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The cost of information processing in physical systems calls for a trade-off between performance and energetic
expenditure. Here we formulate and study a computation-dissipation bottleneck in mesoscopic systems used
as input-output devices. Using both real data sets and synthetic tasks, we show how nonequilibrium leads to
enhanced performance. Our framework sheds light on a crucial compromise between information compression,
input-output computation and dynamic irreversibility induced by nonreciprocal interactions.
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I. INTRODUCTION

What does computation at the mesoscopic scale look like?
To begin to answer this question, we need to bridge the
formalism of computation with a theory of systems whose
energy scales are close to thermal fluctuations. Stochastic
thermodynamics (ST), by associating single stochastic tra-
jectories with meaningful thermodynamic quantities [1–4],
exposes the deep relation between information and dissipa-
tion. One of the fundamental results of ST is that information
and time irreversibility, as measured by the rate of entropy
production (EP) [5,6], are inherently related [7–11]. Thermo-
dynamic uncertainty relations [12–15] have been derived that
describe fundamental precision-dissipation trade-offs, leading
to a framework successfully applied to a variety of biochem-
ical processes, such as chemosensing [16–18], copying [19],
and reaction networks [12,20,21], among others.

We will refer to computation at the mesoscopic scale as the
ability of a system to react to the environment—via interac-
tions between its parts and external heat baths—in a way that
depends on some function of the environmental conditions.
The space of all states reachable by these transformations, and
the details of their distributions, differ in the case of equilib-
rium and out-of-equilibrium dynamics. In particular, the latter,
larger space of transformations (which includes equilibrium
relaxations) affords more refined input-output mappings and
precise reactions, at the cost of maintaining the system out of
equilibrium.

Encoding external signals in their entirety is one of such
computations: borrowing machine learning (ML) terminol-
ogy, a mesoscopic system considered as an “autoencoder” has
the ability to compress information and correct errors [22,23].

Full encoding, however, may be wasteful when a com-
putation regards a limited aspect of the environment: dis-
carding nonrelevant information, i.e., limiting the necessary
environment-system mapping in a manner dependent on the
task at hand, allows one to strike a balance between perfor-
mance and energy expenditure.

We recognize this task dependence of the performance-
cost trade-off as the main ingredient of any physical theory
of computation. Can this trade-off be framed in quantitative
terms? How could it be calculated? Is it possible to predict,
or understand, nonequilibrium energy expenditure from the

structure of the task? These are the questions we try to address
in this work.

To do so, we define a quantitative trade-off between com-
putation and performance. We exploit such formal definition
to study analytically and numerically a set of paradigmatic
cases where physical systems have to “learn” different regres-
sion and classification tasks.

To set up the theoretical framework, we bridge the two
extrema of the trade-off. On one side of it lies dissipation,
which we will measure in terms of entropy production rate.
The study of EP in many-body systems has recently started to
be addressed [14,24–26]. Irreversibility of macroscopic neural
dynamics is also attracting attention [27–30].

The system’s computational performance, on the other
side, can be formulated both in information theoretic terms
and with standard error metrics employed in ML. Learning
dynamics in simple classifiers has been studied using the
machinery of stochastic thermodynamics [31]. A recent ap-
proach introduced a framework for irreversibility in formal
models of computation [32–34], without specifying the details
of physical implementations.

Here we consider generic parametrizations of mesoscopic
systems whose stochastic transitions are induced by an en-
vironment, possibly out of equilibrium, so that resulting
interactions may be nonreciprocal [35]. We focus on asym-
metric spin models, which have been subject of intense study
in the field of disordered systems [36–39] and provide a bridge
to classical models of neural computation [40–44].

In line with the neural network formalism, we recognize
the dynamics of our systems as producing internal represen-
tations of their inputs, the geometry of which impacts the
ability to learn input-output relations. We show how entropy-
producing nonreciprocal interactions [45,46] are crucial to
generate effective representations, so that a fundamental
trade-off emerges between expressivity and performance.

II. METHODS

A. A computation-dissipation bottleneck

Here we introduce our framework for using mesoscopic
systems as input-output devices in supervised input-output
tasks. We thus formulate a tradeoff between the computational
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performance and steady-state entropy production of such sys-
tems in terms of a computation-dissipation bottleneck.

The stochastic dynamics of mesoscopic systems, usually
described using continuous-time Markov processes, results
from interactions with thermal baths and external driving
mechanisms. Let us consider a system S with discrete states s,
driven by a time homogeneous input protocol x. The evolution
of the probability of state p(s, t ) is given by a master equation,

d

dt
p(s, t ) =

∑
s′

[kss′ p(s′, t ) − ks′s p(s, t )], (1)

with kss′ the jump rate from s′ to s, generically dependent on
the protocol x. To facilitate the connection to ML, we consider
the jump rates to be determined by a set of parameters θ .

First, we have to associate an energy cost to the computa-
tion. To do so, we use the entropy production rate. We assume
computation is performed on a timescale much longer than
any initial transient. For each independent input x, the system
reaches a steady-state (SS) probability p(s|x), serving as an
internal representation of x. At the (possibly nonequilibrium)
SS, each input x is associated to an average EP rate σ . In
Markovian systems with discrete states, the EP rate can be
computed via the Schnakenberg formula [47,48]:

σ = 1

2

∑
s,s′

Jss′ log
kss′ p(s′)
ks′s p(s)

, (2)

where Jss′ = [kss′ p(s′) − ks′s p(s)] are the steady state fluxes
(we work in units where the Boltzmann constant κB = 1).
Note that in our case σ = σ (x, θ ) through kss′ ,Jss′ and p(s).

