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Genome assembly, the process of reconstructing a long genetic sequence by aligning and merging short
fragments, or reads, is known to be NP-hard, either as a version of the shortest common superstring problem
or in a Hamiltonian-cycle formulation. That is, the computing time is believed to grow exponentially with the
problem size in the worst case. Despite this fact, high-throughput technologies and modern algorithms currently
allow bioinformaticians to handle datasets of billions of reads. Using methods from statistical mechanics, we
address this conundrum by demonstrating the existence of a phase transition in the computational complexity
of the problem and showing that practical instances always fall in the “easy” phase (solvable by polynomial-
time algorithms). In addition, we propose a Markov-chain Monte Carlo method that outperforms common
deterministic algorithms in the hard regime.
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I. INTRODUCTION

Sequence assembly is one of the fundamental problems
in bioinformatics. Since an organism’s whole genetic mate-
rial cannot be read in one go, current technologies build on
strategies where the genome (or a portion of it, such as a
chromosome) is randomly fragmented in shorter reads, which
then have to be ordered and merged to reconstruct the original
sequence. In a naive formulation, one would look for the
shortest sequence that contains all of the individual reads,
or shortest common superstring (SCS). This is, in principle,
a formidable task, since the SCS belongs to the so-called
NP-complete class of problems [1,2], for which no efficient
algorithms are known (or believed) to exist. More precisely,
NP denotes a large family of problems that are verifiable
in polynomial time, meaning that potential solutions can be
checked in a time that grows at most as a power of the size
of the input. A problem is then termed NP-complete if it
is in NP and at least as hard as any problem in NP. This
is a relevant notion because it is believed, but not proven,
that not all NP-complete tasks can be solved in polynomial
time. See, e.g., Refs. [3–5] for more precise definitions and
examples.

As hinted above, the formulation of genome assembly as an
SCS problem is not quite correct. This is because our assump-
tion of parsimony is not true: most genomes contain repeats,
multiple identical stretches of DNA, which the SCS would
collapse. A formulation of the assembly problem that takes
this issue into account can be made using de Bruijn graphs
[6], but the task can still be proven to be NP-hard by reduction
from SCS [7]. Alternative approaches to assembly have been
proposed, for instance the string-graph representation [8], but
this model has also been shown to be NP-hard, by reduction
from the Hamiltonian-cycle problem [7].

In short, no polynomial-time algorithms are known (or
even believed) to exist to solve the sequence-assembly prob-
lem in its general formulation. Despite this fact, with current
high-throughput sequencing techniques and assembly algo-
rithms, datasets of billions of reads are regularly assembled (at
least at the contig level) [9–14]. This achievement is in stark
contrast with the state of the art for the traveling salesman,
a closely related NP-complete problem, for which managing
as few as 104 “cities” is exceedingly difficult and the largest
instance solved to date featured 120 000 locations [15,16].

The way out of this apparent contradiction is the general
notion that, while in the worst case an NP-complete prob-
lem takes exponential time to solve, typical instances might
be much easier. This observation could explain the, at least
apparent, success of heuristic methods but it needs to be
formalized: what is a “typical” instance and how likely is
the worst-case scenario? As a path towards answering those
questions, it has been observed that in several problems in
computational biology, small ranges of parameters cover all
the interesting cases. The question is, then, whether we can
identify the right variables and whether the problem can be
solved in polynomial time for fixed values of these param-
eters [17]. This parametric complexity paradigm has been
applied to genome assembly, either using statistical analyses
or analytical methods, suggesting that, in some relevant limits,
the problem can indeed be solved correctly with polynomial
algorithms [18–20].

In this work we present an alternative approach to this
question, based on the methods of statistical mechanics. The
applicability of the models of statistical physics to the issue
of NP-completeness has been conjectured since the 1980s
[21,22] and is now well understood [23]. More to the point,
phase diagrams for complexity can be defined for some prob-
lems. For instance, in a seminal work [24] all the constraints
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in the problem can be satisfied only when a certain parame-
ter is smaller than its critical value, and the computationally
hard problems arise only in the neighbourhood of the phase
boundary.

