnetic field are correlated has also been studied. In general,
transition in the dynamics of the system from individual to collective mode was observed depending on the
dominant kind of interaction in the sites, that is, whether most of the sites were subject to a strong external field
or strong interchain local interactions.
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I. INTRODUCTION

Since the ancient use of natural magnets as compass for
orientation, magnetic materials have been widely used in sev-
eral important technological applications. Nowadays, there
has been a great interest in integrated microscopic devices [1].
However, for such devices to be viable, it is necessary to
search for materials that can further carry electron spin cur-
rent. In order to achieve this viability, it has been noticed that
a strong correlation between spins is required to obtain spin
current transport in microscopic devices [1].

Besides the spintronic properties there is also technological
interest in high-temperature superconductors. A significant
number of works in the literature concern not only the
synthesis of these compounds but also the study of their
thermodynamic properties. For example, Johnston et al. [2]
synthesized the polycrystal (VO)2P2O7, which behaves like
a Heisenberg quantum ladder. They also measured its mag-
netic susceptibility at temperatures between 4 and 350 K.
Hagiwara et al. [3] measured the magnetic behavior of the
Cu(C5H12N2)2Cl4 crystal, which could be well described by a
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spin-1/2 Heisenberg ladder type for temperatures below 0.5 K
and magnetic fields about 12 T.

It has been recently discovered that the spin-lattice
interaction plays also an important role in spintronic com-
pounds. Arisawa et al. [4] showed that the Tb0.3 Dy0.7Fe2

magnet exhibits strong spin-lattice coupling, implying a
magnetostriction-like effect, where in this case the volume
changes when a spin current is injected by spin Hall effects.
The above aspects clearly show how important it is to have
a better understanding of the interactions between spins and
their neighborhood in such materials. Moreover, a better un-
derstanding of ladder-type structured systems can surely lead
to a better understanding of superconductors and, hopefully,
spintronic effects as well.

It is well known that previous theoretical studies of low-
dimensional systems have opened up novel interesting paths
of investigation in quantum spin models. For instance, in re-
cent decades, several quasi-one-dimensional composites have
been synthesized in laboratory, and their properties could
be well described by one-dimensional Heisenberg, XXZ, XY,
or Ising-type magnetic models. In this direction, we can
cite BaCo2V2O8 [5,6], Cs2CoCl4 [7], and SrCo2V2O8 [8]
compounds, among so many others. There are some experi-
mental works in the literature regarding the interactions that
can arise between the couplings and the external magnetic
field in low-dimension systems. For example, in the work of
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Pogoryelov [9] and Gomonay [10], it has been discussed
how the external magnetic field can affect the strength of the
couplings.

It is also worthwhile to mention the versatility of such
quantum models that can also be applied in the description
of the dynamics of ferroelectric hydrogen bonded crystals
such as CsH2PO4 and its deuterated CsD2PO4 form [11–16].
The transverse Ising-like models, suitable for these systems,
has indeed been originally proposed to describe the tunneling
effects present in KH2PO4 and KD2PO4 ferroelectric com-
pounds [17].

From the above discussion, it is not surprising that there
are, from a theoretical point of view, many works in the liter-
ature addressing the magnetism of low-dimensional quantum
systems, in their static and dynamical nature, using different
approximative analytical and computational tools. However,
due to the complex nature of the quantum interactions, one
has exact results for only a few models. For instance, the time-
dependent pair correlation functions have been rigorously
obtained for the transverse Ising [18] and XY [19–21] chains,
while the dynamic structure factor has been studied for the
XXZ Heisenberg chain [22–25]. Exact results have also been
obtained in the study of various interesting Ising-Heisenberg
spin models on a ladder structure [26–32].

Numerical approaches to examine the dynamics of quan-
tum chain models based on the Jordan-Wigner fermionization
have been proposed [33–35] and applied to the transverse
Ising and XY models, including random situations [15,36,37],
and also a comparison to rigorous predictions [16,38].

It has also been noticed that several of the theoretical works
concern the application of the recurrence relations method
(RRM) to the study of the dynamics of the spin autocor-
relation function [39–44]. Specifically regarding the ladder
structure, Krimphoff et al. [45] investigated the propagation
dynamics in the spin-1/2 isotropic Heisenberg ladder. The
system starts from an initial state with two localized over-
turned neighboring spins, either in one of the chains or in a
rung in a ferromagnetic background. They have found that,
compared to the corresponding dynamics in a single chain,
there are several additional modes of propagation of the per-
turbance in the whole ladder. Recently Yuan et al. [46] studied
the influence of correlated transverse and longitudinal mag-
netic fields on the dynamical behavior of the Ising chain.
They observed that such fields have enormous influence on
the correlation and spectral functions of the system.

Due to the importance of the spin interactions in so many
magnetic systems and devices, we have studied in this work
a ladder consisting of two spin-1/2 Ising chains that interact
with each other via a random site-dependent rung coupling.
The ladder is in the presence of an external transverse mag-
netic field, which is also randomly site dependent. The goal
is to investigate the time-dependent z-component autocorrela-
tion function and its spectral function through the use of the
recurrence relations method. The rung coupling and the trans-
verse field obey a bimodal distribution. Although independent
distributions can, in general, be treated, one interesting case
turns out to be when both rung coupling and transverse field
are correlated to each other.