A supervised learning task is specified by a finite set
D = (x, y) of input-output pairs, so the EP rate averaged over
the whole data set is simply �(θ ) = 1

|D|
∑

x σ (x, θ ). Alterna-
tively, one can define a joint input-output distribution p(x, y).
The (average) EP rate is similarly �(θ ) = ∑

x p(x)σ (x, θ ).
The EP rate is a function of the dynamic process alone.

How the resulting p(s|x) is able to predict the output is a
separate, task-specific factor. To quantify the computational
performance of these processes, we have to define a measure
for that.

In defining such performance measure, a natural choice
is the mutual information I (s, y) between the representation
s and the output y: no assumption is made in this case
on the additional computational burden needed to extract
such information, possibly encapsulated in arbitrarily com-
plex high-order statistics of the steady-state distribution. For
many problems of relevance, and especially for those related
to standard ML practice, evaluating the mutual information is
unfeasible. In these case, we will follow a different path and
use a subset of moments of p(s|x) as representations to be then
fed to a linear readout. This approach to computation, closer to
ML practice, allows us to use the mean square error (MSE) or
cross-entropy (CE) loss functions as approximate surrogates
for G. Both approaches and their limitations will be explored
in the following.

Given a performance measure G(θ ), the trade-off can be
encapsulated in a quantity:

L(θ ) = G(θ ) − α �(θ ), (3)

where α is a positive parameter with units of time. We study
the trade-off by maximizing L over the interaction parameters
θ for different values of α: increasing α, the relative cost of
dissipation is enhanced, with the α → ∞ limit constraining
the system to be at equilibrium.

In this work we first employ our framework in the context
of a solvable two-spin model to show how the enhanced ex-
pressivity of nonequilibrium systems is related to the structure
of the input-output tasks. Then we use computational methods
to build a multispin system performing classification tasks.

B. Entropy production at steady state

In the presence of a constant-in-time protocol x, the steady
state p(s|x) can be obtained extracting the kernel of the matrix
Rss′ = kss′ − δs,s′

∑
s′′ ks′′s. For systems of small size, this is vi-

able numerically using singular value decomposition (SVD).
The steady-state entropy production can thus be computed
directly using Eq. (2).

In a nonlinear large-scale system, analytical calculation of
the steady state is generally unfeasible. We thus simulate the
stochastic dynamics of the system S using the Gillespie al-
gorithm [49,50]. To do so, we generate stochastic trajectories
by concatenating random jumps between states, obtained by
first identifying the exit time from a given state s′ and then
selecting jumps according to the transition rates kss′ .

The entropy production can be easily computed in an on-
line fashion by accumulating the logarithmic ratio of forward
and backward transition rates for each jump, which are repre-
sented by single-spin flips in our models. Further details are
given in the Appendix. In analogy with ML, we consider the
Gillespie simulation as a forward pass in a stochastic network,
retrieving a probability over states p(s|x) when presented with
an input x.

C. Task performance measures

Here we define the performance measures and their quan-
titative evaluation used throughout the paper.

In Sec. III A we will consider a simple two-dimensional
toy model. For this system, we will take G to be the mu-
tual information, which can be evaluated exactly. The mutual
information between the input x and the system state s at
steady state can be computed using I (s, x) = H (x) − H (s|x),
with H the Shannon entropy. As for I (s, y) = H (s) − H (s|y),
the entropy term H (s|y) can be obtained by exploiting the
conditional independence between y and s, which implies that
the joint distribution p(s, y) can be written as

p(s, y) =
∑
x,s,y

p(s|x)p(y|x)p(x). (4)

The posterior distribution p(s|y) is then directly calculated
from Eq. (4) using Bayes’ theorem.

In Sec. III B we will consider large-scale systems. For
these, we resort to only using the average value for s
(spin magnetization) and subsequently extract the informa-
tion about the output using a linear readout. More explicitly,
given an input-output pair (xμ, yμ) from the set D = (x, y),
we measure task performance by first computing the vector
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FIG. 1. (a) Schematic of a two-spin system driven by external
fields x1 and x2. (b) Mutual information between input x and output
y as a function of rotation angle φ. The optima for equilibrium
(nonequilibrium) systems are shown with a dashed gray (continuous
black) line. Parameters: β = 3, η = 3. Inputs (x1, x2) are Gaussian
with correlations ρ = 0.95. (c) Conditional probability p(y = 1|x)
for the family of tasks described in the paper for different values of
the parameter φ and η = 2. (d) Steady-state probability for the state
s = (+1,+1) for Js = 0 and increasing values of the nonreciprocity
strength Ja. The range is [−2.5, 2.5] for both inputs x1 and x2.

mxμ = 〈s|xμ〉 and then the error between the prediction ŷμ of
the final readout and the target yμ.

We evaluate the performance using classical loss functions
employed in ML. When using the cross-entropy (CE) loss, a
“logit” vector hμ = Woutmxμ is passed through a normalized
exponential function (Softmax), thus getting the normal-

ized estimated output probabilities pμ

k = ehμ
k∑K

l=1 ehμ
l

, with K the

number of output labels. The loss function then amounts
at computing the cross-entropy with the targets yμ: L =
− 1

M

∑M
μ=1 log pμ

yμ . The mean square error (MSE) loss, in turn,

amounts at computing L = 1
2M

∑M
μ=1(yμ − Woutmxμ )2.

III. RESULTS

A. A tractable two-spin system

To exemplify the computation-dissipation trade-off, we
first consider an analytically solvable two-spin system. Each
spin si is subject to random flips with rates k(i)

s ∝ e−βsi (W s+x)i .
The matrix W encodes the spin interactions in the asymmetric
couplings W12 = Js + Ja, W21 = Js − Ja, and two-dimensional
inputs x act as constant external fields [Fig. 1(a)]. When
Ja = 0, the system respects detailed balance and reaches
equilibrium. Nonreciprocity in the couplings leads to
non-negative �.