We show that a similar result can be obtained for the SCS.
Yet, we depart from the paradigm of Ref. [24] in the sense
that computationally hard problems become the rule, rather
than the exception, in one of our two phases, not just at the
critical point. It is worth emphasizing that, unlike assembly,
the SCS problem always has a well-defined solution, which
might not be unique (unfortunately, in some regions of pa-
rameter space this solution is very hard to find). Instead, the
assembly problem is well posed only if the whole genome
is covered. It is a classic result [25] that, if L is the length
of our (portion of) genome and �frag the length of the reads,
to ensure that the whole genome is covered with probabil-
ity 1 − ε, the number Nfrag of reads must satisfy Nfrag =
(L/�frag) log(Nfrag/ε). Therefore, in practical applications one
is interested in oversampling the genome (the oversampling
ratio is termed coverage). Our main result in this respect is that
the regime of full coverage corresponds precisely to the easily
solvable phase of the SCS problem. Therefore, whenever the
assembly problem is well posed, the corresponding solution
can be found in polynomial time. A final note of warning is
in order: we shall always use assembly language (genomes
and reads, rather than superstrings and strings) to unify the
nomenclature. The remainder of this paper is organized as
follows. In Sec. II we define the two problems considered
here, the SCS and the assembly. In Sec. III we discuss our
data collection and computational approaches. The analysis
of the phase transition is presented in Sec. IV. An alternative
algorithm for the hard phase of the SCS is presented in Sec. V.
Our conclusions are given in Sec. VI. We provide additional
details on the employed algorithms in the Appendices.

II. THE SCS AND SEQUENCE ASSEMBLY

As explained in the introduction, there are two different,
yet related problems:

(i) Shortest common superstring (SCS). Given Nfrag se-
quences of �frag letters taken from a common alphabet, find
the shortest sequence of letters that contains every one of the
Nfrag fragments.

(ii) Ex novo genome reconstruction. Read Nfrag fragments
randomly chopped from a piece of genome. For simplicity,
we shall assume that each fragment contains the same number
of letters �frag. Our problem is reconstructing the original
genome from these reads.

Under favourable circumstances on the ensemble of reads,
the solution of the SCS problem is also the solution of the
assembly problem. Our main emphasis will be in the combina-
torial optimisation problem, namely the SCS. Reading errors
are a real complication in assembly, but effective methods
are known to handle them. Since errors do not add to the
exponential (in genome size) hardness of the problem, we
shall ignore them.

We study the SCS in its formulation as an asymmet-
ric travelling-salesman problem, where one tries to find the
permutation of fragments that has the maximum overlap be-
tween consecutive segments and, therefore, the minimal total

length of the resulting superstring once overlapping segments
are collapsed. For instance, the SCS of the strings TTGAA,
AGTTG is AGTTGAA. Our reads are taken from a circular
genome of length L base pairs (we use the natural four-
letter alphabet A, C, G, and T). For our main study we
choose all bases in the alphabet randomly (independent picks
with uniform probability), but we have also checked that our
main results extend to a natural genome, namely that of the
swinepox virus.

A naive approach to an assembly problem emphasizes the
covering fraction:

W = Nfrag�frag

L
. (1)

W < 1 implies that the SCS is shorter than the genome
(obviusly, succesful assembly is impossible under these cir-
cumstances). In typical instances of assembly W � 1 (W ∼
1000 is not uncommon with high-throughput techniques).

Given a set of reads, obtaining the SCS is NP-hard. Since
we are taking our fragments from a known long string, how-
ever, we always have a candidate solution, as we now explain.
Since the genome is known to us beforehand, we can exactly
locate the position in the genome of every fragment. If we
order these starting points in increasing order, we obtain by
merging overlaps a candidate solution for the SCS. We name
�ordered the length of the candidate solution, which often turns
out to be the exact solution (�ordered = L) when W � 1. This
is the common situation in applications. Yet, when W < 1,
�ordered is guaranteed to be smaller than L. Furthermore, the
ordered sequence may actually be a very bad solution for SCS
problem, when W � 1. Indeed, in the limit W → 0, nothing
distinguishes the ordered solution from a random ordering.
In the intermediate regime, W ∼ 1, the ordered sequence is a
good guess for the SCS (and for assembly).