In order to obtain the z-component autocorrelation function
and its spectral function, we have exactly computed the first
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FIG. 1. Part of the infinite ladder structure. J is the interaction
along the side rails 1 and 2, Ii is the random interaction of the rung
i, and Bi is the corresponding random transverse field acting in both
spins of the rung i.

six recurrants. To extend the time interval, an extrapolation
process has been used, where a total 100 recurrants could be
used.

The plan of the paper is the following. In the next sec-
tion we define the general model on a ladder structure as
well as the bimodal probability distributions. In Sec. III we
briefly present the recurrence relations method for obtaining
the autocorrelation and spectral functions. The extrapolation
process is presented in Sec. IV, where a comparison to the
one-dimensional transverse Ising model and the transverse
Ising ladder with different rung interactions are presented.
Secs. V, VI, and VII are devoted to the results for other
different types of the Hamiltonian parameters and probability
distributions. In Sec. VIII dilution in both the transverse field
and rung interaction is analyzed. Some final comments are
addressed in the last section.

II. HAMILTONIAN OF THE ISING LADDER IN A
TRANSVERSE FIELD

The quantum Ising model defined on a ladder structure and
in the presence of a transverse magnetic field can be described
by the following Hamiltonian:

H = −1

2

N∑
i=1

J
[
σ z

i,1σ
z
i+1,1 + σ z

i,2σ
z
i+1,2

]

+1

2

N∑
i=1

Iiσ
z
i,1σ

z
i,2 − 1

2

N∑
i=1

Bi
[
σ x

i,1 + σ x
i,2

]
, (1)

where the index i labels the rung connecting the side rails 1
and 2, as in Fig. 1, and we are in the thermodynamic limit,
N → ∞. In the above expression, J is the exchange coupling
along the two side rails, Ii is a random bond-dependent rung
interaction, Bi is a random site-dependent transverse magnetic
field acting on the pair of sites belonging to the rung i, and
σα

i,a, with the components α = x, y, z and side rails a = 1, 2,
are Pauli spin matrices.

The random bond and the random site transverse field
are given, respectively, by the following bimodal distribution
functions:

Pb(Ii ) = pbδ(Ii − IA) + (1 − pb)δ(Ii − IB), (2)

Pt (Bi ) = ptδ(Bi − BA) + (1 − pt )δ(Bi − BB), (3)
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where pb is the probability of having a rung bond of strength
IA and 1 − pb is the probability of having a rung bond of
strength IB. Similarly, pt is the probability of having a trans-
verse field on both spins of the rung of strength BA and 1 − pt

is the probability of having a transverse field on both spins of
the rung of strength being BB.

Several particular cases can be obtained from the above
general distributions of the transverse field Ising model in a
ladder. Some instances are described by the following:

(i) IA = IB �= J and BA = BB = B correspond to a uniform
transverse field with rung interactions different from the rail
interactions (it is a pure model, because of the independence
of the equations upon the probabilities pb and pt ).

(ii) IA �= IB and BA = BB = B correspond to a uniform
transverse field with random rung interactions having two
different values (in this case, independent on pt ).

(iii) IA = IB = J and BA �= BB correspond to an isotropic
ladder with random transverse field having two different val-
ues (in this case, independent on pb).

(iv) IB = 0 and BA = BB correspond to a uniform trans-
verse field with diluted rung interactions (independent of pt ).

(v) pb = pt = p and IB = 0 and BA = 0 correspond to an
interesting case of rung bond and transverse field correlated
distribution. It means that when p = 0 we have two indepen-
dent Ising chains in a transverse field, and when p = 1 we just
have the classical Ising model in a ladder.

(vi) IA �= IB and BA �= BB correspond to a ladder with an
independent random transverse field and random rung inter-
action (in this case, simultaneously dependent on both pb and
pt ).

According to the distributions expressed in (2) and (3),
any function f (Ii, Bi ) that is dependent on the random rung
bonds Ii and on the random transverse fields Bi variables has
its average value over the disorder obtained by computing

f (Ii, Bi ) =
∫

Pb(Ii )Pt (Bi ) f (Ii, Bi ) dIi dBi. (4)

Some of the above models will be treated using the re-
currence relations method, which will be outlined in the next
section. In all of them, the function f (Ii, Bi ) will be the tempo-
ral autocorrelation function of the z-component spin operator.

III. RECURRENCE RELATIONS METHOD

The dynamics of the present model will be studied by
using the recurrence relations method (RRM) formulated by
Lee [47,48] in 1982. This method has been shown to be
quite useful in obtaining the dynamics of many body systems.
The RRM is based on the Gram-Schmidt [49,50] process of
orthogonalization, which allows the construction of a com-
plete set of orthogonalized vectors in a Hilbert space. As
this method has already been used in diverse systems, we
will describe below just the main points to obtain the spin
autocorrelation function and its spectral function.