The information-coding capabilities at steady state of this
system have been recently analyzed [18]. We treat such a
mesoscopic network as an input-output device, prescribing
a stochastic rule by a known conditional distribution p(y|x),

with y ∈ {0, 1} a binary output variable. This formulation
encompasses the classic teacher-student setup [51–54] and
mixture models [55,56] used in the study of feed-forward
neural networks. We ask how much information I (s, y) about
the output y is contained in the steady state p(s|x).

Let us consider a task consisting in a stochastic and
continuous generalization of a parity gate, p(y = 1|x) =
sigmoid(ηxφ

1 xφ

2 ), with xφ = Rφx, Rφ a rotation of angle φ.
This angle defines a family of tasks with a controllable degree
of asymmetry in input space. Examples are shown in Fig. 1(c).
The parameter η affects the sharpness in the change of the
output probability as a function of x.

For φ = 0, the optimal structure is an equilibrium system
(J�

a = 0). As φ increases, the optimal two-spin network has
asymmetric weights (J�

a > 0), implying a nonzero entropy
production at steady state; see Fig. 1(b). Limiting the system
to be at equilibrium thus results in performance degradation,
down to a minimum of zero information when the rotation
reaches φ = π/4.

For a given value of φ and the free parameter α, one can
define the computation-dissipation trade-off by maximizing
Eq. (3) with G = I (s, y). Note the analogy with the formu-
lation of the classic information bottleneck [57–59]. Here,
instead of a compromise between input compression and re-
tention of output information, we trade off the latter with
dissipation.

We can compare the performance of an auto-encoding sys-
tem with optimal couplings θ sx = {Jsx

s , Jsx
a } (G = I (s, x | θ )),

with that of a computing system with parameters θ sy

(G = I (s, y | θ )) for a task with φ = 0.5. The optima
corresponding to α = 0 have finite nonreciprocal terms
Ja [see Figs. 2(a) and 2(b)] and therefore positive, but finite,
EP. We always find a maximum dissipation rate above which
performance degrades [60].

Figure 2(c) shows the computation-dissipation front, each
point being a different optimal compromise between input-
output performance, measured by G = I (s, y | θ ), and � at
steady state. We chose a parameter regime where a nonequi-
librium solution is optimal also for I (s, x). Crucially, a
system maximizing the information on the entire input I (s, x)
performs worse than one tailored to maximize the output in-
formation. This is a hallmark of optimization of task-relevant
information.

We now explore the relation between the nonequilibrium
steady-state probability p(s|x) and the task. Fixing Js = 0, the
effect of increasing Ja resembles a rotation by π/4 of p(s|x)
in the region where |x| < Ja; see Fig. 1(d). Increasing the
nonreciprocity thus aligns the steady-state probabilities p(s|x)
with the rotation induced on the task by the angle parameter φ.

B. Multispin systems as stochastic recurrent networks

We now study the trade-off in computational tasks more
akin to that of standard ML practice: we use a spin model per-
forming an input-output computation in the form of a classi-
fication task where inputs x, schematically represented by the
tape in Fig. 3, must be correctly associated with output labels
y. We relax the previous requirement to control and measure
the mutual information between the distribution of spins and
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FIG. 2. (a) Color plot of mutual information I (x, s) in the {Js, Ja}
plane. The optimal parameter set θ sx is shown for different values
of α (white: α = 0, black: α > 0). (b) Same as (a) for I (s, y) and
the optimal parameter set θ sy. (c) Mutual information I (s, y) for
φ = 0.5 as a function of the entropy production rate at steady state �

for both θ sy (black) and θ sx (gray). Inputs (x1, x2) are Gaussian with
correlations ρ = 0.95. Additional parameters: β = 3, η = 3.

output labels, and, as detailed in the following, instead intro-
duce simpler error measures to evaluate performance.

We construct a system that realizes a stochastic equivalent
of a simple convolutional neural network with two small filters

FIG. 3. Schematic of a multispin system processing inputs in a
classification task. (a) The system S evolves in time in the pres-
ence of constant inputs (external fields) x and couplings W , until
a nonequilibrium steady state p(s|x) is reached. Time evolution is
associated with an entropy production rate �. Information about the
output label is extracted from p(s|x), e.g., by a linear readout Wout on
the averages mx . (b) A subset of an input-output data set D.

(kernels). Each filter is composed of a chain of N spins,
interacting with possibly asymmetric couplings. Spins in the
two chains are driven by the same constant external fields xi

(with a slight abuse of notation, we consider x as composed of
two identical copies of the same input vector). As before, each
spin si is subject to random flips with rates k(i)

s ∝ e−βsi (W s+x)i .
Interactions, encoded in the matrix W , connect spins along
each chain and depend only on the relative distance between
spins and not on their absolute locations.

When W is fully symmetric (W = W T ), the system re-
laxes to the equilibrium of a Hamiltonian H = − 1

2 sT W s − x
at inverse temperature β. Nonreciprocal interactions (W 	=
W T ) lead to nonequilibrium and a nonzero EP rate. After a
transient, the system reaches a steady state p(s|x), with an
average magnetization mx = 〈s|x〉 and an entropy production
rate σ (x, θ ). For any data set D, each W will thus be associ-
ated with both a different task performance and an average EP
rate �.