For a given algorithm, a run whose resulting superstring
length � is � � �ordered will be considered successful. In prac-
tice, in the W � 1 region, one never finds � < �ordered = L and
the original genome coincides with the SCS.

III. CREATING AND SAMPLING THE DATA SET

The main classifying feature for our simulations is the
number of fragments, Nfrag. For every Nfrag we create a set of
Nchro synthetic circular chromosomes. As discussed above, we
have considered both random chromosomes—in which each
letter is extracted with uniform probability randomly from the
four-letter alphabet—or extracted reads from the genome of
the swinepox virus (downloaded from GenBank, Accession
No. NC_003389).

To generate the fragments, we proceed as follows. We
independently and randomly generate Nfrag integers uniformly
distributed in {1, 2, . . . , L} (L is the length of the circular
chromosome). Each integer is regarded as the starting point
of a fragment of length �frag.

We have analyzed our data using two algorithms: a ver-
sion of the greedy algorithm, which we name Glotón, and
Velvet [26], a commonly used program for genome assembly
based on de Bruijn graphs (see Appendix A for a description
of the Glotón algorithm and Appendix B for details on our
simulation parameters with Velvet). It will be important
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that Glotón has a stochastic component, while Velvet is
deterministic.

We attempt to reconstruct the chromosome from this set
of reads Nattempts times (we generate just one set of reads
for each chromosome; we set Nattempts = 1 for Velvet). The
success probability for a given chromosome is the fraction of
the Nattempts assembly attempts that meet our success criterion
� � �ordered. Specifically, let �i, j be the length obtained on the
jth attempt for the ith chromosome. We have for Glotón

p(i)
success = 1

Nattempts

Nattempts∑

j=1

1(�i, j � �ordered), (2)

where 1 is the indicator function. For the deterministic Velvet,
we adopt a slightly different definition, see Appendix B, such
that p(i)

success = 0, 1. From now on, we shall refer to p(i)
success as

the individual success probability. The total success proba-
bility is just the average over the Nchro chromosomes of the
individual success rates:

psuccess = 1

Nchro

Nchro∑

i=1

p(i)
success. (3)

We compute in a similar way the variance—or covariance—of
the individual success probabilities.

We have set Nattempts = 100 for the Glotón and segment-
swap algorithms (described below) and, as we said above,
Nattempts = 1 for Velvet. We use Nchro = 10 000 for Glotón
(the only exception is in Fig. 3, where Nchro = 100 000 for
Nfrag � 800). However, we have contented ourselves with
Nchro = 1000 for the costlier Velvet and segment-swap algo-
rithms (in Fig. 5, for Nfrag = 800 and segment-swap, we use
Nchro = 100).

IV. THE SUCCESS PROBABILITY AND A PHASE
TRANSITION IN THE COMPLEXITY

We want to characterize the hardness of the problem in
terms of the success probability psuccess for a run of a simple
algorithm (i.e., one that ends in polynomial time). Here we
consider two, namely Glotón, and Velvet.

It is our goal to understand quantitatively the behavior
of psuccess as a function of L, �frag and Nfrag. Ideally, one
would be able to simplify the three-variable function psuccess =
f (L, Nfrag, �frag) into a function of a single scaling variable
x. A first attempt, shown in Fig. 1 (top), plots psuccess as a
function of W for �frag = 100 and various values of Nfrag for
the Glotón (see Sec. III for more details on these simulations).
We can see two regimes: for large W , this algorithm always
succeeds, while for small W it always fails. Recall that, in
the large-W regime, success effectively means reconstructing
the original genome, while in the small-W regime it means
finding a good approximation to the SCS given by �ordered.