For any operator A corresponding to a given observable,
we have in the Heisenberg representation its time dependence
given by A(t ) = eiHt A(0)e−iHt , with A(0) ≡ A, and in a unit
system where h̄ = 1. Thus, the temporal evolution of A is

governed by the Liouville equation

dA(t )

dt
= iLA(t ), (5)

with the Liouville operator LA = [H, A] ≡ HA − AH and H
is the Hamiltonian of the system.

In the RRM, A(t ) is viewed as a vector defined in a Hilbert
space of dimension d . The size of this space depends on
the system under study and on the specific dynamical vari-
able. The metric in this space is defined by the Kubo scalar
product [51,52]

(X,Y ) = 1

β

∫ β

0
〈X (λ)Y †〉dλ − 〈X 〉〈Y †〉, (6)

where X and Y are vectors defined in this Hilbert space,
β ≡ 1/(kBT ), with kB the Boltzmann constant and T the tem-
perature. The λ dependence of the vectors is given by X (λ) =
eλH Xe−λH (and similarly for the adjunct operator Y †) and the
brackets 〈· · · 〉 stand for the canonical ensemble average. For
instance, for the vector X we have

〈X 〉 = Tre−βH X

Tre−βH
. (7)

In the high-temperature limit, T → ∞, the scalar product
reduces to

(X,Y ) = TrXY †

Tr1
=

∑
n nXY †n∑

n n|n , (8)

where n is a complete set of eigenvectors with Tr1 the number
of eigenvectors of the system.

The dynamical operator A(t ) can be written in a basis in
the Hilbert space as

A(t ) =
d−1∑
ν=0

aν (t ) fν . (9)

In the above equation, the vectors fν constitute a complete and
orthogonal set, but non-normalized, satisfying what is called
recurrence relation I (RRI), namely,

fν+1 = iL fν + �ν fν−1, (10)

with

�ν = ( fν, fν )

( fν−1, fν−1)
. (11)

We also have the additional definitions f−1 ≡ 0 and �0 ≡ 1.
In the above equations, the choice of the first base vec-

tor is arbitrary. In general, it is chosen f0 = A(0). Since the
expansion of A(t ) in terms of the base vectors fν satisfies
the Liouville equation, the use of the recurrence relation RRI
generates a second recurrence relation RRII given by

�ν+1aν+1(t ) = −daν (t )

dt
+ aν−1(t ), (12)

where 0 � ν � d − 1
We can note that the quantities �ν are the only elements

that enter into the construction of the terms aν (t ), which
by their turn completely determine the time evolution of the
operator under question.
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The term a0(t ) can be, in fact, identified as the time-
dependent z-component autocorrelation function C(t ):

a0(t ) = (
σ z

j , σ
z
j (t )

) = 1

Z
Trσ z

j σ
z
j (t ) ≡ C(t ). (13)

Since we are in the infinite temperature regime, the temporal
correlation function for spin operators in different sites of the
lattice is zero for any value of time. This implies that the only
nonzero quantity of interest is the autocorrelation function. In
addition, we can write the time-dependent function C(t ) as the
inverse Laplace transform of α0(z),

C(t ) =
∫ ∞

0
α0(z)ezt dz, (14)

where α0(z) is written in the continued fraction form

α0(z) = 1

z + �1

z + �2

z + · · ·

. (15)

The above continued fraction representation is quite useful in
obtaining the desired spectral behavior for the autocorrelation
functions.

We can also compute the spectral density S(ω), defined as
the time Fourier transform of the correlation function C(t ):

S(ω) =
∫ +∞

−∞
C(t )e−iωt dt . (16)

However, the spectral density is most directly obtained from
the relation [53,54]

S(ω) = lim
ε→0+

Re[2α0(ε − iω)], (17)

where Re stands for taking the real part of the complex num-
ber.

In order to obtain the correlation and spectral functions we
have computed the vectors fν up to ν = 6. The first three vec-
tors (for ν = 0 we have just the z-component spin operator),
as a function of the rung random interactions and site random
transverse field, are given as follows:

f0 = σ z
j,1, (18)

f1 = −Bjσ
y
j,1, (19)

f2 = Bj
[
J
(
σ x

j,1σ
z
j+1,1 + σ z

j−1,1σ
x
j,1

) − I jσ
x
j,1σ

z
j,2

]
, (20)

f3 = −JBj
(
Bj+1σ

x
j,1σ

y
j+1,1 + Bj−1σ

y
j−1,1σ

x
j,1

)
+ Bj

(
BjIjσ

x
j,1σ

y
j,2 + 2J2σ z

j−1,1σ
y
j,1σ

z
j+1,1

)
− 2BjJIj

(
σ

y
j,1σ

z
j+1,1σ

z
j,2 + σ z

j−1,1σ
y
j,1σ

z
j,2

)
. (21)

For ν � 4 the expressions are rather lengthy to be reproduced
here.

The results obtained from the present procedure will be
discussed below. However, before presenting the dynamical
behavior for the more general model, it is quite convenient
first to see, in the next section, what the present approach
furnishes in interesting particular cases, some of them already
treated in the literature.