In close analogy with ML, we use a final linear readout
Woutmx of the average magnetization, with a learnable matrix
Wout. This allows us to separately consider the system’s com-
putation as a two-step process: (1) a nonlinear deformation of
the input space x into mx induced by the dynamics, akin to
what occurs in the hidden layers of a neural network (due to
the choice of translational symmetry for W , the steady-state
magnetizations in each chain are equivariant to translation in
the input x, so that the system is a stochastic, mesoscopic
version of an implicit convolutional layer [61,62], see the
Appendix) and (2) a separation in the mx space producing the
output y.

To maximize L over θ = {W,Wout}, we couple a standard
Gillespie algorithm for the simulation of the system’s evolu-
tion with each input x, to a gradient-based optimization. Due
to the stochastic nature of the trajectory, the use of standard
back-propagation is not possible in our context, and finite-
difference approximations for the gradients are required. In
order to deal with the high dimension of the W parameter
space, we adopted an efficient method called the simultaneous
perturbation stochastic approximation (SPSA) [63] to com-
pute an estimate of the gradient (see the Appendix for details).
The solutions at each value of α allow us to construct an
optimal front G∗(�), where the asterisk denotes that optimal
values of Eq. (3), as shown in Figs. 4(a) and 4(c).

We showcase our approach with two different tasks. The
first is MNIST-1D [64], a one-dimensional version of the clas-
sic digit-classification MNIST task. Each element, with input
dimension N = 40, belongs to one of 10 different classes. See
an example of the input configurations in Fig. 4(b). To enable
multilabel classification, we apply a Softmax function SM to
the output, thus getting a 10-dimensional probability vector
ŷ = SM(Woutmx ), and measure task performance with the neg-
ative cross-entropy G = −CE(ŷ, y) between the labels and ŷ.

Our results show a direct relation between task perfor-
mance and entropy production at steady state [Fig. 4(a)].
Enforcing the system to be at equilibrium (α → ∞) reduces
performance by ≈5% and accuracy—defined as the percent-
age of labels correctly identified—by 7%. This highlights how
nonreciprocal interactions enhance the complexity of internal
representations needed for learning (see Fig. 5 in the Ap-
pendix), at the cost of higher dissipation.
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FIG. 4. Computation-dissipation bottleneck in a system solving
a classification task at steady state. (a) Cross-entropy error (CE) vs
normalized entropy production rate �/N on the MNIST-1D data set
(M = 4000 data points, 10 labels, N = 40) of a system composed of
two spin chains with interactions up to the second nearest neighbor.
(b) Schematic of the MNIST-1D task. (c) Mean square error (MSE)
vs entropy production rate �/N normalized by the number of spins
on the random input-output task with M = 100 input patterns and
two labels. Each curve is the minimum over 10 initialization seeds in
a Gillespie-based optimization in three different realizations of the
task. (d) Example realizations of the random data set.

The second task is a classic random input-output associ-
ation [65–67], where input components xμ

i of each pattern
μ = 1, . . . , M are drawn i.i.d. from a Normal distribution,
and labels are random y ∈ {−1,+1} with probability 1/2
[Fig. 4(d)]. We measure the performance by the mean squared
error (MSE): G = −MSE(ŷ, y), where ŷ = Woutmx. For all
random instances of this task, we reproduce the front between
entropy production and performance [Fig. 4(c)]. While quanti-
tative details differ slightly among instances, the performance

FIG. 5. Normalized measure of asymmetry of interaction matrix
W found by SPSA as a function of entropy production � for the
MNIST-1D task [Fig. 4(a)].

consistently increases with the amount of nonreciprocity in
the optimal coupling matrix W , and therefore with dissipation
in the system.

IV. CONCLUSIONS

We introduce a framework to characterize a trade-off
between computational capabilities and dissipation in meso-
scopic systems. We showcase how such systems can be used
in supervised learning tasks with real data sets and how limit-
ing entropy production degrades their performance.

Our results point to the general necessity to gauge encod-
ing and task relevance while considering energetic trade-offs.
In a tractable two-spin system, we show how nonrecipro-
cal interactions affect the capability of the system to solve
tasks optimally. A simple modulation of the task switches
its optimal configuration from an equilibrium to a highly
nonequilibrium one.

Linear stochastic systems are another case where analytical
expressions can be derived for the computation-dissipation
trade-off (see the Appendix), again controlled by the asym-
metry of the task in input space.

In this study, we concentrated on one-time statistics at
steady state, leaving aside interesting properties of time
correlations. The study of both transient behavior and non-
stationary protocols—where special care must be used in
distinguishing between housekeeping and excess entropy
production [68]—opens an interesting avenue to investigate
general speed-dissipation-computation trade-offs within our
framework.

Studying the impact of hidden units is an important avenue
for future work. Marginalization over hidden states is the main
ingredient to induce higher-order interactions in generative
models. This forms the basis for the attention mechanism in
transformers [69], arguably the most powerful ML models to
date [70,71], as the recent works on modern Hopfield net-
works have shown [72–76].

Drawing a bridge between ML and ST can prove fruitful
in elucidating how representations depend on the cost. Rate-
distortion approaches have been used to study the impact
of information compression on classification accuracy and
maximal attainable rewards [77–82], but a general theory is
lacking. Our perspective is complementary: energetic costs
have a strong impact on the complexity of internal repre-
sentations, leading to different mechanisms for information
processing.
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APPENDIX

1. Steady state in the two-spin system

Following [18], the stationary state can be computed
by imposing the stationary condition in Eq. (1) and the
normalization of p(s|x), thus getting

p(s|x) = e−β(F+δF )/Zx, (A1)
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where

F = −Jss1s2 − x1s1 − x2s2 (A2)

and

δF = −β−1 log

[
eβJas1s2

cosh [β(x1 − 2Jas2)]

cosh βx1 + cosh βx2
(A3)

+ e−βJas1s2
cosh [β(x2 + 2Jas1)]

cosh βx1 + cosh βx2

]
. (A4)