Comparing the different curves in Fig. 1 (top), we see that
W is not a good scaling variable, since a clear dependence on
Nfrag remains. A more natural candidate is the maximum dis-
tance dmax between the starting points of reads consecutive in
the original genome. Notice that the genome is fully covered
by the Nfrag fragments if and only if dmax � �frag. For a given

FIG. 1. Performance of common algorithms for the shortest com-
mon superstring problem. (Top) Probability of finding a successful
solution (see text) using a greedy algorithm as a function of the
coverage W , Eq. (1), for several values of the number of fragments
(reads) Nfrag and for fragment length �frag = 100. For large coverage
values, the algorithm always succeeds. (Bottom) In terms of the
correct scaling variable x, Eq. (4), based on the ratio between the
average maximum distance between fragments and �frag, the psuccess

curves for different Nfrag cross, which we interpret as the onset of
a phase transition at some critical xc. The value of xc is algorithm
dependent, but the qualitative behavior is the same for more sophis-
ticated methods. As a demonstration, we also show the results using
Velvet, which employs an algorithm based on de Bruijn graphs.

realisation of the problem, we define

x = 1 − dmax/�frag. (4)

We can also define 〈x〉 as the ensemble average of x for all
possible genomes of length L and all possible choppings with
Nfrag and �frag. It can be shown that

〈dmax〉 ∼ log Nfrag/W, (5)

for instance by discretization of the continuum calculation in
[27]. In each of the different curves of Fig. 1 Nfrag and �frag are
fixed and 〈x〉 (or W ) are varied by changing L.

Plotting psuccess as a function of 〈x〉, we can see that the
curves for different Nfrag cross at some xc, while their shape
approaches a step function as Nfrag increases. This is the
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FIG. 2. Location of the critical point. The critical point can be
determined by looking for the value of 〈x〉 where fluctuations are
largest. We plot the correlation coefficient between the scaling vari-
able x and the success probability for single realisations of the Nfrag

reads. The absolute value of r has a maximum at the critical point xc.

characteristic finite-size scaling behaviour at a phase tran-
sition [28]. Interestingly enough, the Glotón and Velvet
algorithms have the same behavior, just with a shift in xc.
Again, this is typical of phase transitions, where the critical
point depends on the details of the model, but the scaling
behavior is universal. We thus propose that, in the large-Nfrag

limit, the SCS problem experiences a phase transition that
separates a large-x where polynomial-time algorithms always
succeed from a small-x regime where they always fail. All
practical applications of genome assembly are in the (very)
large-x regime, which explains how it is routinely possible to
solve problems that are, in principle, NP-hard with millions of
fragments.

We can study the critical regime more quantitatively by
looking not just at means but at fluctuations. In particular,
we plot in Fig. 2 the correlation coefficient r between x, as
computed for a particular set of fragments, and the individual
success probability (2) of a polynomial algorithm for that
particular set. Away from the critical point, r is very small but
in the critical regime a strong (anti)correlation is observed. In
fact, the minimum of r as a function of 〈x〉 is probably the best
way of locating xc. Notice that xc is lower for Glotón than for
Velvet, which is perhaps unsurprising, since the latter was not
designed as an SCS solver (see note in Appendix B).

Finally, notice that, to have a real phase transition, psuccess

should not just be very small, but actually go to zero in the
hard phase as Nfrag increases. With our numerical data, see
Fig. 3, we can see that the results are compatible with a power-
law decay. However, for 〈x〉 significantly larger than xc, the
success probability is compatible with 1 even for finite Nfrag.

The role of the fragment length and comparison
with a natural genome

Thus far, we have always used �frag = 100 but, given
a number of fragments Nfrag, two parameters remain: the
genome length L and �frag or, equivalently, 〈x〉 and �frag. The
beauty of the choice of variables 〈x〉 and �frag is that the �frag

FIG. 3. The success probability goes to zero in the hard phase. If
the behavior shown in Fig. 1 corresponds to a phase transition, psuccess

should tend to zero as Nfrag → ∞ for 〈x〉 < xc. This figure shows that
indeed psuccess decays at least as fast as power law in 1/Nfrag in the
hard phase, while in the easy phase our results are already compatible
with psuccess = 1 for finite sizes.

dependence is residual and vanishes quite fast as �frag grows,
as can be seen in Fig. 4. More precisely,

psuccess 	 f [〈x〉 + A log Nfrag/(Nfrag�frag)], (6)

where A is an algorithm-dependent constant [29]. That is, �frag

acts as a scaling correction.
Taking our reads from a random genome or from a real

one seems to make no difference. Indeed, our results for the
success probability for the Glotón using reads sampled from