One special case, where exact results can be easily ob-
tained, is the zero field limit, i.e., BA = BB = 0, which
corresponds to the classical Ising model. Therefore, one has
C(t ) = 1 for all times, since in this specific case f1 = 0,
�1 = 0, a0(z) = 1/z, and the inverse Laplace transform pro-
vides C(t ) = L−1a0(z) = 1. Thus, there is no dynamics in
the classical system for any values of the rung interaction, as
expected.

In all Hamiltonian parameter and probability distribution
choices below, we will consider J = 1. This means, in other
words, that we are measuring all interactions and fields in
units of the rail interaction J . Accordingly, the time is mea-
sured in units of the inverse of the exchange interaction J−1.

IV. UNIFORM TRANSVERSE ISING LADDER WITH
DIFFERENT RUNG COUPLINGS: IA = IB = I AND

BA = BB = B

For IA = IB = I and BA = BB = B, we have the simple
Ising ladder in a homogeneous transverse field with different
rung couplings. This is indeed a pure system, because it is
independent of the probability distributions (2) and (3). This
case has already been recently studied within the RRM by de
Souza, de Mello Silva, and Martins [53] (just consider, in this
reference, vanishing four-spin interactions).

A. Exact values for �ν with ν � 6

The first six �ν have been exactly calculated for the system
using the RRI and RRII recurrance relations. Just to have an
idea of what one gets in this case we have

�1 = ( f1, f1)

( f0, f0)
= B2,

�2 = ( f2, f2)

( f1, f1)
= 2J2 + I2,

�3 = ( f3, f3)

( f2, f2)
= 2J2(B2 + 2J2 + 4I2) + B2I2

2J2 + I2
. (22)

In an analogous way, lengthier expressions are obtained for
higher values of ν.

Figure 2 shows the first six exact values of �ν for IA =
IB = I and BA = BB = B, with J = 1 and B = 1. For I = 0
one has the rails decoupled, leading to the one-dimensional
transverse Ising model. As I increases, so does �ν , for all
values of ν, and a kind of linear behavior is seen as a function
of ν.

The time-dependent spin autocorrelation functions C(t ) are
then evaluated from these exact six recurrants. The autocorre-
lation functions, as a function of t , are depicted in Fig. 3 for
some values of the rung interaction I . In this case, reliable
results could be obtained only up to time t ∼ 0.8. One can see
that as the rung interaction is increased, the decay becomes
slower, which is better seen in the inset of Fig. 3.

B. Extrapolation process for ν > 6

In order to extend the autocorrelation function C(t )
analysis to a region comprising longer times, a recurrant ex-
trapolation mechanism can be used. It can be seen in Fig. 2
that the growth of the recurrants is approximately linear with
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I

FIG. 2. The first six exact values of �ν for B = 1 and different
values of I (given, respectively, by the numbers in the legend). In this
case we have IA = IB = I and BA = BB = B. The lines are just guides
for the eye.

ν. Although as I increases there are noticeable fluctuations
of �ν for small values of ν, we expect an alignment for
higher order recurrants. In fact, there are several studies in the
literature that show this kind of linear growth of the recurrants
in Ising-type models [55–59]. Therefore, a linear extrapola-
tion seems to be suitable to obtain more recurrants in each
considered case. This extrapolation process can be done by
fitting the data to the expression

�ν = aν + b, (23)

where ν � 6 and a and b are fitted constants for each case.
In what follows, 100 recurrants have been used by consid-
ering the above equation for 7 � ν � 100. The choice of a
maximum of ν = 100 has been based on the fact that the
results present no significant changes by taking higher order
extrapolated recurrants.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
t

0.7
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1
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0.5
0.75
1.0
2.0

0.7 0.72 0.74 0.76 0.78 0.8
0.72

0.74

0.76

0.78

0.8

I

FIG. 3. Time-dependent spin autocorrelation functions C(t ) as a
function of time t for some values of the rung interaction I shown in
Fig. 2. The inset shows a closer view for the longer times that can be
reached using only the first six recurrants. The legend and the axes
labels of the main graph also applies to the inset.

0 1 2 3
t

0

0.2
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0.6

0.8

1

C
(t
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0.5
0.75
1
2

0 1 2 3
0

0.2

0.4

0.6

0.8

1

I = 0
TIM

I

FIG. 4. Time-dependent autocorrelation functions C(t ) as a func-
tion of time t for the same values of the rung interaction I shown
in Fig. 3. In this case we have used 100 recurrants according to
the described extrapolation process. The inset shows the autocor-
relation function for I = 0 compared to the expected value of the
one-dimensional transverse Ising model (TIM) from the literature
(dashed-line). The axes labels of the main graph also apply to the
inset.

Figure 4 shows the autocorrelation functions C(t ) so ob-
tained using 100 recurrants and for the same values of the
rung interactions as in Fig. 3. It can be seen that the time range
has now been extended up to t ∼ 3. It is also more apparent
the slower decay of the autocorrelation function as the rung
interaction increases from zero.