2. Training of a multispin system

a. Details on the system

We consider a system composed of two chains of size N .
Interactions connect spins up to the kth neighbors, where we
use k = 2. Self-interactions are set to zero. If we identify a
spin by (m, n) where 1 � m � N is the position in the chain
and n = 1, 2 the chain index, two spins (mi, ni ) and (mj, n j )
are connected if |mi − mj | � k. The interaction parameter Wi j

depends only on mi − mj and ni − n j , so that the number
of nonzero, fully independent parameters of W is 4k − 2.
The external input x is repeated such that it is the same for
both chains. Such a spin system at steady state implements a
stochastic version of an implicit convolutional layer with two
channels. Implicit layers are building blocks of deep equilib-
rium models [61,62].

b. Data sets

MNIST-1D is a one-dimensional version of size N = 40 of
the classic MNIST handwritten digits data set [64]. We used
4000 training samples, organized in 10 different classes, each
containing roughly 400 samples. Data are available at [83],
where a description of its generation from the original MNSIT
data set is given.

We generated instances of the random task by drawing
M = 100 patterns xμ in dimension N = 10, with components
xμ

i independently drawn from a Normal distribution. The cor-
responding labels yμ, drawn from {−1,+1} with probability
1/2, were randomly associated with each pattern.

c. Details of Gillespie simulations

Let us consider a system with a discrete number of states
s and transition rates kss′ , which are constant in time. Given a
current state sstart, the Gillespie algorithm identifies both the
time τ and the final state send of the following jump.

As a first step, the total rate kout = ∑
s kssstart of leaving state

sstart is computed. The time τ until the following jump is then
drawn from an exponential distribution with mean 1/kout. The
landing state is selected with probability p(s) = kssstart/kout.
The trajectory is thus constructed concatenating jumps.

First, the initial state s0 is chosen (in our case, at random)
at time t = 0. A first jump (τ1, s1) is selected starting from
s0, and then a second (τ2, s2) starting from s1. The process is
repeated until one of two criteria is met, either a total time
or a maximum number of steps. Average occupations can be
computed considering that the system occupies state si exactly
for a time τi between jumps i and i + 1.

In our system, s is a vector of 2N individual spins si taking
values in {−1,+1}. We will restrict the jumps to single spin

flips. Given a state s, an input x (external field) and a interac-
tion matrix W , the transition where the ith spin flips has a rate
k(i)

s ∝ e−βsihi , with hi = (W s + x)i. The actual proportionality
term (identical for all spins), which determines the timescale
of the jumps, is not relevant since we are interested only in
steady-state properties and average occupancy.

To measure the average magnetization mx for each input
x, we first select a random state s0 and proceed to construct
a trajectory up to a final time Tmax = 5000 or, alternatively, a
maximum number of jumps Nmax = 10 000. The average mag-
netization of individual spins mx for that input is calculated
after an initial transient time of Ttransient = 200 is removed.

Since we consider only the steady state, we can evaluate
the entropy production rate by summing the quantity �σn ≡
log

k(i)
sn+1

k(i)
sn

= −2βsn,ihn,i for each jump sn → sn+1, consisting of

a single spin flip, and dividing by the total time [84].

d. Parameter optimization

The minimization of a loss −G with respect to Wout was
performed either via a linear solver (for MSE) or a multi-
nomial classifier solver (for CE), using standard libraries in
julia, which retrieve optimal W ∗

out at fixed W , for the full input
set. We used MSE loss for the binary classification in the
random task, whereas we employed the CE loss for multilabel
classification in the MNIST-1D task.

Due to the stochastic nature of the dynamics, the optimiza-
tion of the interaction parameters W cannot be performed
with standard gradient-based methods. Additionally, typical
gradient evaluation through finite difference quickly becomes
prohibitive as the number of independent parameters in W
grows. To overcome this issue, we employ simultaneous per-
turbation stochastic approximation (SPSA) [85,86], where the
gradient is approximated via a single finite difference in a
random direction of the parameter space.

To evaluate the gradient ∇L|W , a random vector δW
is constructed at every update step. Two symmetrical pa-
rameters configurations are constructed: W ± = W ± δW .
Independent dynamics are simulated to produce the aver-
age spin magnetizations m± and measure entropy production
rates �±. The average magnetizations m± are thus used to
compute the performances G±. Finally, the gradient approx-
imation reads ∇L|W ≈ [G+ − G− − α(�+ − �−)] δW

2|δW | . To
avoid being trapped into local maxima, we performed several
initializations for each value of α.

We performed preliminary checks in systems of small
size—where the computation of the steady-state distribu-
tions is viable via SVD—and confirmed that SPSA converges
to a global optima of L, obtained by explicit parameter
enumeration.

e. Relation between nonreciprocity and entropy production

We report in Fig. 5 an example of the relation between
asymmetry of interactions and entropy production at steady
state in the spin system from Sec. III B. The normalized asym-

metry A is computed as A =
∑

i j (Wi j−Wji )2∑
i j W 2

i j
.
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(a) (b)

FIG. 6. (a) Optimal mutual information I (s, y) between the sys-
tem state s and the output y (blue curve) as a function of the entropy
production rate at steady state � in a two-particle linear system
described in Sec. III A. We also show the single-particle mutual
information I (s1, y) and I (s2, y) in the orange and green curve,
respectively. (b) Same as in (a) for the optimal squared deviation
MSE when the output y is linearly read out at each unit si, namely,
〈(y − si )2〉.