FIG. 4. Varying the fragment length hardly makes any differ-
ence. Our previous results have always considered �frag = 100. It
turns out that the dependence in this parameter is residual and rapidly
vanishes as �frag grows, according to Eq. (6). That is, the curves of
psuccess as a function of 〈x〉 can be collapsed if we subtract the scaling
correction caused by finite �frag. We also show that the results for
a natural genome (namely that of the swinepox virus) are indistin-
guishable from those for random sequences. In this case, since L is
fixed, we have a single value of psuccess for each �frag, all of which fall
on the rescaled curve.
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FIG. 5. A Monte Carlo algorithm for the hard cases. We propose a segment-swap Markov-chain Monte Carlo algorithm (sketched in the
left panel) that outperforms common deterministic methods in the hard regime (see right panel). We represent the permutation of the reads
as an ordered sequence of fragments (the arrows indicate the sense in which the sequence should be toured). The elementary move of the
algorithm is composed of the following three steps. First, choose randomly three independent pairs of consecutive fragments (depicted with
grey circles in the plot), . . . → α1 → α2 → · · · → β1 → β2 → · · · → γ1 → γ2 → · · · . Mind the pair ordering: when one tours the circular
sequence starting from fragment α1, fragments γ1 and γ2 are not found earlier than β1 and β2 (the choices α2 = β1 and/or β2 = γ1 are
acceptable). Second, consider the rewired sequence · · · → α1 → β2 → · · · → γ1 → α2 → · · · → β1 → γ2 → · · · (there is an unacceptable
reconnection– indicated by NO in the figure—that would split the sequence into three disconnected cycles). Third step: If the new cycle is
not longer than the original one, the segment swap is accepted. As we show in the right panel, segment swap is more effective than other
algorithms for −1 < x < 0.5. For x < 0 the SCS problem no longer corresponds to a full assembly, since there are gaps between reads. The
segment-swap algorithm, however, always finds superstrings that satisfy our success criterion (� � �ordered).

the genome of the swinepox virus nicely fall onto the same
scaled curve obtained for the random genome.

V. A BETTER ALGORITHM FOR THE HARD PHASE:
THE SEGMENT-SWAP

We have seen that, while the SCS problem is NP-hard,
it becomes solvable for polynomial-time algorithms in the
large-〈x〉 regime. For 〈x〉 < xc, however, common methods
always fail even to find a good approximation to the SCS
(provided in our success criterion by �ordered). For moderately
negative values of x we have found a Markov-chain Monte
Carlo algorithm that is both powerful and relatively simple.

The method is sketched in Fig. 5 (left). The segment or-
dering is actually a circular sequence where we randomly
choose three cutting points. There are two ways of recon-
necting the three resulting fragments, one of which generates
several cycles and can be discarded. The other reconnection
generates a single cycle and is potentially a new permutation
of the reads that effects nonlocal changes (one would need
∼Nfrag transpositions of neighboring reads to generate a single
segment-swap move). We accept the new configuration only
if its total length is not larger than in the previous step. This
is the acceptance criterion of a Metropolis algorithm at zero
temperature [see, e.g., Ref. [30]]. As for the stopping condi-
tion, note that there Ntriplets = Nfrag!/[(Nfrag − 3)! 3!] possible
choices for the cutting points. Whenever the length of the
sequence has not decreased for 2Ntriplets consecutive iterations
(where the cutting points are chosen randomly with uniform
probability), we check explicitly that none of the Ntriplets pos-
sible moves would decrease the total length. If this is the case,
the run is stopped.

In spite of its simplicity, this segment-swap method is very
successful in the −1 < 〈x〉 < 0.5 region and, in particular, in
the negative 〈x〉 region where both Glotón and Velvet fail.
The segment-swap method can be generalized by including
a fictive temperature [31] and parallel tempering [32]. In this
way, one would have a candidate algorithm for treating the
x → −∞ limit of completely independent reads. Notice that,
as x grows more negative, our variational solution �ordered

grows worse as an upper bound on the length of the actual
SCS. In these cases, the segment-swap algorithm finds solu-
tions with � < �ordered, but, at least in the simple T = 0 version
shown in Fig. 5, we cannot be sure that these solutions are the
actual SCS.