The inset in Fig. 4 shows the autocorrelation function
for I = 0 in comparison to the expected results for the
one-dimensional transverse Ising model from the literature,
namely, C(t ) ∼ e−t2/2 for B = 1 [19,21]. It is clearly seen that
the present results are in excellent agreement in the entire time
interval, with the full and dashed lines completely superposed
in the scale of the graph. We should then expect a similar
behavior for other values of the Hamiltonian parameters and
probability distributions up to the time where reliable results
could be obtained with ν = 100.

As a matter of further comparison, it should be stressed that
the first five recurrants here obtained are exactly the same as
those from de Souza, de Mello Silva, and Martins [53] (when
the four-spin interaction in Ref. [53] is set to zero and the in-
teractions and transverse field are properly renormalized). The
dynamical behavior is also similar. However, in the present
case we have one more exact recurrant. Due to the different
definition of the Hamiltonian, the timescale here is different
from that in Ref. [53].

The observed slower decay in Fig. 4 with the rung interac-
tion is ascribed to the fact that, as I increases, the quantum
fluctuations become less dominant and the behavior of the
system is in some sense driven to the classical regime. Even-
tually, in the I → ∞ limit, the autocorrelation function tends
to C(t ) → 1, for any value of the time t , and the dynamical
behavior is completely suppressed.

With a longer time behavior of the autocorrelation func-
tion, it is possible to compute the spectral function S(ω). The
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FIG. 5. Spectral functions S(ω) as a function of ω for B = 1 and
same values of the rung interaction given in Fig. 4.

corresponding spectral function is shown in Fig. 5 for the
same values of the rung interaction used in Fig. 4. One can
see that there is a well-pronounced central peak in all cases
around the frequency ω = 0. As I increases, the intensity
increases with the central peak becoming narrower, emphasiz-
ing the dominant central mode behavior. Compatible with the
autocorrelation function of Fig. 4, when I → ∞ the spectral
function tends to a delta function at ω = 0.

The results for a higher value of the transverse field, B = 2,
are shown in Fig. 6 for the same values of the rung interaction
as before. It is seen that now, even for I = 2, the autocorre-
lation function still decays to negative values. Nevertheless,
as expected, as I increases the decay becomes slower and the
classical regime will eventually be reached as I → ∞.

The respective spectral functions are depicted in Fig. 7. In
this figure it is more clearly seen the tendency of collective
modes up to the value I = 2. The change to the central peak
regime occurs for rung interactions I > 2.

0 1 2
t

-0.5
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1

C
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0.25
0.5
0.75
1
2

I

FIG. 6. Time-dependent autocorrelation functions C(t ) as a func-
tion of time t for the same values of the rung interaction I as before
(given by the numbers in the legend). In this case we have B = 2.
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FIG. 7. Spectral functions S(ω) obtained from the autocorrela-
tion functions shown in Fig. 6 for B = 2.

Although the general trend of the dynamical behavior of
the uniform transverse Ising ladder seems to be similar to the
transverse Ising chain, some basic differences can be noticed
regarding the dynamics below and above the ground state
critical transverse field. In the transverse Ising chain, it is
well known that for B < Bchain

c , where Bchain
c = 1, one has

central-peak-type behavior, while for B > Bchain
c collective-

mode types are present (see, for instance, Ref. [58]). In the
present case, for I = 1, the ground-state critical transverse
field is BI=1

c = 1.8322(2) [60,61]. So, for I = 1, a central peak
is clearly seen in Fig. 5 for B = 1(< BI=1

c ), and a collective
mode is seen in Fig. 7 for B = 2(> BI=1

c ). However, as we
shall see in Sec. VI, even for B = 1.5, which is still smaller
than the critical transverse field, one has a kind of collective-
mode behavior (see Fig. 12 and pt = 0).

The entire extrapolation process, that has been done in this
subsection, will be followed below in all the other choices for
the Hamiltonian parameters and probability distributions.

V. UNIFORM TRANSVERSE ISING LADDER WITH RUNG
DILUTION: IA = I, IB = 0 AND BA = BB = B

With the choice IA = I and IB = 0 we have rung dilution
with probability pb. We will consider a uniform transverse
field BA = BB = B, implying the dynamics is independent of
pt . In this case the first three recurrants are given by

�1 = B2,

�2 = 2J2 + pbI2,

�3 = 2J2(B2 + 2J2 + 4pbI2) + B2 pbI2

2J2 + pbI2
. (24)

The next three recurrants �4, �5, and �6 have also been ex-
actly calculated. Notice that now, as the rung couplings are site
dependent, the expressions for the recurrants are dependent on
the probability pb. Of course, pb = 1 leads to the previously
studied model.

In Fig. 8 it is shown the first six exact recurrants for
B = 1, I = 1, and different values of the rung probability pb.
When pb = 0 we recover the one-dimensional transverse Ising
model, the same as I = 0 in the previous section. On the other
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FIG. 8. The first six exact values of �ν for the diluted rung
model with B = 1 and different values of the probability pb (given,
respectively, by the numbers in the legend). In this case we have
IA = I, IB = 0 and BA = BB = B. The lines are just guides for the
eye.

hand, when pb = 1 we have the isotropic transverse Ising
ladder in a homogeneous transverse field, exactly the same
as I = 1 in the previous section. In between, the recurrants
are also more or less aligned, which allows us to make an
extrapolation up to 100 recurrants to obtain the corresponding
temporal autocorrelation function.