3. Computation-dissipation bottleneck in linear systems

Let us consider a system whose dynamics, in the presence
of a constant input x, is described by a multidimensional
Ornstein-Uhlenbeck process:

ṡ = W s + x + σsξ (A5)

with 〈ξξT 〉 = δ(t − t ′)I and I the identity matrix. The (gen-
erally nonequilibrium) steady state distribution p(s|x) is a
Gaussian with mean mx = W −1x and whose covariance C
solves the Lyapunov equation:

WC + CW T + σ 2
s I = 0. (A6)

Let us consider a noisy linear function y = wT
0 x + ξy, with

〈ξy〉 = 0 and σ 2
y = 〈ξ 2

y 〉. Assuming x is a Gaussian with mean
zero and covariance Cx, one has Cy = 〈y2〉 = wT

0 Cxw0 + σ 2
y

and Csy = 〈sy〉 = −W −1〈xy〉.
To compute the mutual information, we use

I (s, y) = H (s) − H (s|y) (A7)

and the relation for the entropy of a zero-mean, d di-
mensional Gaussian variable z with covariance Cz, H (z) =
1
2 log((2πe)d det Cz ), to get

I (s, y) = 1

2
log det(W −1CxW

−T + C)

−1

2
log det

(
Cs − CsyC

−1
y Cys

)
, (A8)

where we used the fact that the covariance matrix Cs =
〈ssT 〉, averaged over the entire input distribution, equals Cs =
W −1CxW −T + C and that the conditional covariance matrix of
s given y is Cs|y = Cs − CsyC−1

y Cys.
As shown in [87], the entropy production can be computed

in terms of an integral

σ =
∫ +∞

−∞

dω

2π
E (ω), (A9)

where the density E (ω) is given by

E (ω) = 1
2 Tr{C(ω)[C−1(−ω) − C−1(ω)]}, (A10)

with C(ω) the Fourier transform of the steady state autocorre-
lation C(t − t ′) = 〈s(t )sT (t ′)〉.

The expressions derived thus far can be used to obtain the
computation-dissipation bottleneck by optimization over any
physically consistent parametrization of the coupling matrix
W for a stable system, with different values of the tradeoff pa-
rameter α. To exemplify the approach, the next section treats
a two-dimensional case where simple analytical expressions
can be derived and a full enumeration of the parameter space
is viable.

a. An example of a computation-dissipation bottleneck
in a two-dimensional linear case

Let us then consider the case of a two-particle linear system
with an interaction matrix of the form

W =
( −1 Js + Ja

Js − Ja −1

)
. (A11)

Stability is guaranteed for � = 1 + J2
a − J2

s > 0. The solu-
tion of the Lyapunov equation (A6) for an input noise with
covariance σ 2

s I is

C = σ 2
s

2�

(
1 + JsJa + J2

a Js

Js 1 − JsJa + J2
a

)
. (A12)

The entropy production can be evaluated using Eq. (A10)
and the Fourier transform of the system’s Green’s function
G(ω) = (iω − W )−1:

G(ω) = 1

� − ω2 + 2iω

(
1 + iω Js + Ja

Js − Ja 1 + iω

)
. (A13)

From the Fourier transform of the steady-state auto-
correlation C(ω) = G(ω)G†(ω) we get for the entropy
production density

E (ω) = 8ω2J2
a∣∣(1 + iω)2 + J2

a − J2
s

∣∣2 . (A14)

After integration in Eq. (A9), and noting that C doesn’t
depend on x, we get for a stable system

� = 2J2
a . (A15)

We show in Fig. 6 the results for a system with σs = 0.1
tasked to compute a linear function y = wT

0 x + ξy with w0 =
(cos φ, sin φ), with φ = π

6 and ξy a zero-mean Gaussian vari-
able with standard deviation σy = 0.1. In a similar vein, each
particle si can be used as a direct readout for the output y. In
such a case, the average squared deviation MSEi = 〈(y − si )2〉
at steady state again shows a characteristic front with respect
to entropy production. As discussed in the main text, the
trade-off between entropy production and output information
is again controlled by the angle φ, that sets the degree of
asymmetry in the input space.

014132-7



ALESSANDRO INGROSSO AND EMANUELE PANIZON PHYSICAL REVIEW E 109, 014132 (2024)

[1] U. Seifert, Entropy production along a stochastic trajectory and
an integral fluctuation theorem, Phys. Rev. Lett. 95, 040602
(2005).

[2] U. Seifert, Stochastic thermodynamics, fluctuation theorems
and molecular machines, Rep. Prog. Phys. 75, 126001 (2012).

[3] C. Van den Broeck and M. Esposito, Ensemble and trajectory
thermodynamics: A brief introduction, Physica A 418, 6 (2015).

[4] L. Peliti and S. Pigolotti, Stochastic Thermodynamics: An Intro-
duction (Princeton University Press, Princeton, 2021).

[5] D. Andrieux, P. Gaspard, S. Ciliberto, N. Garnier, S. Joubaud,
and A. Petrosyan, Entropy production and time asymmetry
in nonequilibrium fluctuations, Phys. Rev. Lett. 98, 150601
(2007).

[6] J. M. R. Parrondo, C. Van den Broeck, and R. Kawai, Entropy
production and the arrow of time, New J. Phys. 11, 073008
(2009).

[7] R. Landauer, Irreversibility and heat generation in the
computing process, IBM J. Res. Dev. 5, 183 (1961).

[8] C. H. Bennett, Notes on Landauer’s principle, reversible com-
putation, and Maxwell’s demon, Studies History Philos. Sci. B
34, 501 (2003).

[9] M. Esposito and C. Van den Broeck, Second law and Landauer
principle far from equilibrium, EPL (Europhys. Lett.) 95, 40004
(2011).

[10] A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R.
Dillenschneider, and E. Lutz, Experimental verification of
Landauer’s principle linking information and thermodynamics,
Nature (London) 483, 187 (2012).