The reader could worry about completeness: is the
segment-swap method capable of reaching all possible config-
urations? In fact, the transposition of consecutive fragments
is a particular case of the segment-swap move. Indeed, take
a subsequence · · · → A → B → C → D → · · · and let us
imagine that one randomly selects the pairs A → B, B → C
and C → D as the ones to be reconnected. In the language
of Fig. 5, one would say α1 = A, α2 = β1 = B, β2 = γ1 = C,
and γ2 = D. With this choice, the segment swap results in
the transposition of fragments B and C: · · · → A → C →
B → D → · · · . Now, since an arbitrary permutation may
be obtained from an ordered sequence of transpositions of
consecutive fragments, a finite-temperature version of the
segment-swap method is ergodic. Our zero-temperature ver-
sion of the algorithm never accepts a move that increases the
total sequence length but, as we said above, this lack of er-
godicity causes no problem in the region −1 < 〈x〉 < 0.5 (see
Fig. 5). A plausible explanation is that the lack of ergodicity of
the zero-temperature dynamics induces another algorithmic
phase transition located near 〈x〉 = 0.5.
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Another technical question regards the best data structure
for implementing the segment-swap algorithm. We have cho-
sen a linked list, because the number of operations needed
to change the configuration is independent of Nfrag. A major
drawback, however, is that one basically needs to go through
the full linked list to assess which one of the two possible
fragment reconnections is acceptable. Our solution is check-
ing the resulting length from both reconnections, before going
through the list. Indeed, in most cases, both reconnections
would enlarge the total length and can be rejected without
checking the list, which requires O(Nfrag) operations. Never-
theless, for larger Nfrag than we have considered in this work, it
might be advisable to implement the segment-swap algorithm
with binary-search trees, which have the potential of turning
the computational cost down to O(log Nfrag) operations.

VI. CONCLUSION

We have applied the methods of statistical mechanics to
characterize the computational complexity of the SCS prob-
lem, showing that, in terms of an appropriate scaling variable
〈x〉, a phase diagram can be constructed. For 〈x〉 > xc the
problem is in the easy regime, i.e., it is solvable in polynomial
time, while below xc it is exponentially hard. In the language
of statistical physics, an order parameter can be defined using
the probability that a polynomial-time algorithm will find
the correct SCS. For a finite system size (in our case set
by the number of reads Nfrag) this probability will increase
continuously as a function of the scaling variable (which
plays the role of variables like the temperature, magnetic field
or pressure in the phase diagrams of physical systems). As
Nfrag grows, the crossover regime grows narrower until, in the
Nfrag → ∞ limit, one can speak of a phase transition: the
computation always succeeds for 〈x〉 > xc (and always fails
for 〈x〉 < xc). In this sense, macroscopic physical systems are
considered to be in a “thermodynamic limit,” whose behavior
is indistinguishable from that of an infinite system. Similarly,
while this study has considered small values of Nfrag to pen-
etrate into the hard regime and to show the scaling behavior,
real instances of assembly employ such large Nfrag that one
can properly talk of two distinct phases in its computational
complexity.

Provided that the just-mentioned interpretation of our nu-
merical results proves to be correct, the behavior described
above will be universal [28], in that the same scaling variable
will classify instances of the problem into easy or hard, no
matter which polynomial-time algorithm is used [33]. The
precise location of the critical point xc is algorithm depen-
dent, but it will be such that the average maximum distance
between reads is of the order of the length of the reads,
〈dmax〉 ∼ �frag (an intuitive result that we have demonstrated
by studying two completely different methods). Putting all the
above considerations together with the fact that, in modern
high-throughput methods, the genome is heavily oversampled
(implying 〈dmax〉 � �frag) we have our main result: practi-
cal instances of the sequence-assembly problem are deep in
the easy phase, that is, always solvable in polynomial time.
We would have thus achieved a characterisation of the para-
metric complexity of the problem in the sense proposed in
Refs. [17,18].