In Fig. 9 the so obtained temporal autocorrelation functions
C(t ) are displayed with IA = I = 1, IB = 0 and BA = BB =
B = 1, for different values of the rung probability pb. As be-
fore, the increase of pb slower the decay of C(t ), because the
system goes from the transverse Ising chain to the isotropic
transverse Ising ladder configuration.
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FIG. 9. Correlation functions for the diluted rung model with
I = 1, B = 1, and different values of the probability pb (given,
respectively, by the numbers in the legend). The inset shows an
amplified view for longer times with the inclusion of the previous
section isotropic case I = 0.5 (dotted line) for comparison purposes.
The axes labels of the main graph apply also to the inset.
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FIG. 10. Spectral functions S(ω) for the diluted rung model with
B = 1 and different values of the probability pb (given, respectively,
by the numbers in the legend). In this case we have IA = I, IB = 0
and BA = BB = B. Isotropic case I = 0.5 is also presented for com-
parison purposes.

The inset in Fig. 9 shows an amplified view for longer
times including the isotropic case when I = 0.5. While pb =
0 and pb = 1 provide, respectively, the same results as the
pure model for I = 0 and I = 1, the dynamics for pb = 0.5
is different from the dynamics of the pure model with I = 0.5
(note that at pb = 0.5, on average one has rung interaction
equal to 0.5). In particular, the effect of the disorder is, in
this case, to induce a slower time decay of the autocorrelation
function.

The corresponding spectral functions S(ω) are displayed
in Fig. 10. Increasing the number of rungs causes increasingly
pronounced and narrow peaks for the spectral function curves.
It can also be seen the difference on the dynamics for the
random model at pb = 0.5 regarding the nondisordered one.

VI. RANDOM TRANSVERSE MAGNETIC FIELD
WITH BA �= BB

Up to now, we have considered only the effects of ho-
mogeneous transverse field BA = BB = B. The central peak
character has been the dominant behavior for small fields,
while collective modes are present for higher values of B.

It is interesting to see, however, what should be the
dynamic behavior when the transverse field is randomly dis-
tributed over the ladder. For this purpose we will consider
BA = 0.5, BB = 1.5 and IA = IB = 1. The corresponding first
three recurrants are given by

�1 = B2
j ,

�2 = 2J2 + I2,

�3 = J2
(
B2

j+1 + B2
j−1 + 4J2 + 8I2

) + B2
j I

2

2J2 + I2
, (25)

where

B2
i = pt B

2
A + (1 − pt )B

2
B. (26)
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FIG. 11. Time-dependent spin autocorrelation functions C(t ) as
a function of time t for some values of the probability pt (given in
the legend). It has been used for 100 recurrants according to the
described extrapolation process. We have BA = 0.5, BB = 1.5, and
I = 1. The upper green dotted line and the lower magenta dotted
line are for the pure model of Sec. IV with BA = 1 and BB = 2,
respectively.

Note that now the recurrants are a function of pt and indepen-
dent of pb. For pt = 0 and pt = 1 the system corresponds to
an Ising ladder in the presence of a uniform transverse field B
with strength B = 1.5 and B = 0.5, respectively.

As before, the following three recurrants are also computed
exactly and extrapolated to get a total of 100 to obtain the
autocorrelation function. The first six recurrants are, in this
case, similar to those already depicted in the previous sections.

In Fig. 11 the correlation functions C(t ) are displayed for
several values of the probability pt . For pt = 0 and pt = 0.25
the decay is faster, becomes negative, and approaches zero
from below. This is because there are more sites in the pres-
ence of the higher value of the transverse field, which in turn
induces a kind of precession of the spins around the field. On
the other hand, for pt � 0.5 the presence of the smaller field
is enhanced and only a smooth decay is observed.

The autocorrelation function for p = 0.5 in Fig. 11 corre-
sponds to an average transverse field B = 1. The upper green
dashed line in that figure corresponds to the pure case with
B = 1, as obtained in Sec. IV. It is clearly seen that the
randomness in the field affects the dynamics of the system
and, contrary to the rung dilution, induces a faster decay of
the correlation function.

In Fig. 11 is also shown the pure case for an even higher
field B = 2, where the precession is still more pronounced and
inducing an oscillatory behavior within the timescale of the
figure.

Figure 12 shows the spectral functions S(ω) obtained from
the autocorrelation functions given in Fig. 11. For pt � 0.25
the central peak behavior is dominant. This is because the
system is subject to less intense transverse field. For pt = 0
collective modes emerge due to the stronger fields. To see this
more clearly, it is also shown the spectral function for the pure
case with an even stronger field B = 2, where the collective
modes are more apparent.
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FIG. 12. Spectral functions obtained from the autocorrelation
functions shown in Fig. 11.