[11] J. M. R. Parrondo, J. M. Horowitz, and T. Sagawa, Thermody-
namics of information, Nat. Phys. 11, 131 (2015).

[12] A. C. Barato and U. Seifert, Thermodynamic uncertainty rela-
tion for biomolecular processes, Phys. Rev. Lett. 114, 158101
(2015).

[13] U. Seifert, Stochastic thermodynamics: From principles to the
cost of precision, Physica A 504, 176 (2018).

[14] T. Koyuk and U. Seifert, Thermodynamic uncertainty rela-
tion for time-dependent driving, Phys. Rev. Lett. 125, 260604
(2020).

[15] J. M. Horowitz and T. R. Gingrich, Thermodynamic uncertainty
relations constrain nonequilibrium fluctuations, Nat. Phys. 16,
15 (2020).

[16] G. Lan, P. Sartori, S. Neumann, V. Sourjik, and Y. Tu, The
energy–speed–accuracy trade-off in sensory adaptation, Nat.
Phys. 8, 422 (2012).

[17] P. Sartori, L. Granger, C. F. Lee, and J. M. Horowitz, Thermo-
dynamic costs of information processing in sensory adaptation,
PLoS Comput. Biol. 10, e1003974 (2014).

[18] V. Ngampruetikorn, D. J. Schwab, and G. J. Stephens, En-
ergy consumption and cooperation for optimal sensing, Nat.
Commun. 11, 975 (2020).

[19] P. Sartori and S. Pigolotti, Thermodynamics of error correction,
Phys. Rev. X 5, 041039 (2015).

[20] R. Rao and M. Esposito, Nonequilibrium thermodynamics of
chemical reaction networks: Wisdom from stochastic thermo-
dynamics, Phys. Rev. X 6, 041064 (2016).

[21] J. H. Fritz, B. Nguyen, and U. Seifert, Stochastic thermodynam-
ics of chemical reactions coupled to finite reservoirs: A case
study for the Brusselator, J. Chem. Phys. 152, 235101 (2020).

[22] A. C. Barato, D. Hartich, and U. Seifert, Information-
theoretic versus thermodynamic entropy production in

autonomous sensory networks, Phys. Rev. E 87, 042104
(2013).

[23] A. C. Barato, D. Hartich, and U. Seifert, Efficiency of cellular
information processing, New J. Phys. 16, 103024 (2014).

[24] T. Herpich, J. Thingna, and M. Esposito, Collective power:
Minimal model for thermodynamics of nonequilibrium phase
transitions, Phys. Rev. X 8, 031056 (2018).

[25] M. Sune and A. Imparato, Out-of-equilibrium clock model
at the verge of criticality, Phys. Rev. Lett. 123, 070601
(2019).

[26] T. Herpich, T. Cossetto, G. Falasco, and M. Esposito, Stochastic
thermodynamics of all-to-all interacting many-body systems,
New J. Phys. 22, 063005 (2020).

[27] R. Cofré and C. Maldonado, Information entropy production of
maximum entropy Markov chains from spike trains, Entropy
20, 34 (2018).

[28] R. Cofré, L. Videla, and F. Rosas, An introduction to the non-
equilibrium steady states of maximum entropy spike trains,
Entropy 21, 884 (2019).

[29] C. W. Lynn, C. M. Holmes, W. Bialek, and D. J. Schwab, Emer-
gence of local irreversibility in complex interacting systems,
Phys. Rev. E 106, 034102 (2022).

[30] C. W. Lynn, C. M. Holmes, W. Bialek, and D. J. Schwab,
Decomposing the local arrow of time in interacting systems,
Phys. Rev. Lett. 129, 118101 (2022).

[31] S. Goldt and U. Seifert, Stochastic thermodynamics of learning,
Phys. Rev. Lett. 118, 010601 (2017).

[32] D. H. Wolpert, A. Kolchinsky, and J. A. Owen, A space–
time tradeoff for implementing a function with master equation
dynamics, Nat. Commun. 10, 1727 (2019).

[33] D. H. Wolpert, The stochastic thermodynamics of computation,
J. Phys. A: Math. Theor. 52, 193001 (2019).

[34] D. H. Wolpert and A. Kolchinsky, Thermodynamics of comput-
ing with circuits, New J. Phys. 22, 063047 (2020).

[35] A. V. Ivlev, J. Bartnick, M. Heinen, C.-R. Du, V. Nosenko, and
H. Löwen, Statistical mechanics where Newton’s third law is
broken, Phys. Rev. X 5, 011035 (2015).

[36] A. Crisanti and H. Sompolinsky, Dynamics of spin systems
with randomly asymmetric bonds: Langevin dynamics and a
spherical model, Phys. Rev. A 36, 4922 (1987).

[37] A. Crisanti and H. Sompolinsky, Dynamics of spin systems
with randomly asymmetric bonds: Ising spins and Glauber
dynamics, Phys. Rev. A 37, 4865 (1988).

[38] M. Aguilera, S. A. Moosavi, and H. Shimazaki, A unifying
framework for mean-field theories of asymmetric kinetic Ising
systems, Nat. Commun. 12, 1197 (2021).

[39] M. Aguilera, M. Igarashi, and H. Shimazaki, Nonequilibrium
thermodynamics of the asymmetric Sherrington-Kirkpatrick
model, Nat. Commun. 14, 3685 (2023).

[40] I. Ginzburg and H. Sompolinsky, Theory of correlations in
stochastic neural networks, Phys. Rev. E 50, 3171 (1994).