The universality of our result should not be taken to mean
that all algorithms are equally good or, more to the point,
that sophisticated methods based on heuristics and de Bruijn
graphs [11,12] are not useful. It does mean that, as pointed out
recently in Ref. [34], their usefulness does not reside in their
turning an NP-hard problem into a polynomial one. Instead,
de Bruijn graphs are useful because of their efficient imple-
mentation for very large datasets and their power for dealing
with errors in the reads and long repeats in the genomes.

Below xc, the SCS problem decouples from that of
sequence assembly (since the full genome cannot be recon-
structed unambiguously) and becomes NP-hard. In this phase,
we do not know the real SCS but we can consider a variational
upper bound on its length given by �ordered. This bound will
be good close to xc and deviate more and more from the real
solution to the SCS as 〈x〉 decreases. We have explored this
regime using a Markov-chain Monte Carlo method that we
name segment-swap. We find that, unlike deterministic meth-
ods, our segment-swap algorithm always succeeds in finding
solutions with � � �ordered for −1 � 〈x〉 � 0.5. As considered
in this work, just as a proof of concept, the segment-swap
method is not ergodic, so there is no assurance that its stopping
point corresponds to the actual SCS. This shortcoming could
be cured by coupling segment swaps with parallel tempering
[32], which, furthermore, provides a self-consistent way of
validating the solutions [35,36]. We thus believe that segment-
swap Monte Carlo may be considered as a candidate to solve
general instances of the SCS and related problems, such as the
traveling salesman.
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APPENDIX A: OUR GREEDY Glotón ALGORITHM

Our greedy algorithm solves the SCS problem (very
slightly) better than the standard greedy algorithm, of which
it is only a slight variation (see, e.g., Ref. [37]). As explained
in the main text, we represent the superstring as a permutation
of the original reads [our state space is a sequence of reads
which are consecutive in the permutation, see Fig. 5 (left)].
The total length of the superstring is Nfrag�frag minus the total
sum of the overlaps between consecutive reads (therefore,
the SCS corresponds to the maximum total overlap between
consecutive reads). Our Glotón seeks the shortest superstring
through the following procedure:

(1) Pick at random the starting fragment of the cycle. This
fragment is named the active read.

(2) Consider the overlap with the active read of all the still
unsorted reads (the candidates).

(3) Select the candidate that has the maximum overlap
with the active read. If there is more than one choice, we
pick randomly (with uniform probability) one candidate of
maximum overlap. The chosen candidate is placed in the cycle
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right after the active read and is declared to be the new active
read.

(4) While there are remaining candidates, go back to
step 2.

There are two differences with the standard greedy algo-
rithm. First, the randomness in step 3 (some implementations
pick the maximum-overlap candidate deterministically) Sec-
ond, we grow the sequence from just one active fragment
(instead, the greedy algorithm allows more than one sequence-
growing point).

The most demanding part of the Glotón algorithm is the
computation of the overlap between fragments. We have sped
up this part of the computation by generating a look-up table
containing all possible overlaps—there are Nfrag(Nfrag − 1)
possible ordered pairs of reads. This is particularly useful,
because we run the Glotón algorithm Nattempts = 100 times for
each given set of Nfrag reads.

APPENDIX B: A NOTE ON Velvet

Velvet is not properly an algorithm for finding the SCS,
but instead outputs contigs. These are contiguous segments
that can unambiguously be inferred to be part of the original
genome. In this case, a successful solution produces a single
contig of length �ordered while an ‘unsuccessful’ one might be
missing one or more reads or be broken into several contigs.
Notice that this is the program working as desired: it inter-
prets that it does not have enough data to reconstruct the full
genome and, rather than attempting to find an approximation
to an SCS that would not match the original sequence, it pro-
duces unambiguous subsequences. Hence, the phase transition
acquires a different meaning for Velvet: the critical point
separates the region where the fragments database comes from
a single contig, for sure, from the region when Velvet reaches
the conclusion that most probably, the database comes from
two (or more) contigs, (which is unjustified whenever x > 0).
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