The different dynamic behavior can also be seen by com-
paring the spectral function with pt = 0.5 and the pure case
for the field B = 1. In this case, however, the central peak
behavior is unchanged. Another interesting fact is that even
having 75% of stronger site fields, the central peak behav-
ior is the dominant one. It means that, in this case, even a
small concentration of weaker fields is sufficient to destroy
the collective modes. For different values of the distribution
parameters, different concentrations will separate the central
peak to the collective mode regimes.

As a final comment in this case, it has been noticed that,
contrary to what happens in the diluted transverse field Ising
chain at zero temperature, where small randomness improves
the order [62], the ladder at infinite temperature always has a
faster decay as the concentration of the larger field increases.

VII. RANDOMLY CORRELATED RUNG INTERACTION
AND TRANSVERSE FIELD

In all the above examples, either the rung interaction or the
transverse field has been considered randomly distributed over
the ladder. Naturally, both distributions can also be studied
at the same time. The main features of the dynamics will be
where the interaction or the field will prevail. This instance
will be treated in the next section. However, one interesting
situation is when there is a correlation between both probabil-
ity distributions. Assume, for example, that

Pb(Ii ) = pδ(Ii ) + (1 − p)δ(Ii − I ), (27)

Pt (Bi ) = pδ(Bi − B) + (1 − p)δ(Bi ), (28)

where the probability p is the same for both distributions. It
means that when p = 0, as was discussed in the beginning of
Sec. VI, one has a classical spin ladder that has no dynamics
for any value of the rung interaction and the autocorrelation
function is always C(t ) = 1. On the other hand, when p = 1,
one has the one-dimensional transverse Ising model, since
there is no rung interaction. Thus, intermediate values of
p lead to a competition between the classical and quantum
behavior on the dynamics of the system.
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FIG. 13. Time-dependent spin autocorrelation functions C(t ) as
a function of time t for some values of the probability p (shown in
the legend). Here 100 recurrants have been used according to the
described extrapolation process. We have I = 1.5 and B = 1.5 from
Eqs. (27) and (28), respectively.

The first three recurrants with the probability distribu-
tions (27) and (28) are given by

�1 = pB2,

�2 = 2J2 + (1 − p)I2,

�3 = J2[2pB2 + 4J2 + 8(1 − p)I2] + p(1 − p)B2I2

2J2 + (1 − p)I2
.

(29)

Again, the remaining three �ν are also exactly computed, and
the extrapolation process provides the rest of 100 recurrants.

We have considered here a higher transverse field B = 1.5
and a higher rung interaction I = 1.5. As was discussed in the
previous section, this value of the field is able to introduce
collective modes of the spins around B.

The time-dependent autocorrelation functions C(t ) are dis-
played in Fig. 13 for some values of the probability p. The
case p = 0 is not shown because the system has no dynamics.
As p increases, the decay becomes faster, and for p � 0.75,
C(t ) approaches zero from negative values. The tendency of
the quantum fluctuations, for these values of the rung interac-
tion and transverse field, is clearly to induce a faster decay of
the autocorrelation function.

The corresponding spectral function S(ω), obtained from
the autocorrelation functions in Fig. 13, is shown in Fig. 14. It
is clearly seen that the central peak mode, for small values of
the probability p, changes to collective modes for p � 0.75.
This change in the dynamic behavior is associated with the
fact that, at the same time that quantum fluctuations are in-
troduced in the system, more sites feel the presence of the
transverse field, which, in turn, induces precession of the spins
about B.
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FIG. 14. Spectral functions obtained from the autocorrelation
functions shown in Fig. 13.

VIII. RANDOM RUNG INTERACTION AND RANDOM
TRANSVERSE FIELD: IA = 0.5, IB = 1.5 AND

BA = 0.5, B = 1.5

Finally, as a last example we consider, simultaneously and
independently, disorder in the rung bonds and in the transverse
external fields given by Eqs. (2) and (3), respectively. As in
this instance we have too many parameters to be taken into
account, we will restrict ourselves to the case where IA =
0.5, IB = 1.5 and BA = 0.5, B = 1.5, with pb = pt . From
these results it would be possible to have a general picture
of the dynamical behavior for different values of parameters
and, at the same time, to make a comparison with the results
obtained in previous sections.

Figure 15 depicts some results for the autocorrelation func-
tion as a function of time and different concentrations given by
the thinner lines shown in the legend. pb = pt = 0 is equiv-
alent to a pure transverse Ising ladder with rung interaction
IB = 1.5 and transverse field BB = 1.5. The decay is faster in
this case and becomes slower as the concentration increases in
the direction to the pure system with pb = pt = 1, equivalent
to a ladder with IB = 0.5 and BB = 0.5. One can notice, from
the previous sections, that for a given value of a transverse
field, the decay is slower as the rung interactions increases,
while for a given value of the rung interaction the decay
is faster as the transverse field increases. However, looking
at the behavior of the autocorrelation function for IB = 0.5
and BB = 0.5, and comparing to the behavior for IB = 1.5
and BB = 1.5, we can see that by increasing the values of
rung interaction and transverse field by the same amount, the
transverse field effects prevail over the rung interaction ones
since the decay becomes slower.

An illustrative case is when pb = pt = 0.5, meaning that,
on average, one has Ī = 1 and B̄ = 1. This situation can also
be compared to autocorrelation functions obtained in previous
sections, which are depicted in Fig. 15 by the thicker lines
(a), (b), and (c). The brown dotted line (a) corresponds to the
pure model from Sec. IV with IA = IB = 1 and BA = BB = 1.
Starting from this pure case, if disorder is introduced only into
the rung bonds with IA = 0.5, IB = 1.5, and pb = 0.5, leaving
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FIG. 15. Spin autocorrelation functions C(t ) as a function of
time t for some values of the probability pb = pt (shown in the
legend and represented by the thinner lines, where we have IA = 0.5
and IB = 1.5 for the rung interactions and BA = 0.5 and BB = 1.5
for the transverse field distributions). The thicker lines represent the
following: (a) brown dotted line, uniform transverse Ising ladder
of Sec. IV with IA = IB = 1 and BA = BB = 1; (b) magenta long-
dashed-dotted line, uniform transverse field with rung disorder of
Sec. V with BA = BB = B = 1, IA = 0.5, IB = 1.5, and pb = 0.5;
(c) orange long-dashed line, uniform rung interaction and random
transverse field of Sec. VI with IA = IB = 1, BA = 0.5, BB = 1, and
pt = 0.5.

the field homogeneous, BA = BB = B = 1, we see from the
magenta long-dashed-dotted line (b) that the decay of the
autocorrelation function becomes slower, as already discussed
in Sec. V. On the other hand, if disorder is introduced only into
the fields with BA = 0.5, BB = 1.5, and pt = 0.5, leaving the
rung homogeneous IA = IB = B = 1, we see from the orange
long-dashed line (c) that the decay of the autocorrelation
function becomes faster, as already discussed in Sec. VI.
However, if the disorder is introduced simultaneously in both
rung interaction and transverse field, one can see that the faster
decay effect from the field still prevails, as can be seen by the
green thinner dashed-dotted line for pb = pt = 0.5.

The curves for spectral densities, presented in Fig. 16,
also exhibit different behaviors depending on interactions and
fields. However, in all cases considered here there is the pres-
ence of a single central peak. Collective modes will appear for
larger values of BB.

IX. CONCLUDING REMARKS

In this work the dynamics of the Ising ladder with random
rung interactions and random transverse magnetic fields has
been studied using the recurrance relations method. Bimodal
distributions for both rung and transverse field have been
considered. The time-dependent z-component spin autocorre-
lation function and the corresponding spectral function have
been computed. Different choices for the Hamiltonian pa-
rameters and probability distributions, which correspond to
different types of models, have been analyzed in more detail.

It has been noticed that, in general, there is a competition
between the rung interaction and the transverse field. While
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FIG. 16. Spectral functions obtained from the autocorrelation
functions shown in Fig. 15, definitions of the lines (a), (b), and (c) are
given in the caption of Fig. 15.

the increase of the former develops a clear central peak and
drives the system to a more classical behavior, the latter leads
to collective modes for strong enough transverse fields and
enhances the quantum fluctuations. The competition between
both interactions comes not only from different intensities in
the pure case, but also from the probability distributions in the
random and correlated case.

In order to have an additional view of the competition
between rung interaction and transverse field, the spectral
functions for further two particular cases are shown in Fig. 17.
The full line in that figure corresponds to the ladder with rung
interactions IA = IB = I = 1.5 in the presence of a diluted
transverse field with 25% of the sites having no field (BA = 0)
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1.5

S
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ab

FIG. 17. Spectral function for two particular cases. The full line
(a) corresponds to the ladder with rung interactions IA = IB = I =
1.5 in the presence of a diluted transverse field with 25% of the
sites having no field (BA = 0) and 75% of the sites having a field
of strength BB = B = 1.5. The dashed line (b) corresponds to the
correlated random case, with the same transverse field concentrations
as in (a), but now having only 25% of rung interactions I = 1.5 and
75% disconnected rungs I = 0 [it is the p = 0.75 case of Eqs. (27)
and (28)].
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and 75% of the sites having a field of strength BB = B = 1.5.
One can clearly see that, although the field is 25% diluted,
the rung interaction I = 1.5 is sufficient to keep the central
peak behavior of S(ω). However, upon an additional dilu-
tion of 75% of the rung interactions [equivalent to having,
in Eqs. (27) and (28), probability p = 0.75], the collective
modes are induced, as is shown by the dashed line in Fig. 17.

As a final remark, it has been noticed that the dynamical
behavior of the random model is different from the pure model
at the mean value of the corresponding random variable. For
instance, with a homogeneous transverse field, the decay of
the pure model at the mean rung interaction is faster than
the random rung interaction model. On the other hand, for

homogeneous rung interaction, the decay of the pure model
at the mean transverse field is slower than the random trans-
verse field model. When both randomness are simultaneously
present, the disorder effect induced by the transverse field
prevails and the autocorrelation function has a faster decay.
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