[41] A. Renart, J. de la Rocha, P. Bartho, L. Hollender, N. Parga,
A. Reyes, and K. D. Harris, The asynchronous state in cortical
circuits, Science 327, 587 (2010).

[42] Y. Roudi, B. Dunn, and J. Hertz, Multi-neuronal activity
and functional connectivity in cell assemblies, Curr. Opin.
Neurobiol. 32, 38 (2015).

[43] B. Dunn, M. Mørreaunet, and Y. Roudi, Correlations and func-
tional connections in a population of grid cells, PLoS Comput.
Biol. 11, e1004052 (2015).

014132-8

https://doi.org/10.1103/PhysRevLett.95.040602
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1016/j.physa.2014.04.035
https://doi.org/10.1103/PhysRevLett.98.150601
https://doi.org/10.1088/1367-2630/11/7/073008
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1016/S1355-2198(03)00039-X
https://doi.org/10.1209/0295-5075/95/40004
https://doi.org/10.1038/nature10872
https://doi.org/10.1038/nphys3230
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1016/j.physa.2017.10.024
https://doi.org/10.1103/PhysRevLett.125.260604
https://doi.org/10.1038/s41567-019-0702-6
https://doi.org/10.1038/nphys2276
https://doi.org/10.1371/journal.pcbi.1003974
https://doi.org/10.1038/s41467-020-14806-y
https://doi.org/10.1103/PhysRevX.5.041039
https://doi.org/10.1103/PhysRevX.6.041064
https://doi.org/10.1063/5.0006115
https://doi.org/10.1103/PhysRevE.87.042104
https://doi.org/10.1088/1367-2630/16/10/103024
https://doi.org/10.1103/PhysRevX.8.031056
https://doi.org/10.1103/PhysRevLett.123.070601
https://doi.org/10.1088/1367-2630/ab882f
https://doi.org/10.3390/e20010034
https://doi.org/10.3390/e21090884
https://doi.org/10.1103/PhysRevE.106.034102
https://doi.org/10.1103/PhysRevLett.129.118101
https://doi.org/10.1103/PhysRevLett.118.010601
https://doi.org/10.1038/s41467-019-09542-x
https://doi.org/10.1088/1751-8121/ab0850
https://doi.org/10.1088/1367-2630/ab82b8
https://doi.org/10.1103/PhysRevX.5.011035
https://doi.org/10.1103/PhysRevA.36.4922
https://doi.org/10.1103/PhysRevA.37.4865
https://doi.org/10.1038/s41467-021-20890-5
https://doi.org/10.1038/s41467-023-39107-y
https://doi.org/10.1103/PhysRevE.50.3171
https://doi.org/10.1126/science.1179850
https://doi.org/10.1016/j.conb.2014.10.011
https://doi.org/10.1371/journal.pcbi.1004052


MACHINE LEARNING AT THE MESOSCALE: A … PHYSICAL REVIEW E 109, 014132 (2024)

[44] Y.-L. Shi, R. Zeraati, A. Levina, and T. A. Engel, Spatial
and temporal correlations in neural networks with structured
connectivity, Phys. Rev. Res. 5, 013005 (2023).

[45] S. A. M. Loos and S. H. L. Klapp, Irreversibility, heat and
information flows induced by non-reciprocal interactions, New
J. Phys. 22, 123051 (2020).

[46] S. A. M. Loos, S. Arabha, A. Rajabpour, A. Hassanali, and É.
Roldán, Nonreciprocal forces enable cold-to-hot heat transfer
between nanoparticles, Sci. Rep. 13, 4517 (2023).

[47] J. Schnakenberg, Network theory of microscopic and macro-
scopic behavior of master equation systems, Rev. Mod. Phys.
48, 571 (1976).

[48] E. Roldán and J. M. R. Parrondo, Estimating dissipation from
single stationary trajectories, Phys. Rev. Lett. 105, 150607
(2010).

[49] D. T. Gillespie, A general method for numerically simulating
the stochastic time evolution of coupled chemical reactions,
J. Comput. Phys. 22, 403 (1976).

[50] D. T. Gillespie, Stochastic simulation of chemical kinetics,
Annu. Rev. Phys. Chem. 58, 35 (2007).

[51] H. Schwarze and J. Hertz, Generalization in a large committee
machine, Europhys. Lett. 20, 375 (1992).

[52] H. S. Seung, H. Sompolinsky, and N. Tishby, Statistical me-
chanics of learning from examples, Phys. Rev. A 45, 6056
(1992).

[53] A. Engel and C. Van den Broeck, Statistical Mechanics of
Learning (Cambridge University Press, Cambridge, 2001).

[54] C. Baldassi, A. Ingrosso, C. Lucibello, L. Saglietti, and R.
Zecchina, Subdominant dense clusters allow for simple learning
and high computational performance in neural networks with
discrete synapses, Phys. Rev. Lett. 115, 128101 (2015).

[55] B. Loureiro, G. Sicuro, C. Gerbelot, A. Pacco, F. Krzakala,
and L. Zdeborová, Learning gaussian mixtures with general-
ized linear models: Precise asymptotics in high-dimensions,
in Advances in Neural Information Processing Systems 34
(NeurIPS 2021), edited by M. Ranzato, A. Beygelzimer, Y.
Dauphin, P. Liang, and J. W. Vaughan (Curran Associates,
2021), Vol. 34, pp. 10144–10157.

[56] M. Refinetti, S. Goldt, F. Krzakala, and L. Zdeborova,
Classifying high-dimensional Gaussian mixtures: Where
kernel methods fail and neural networks succeed, in
Proceedings of the 38th International Conference on Machine
Learning, Proceedings of Machine Learning Research, edited
by M. Meila and T. Zhang (PMLR, 2021), Vol. 139, pp.
8936–8947.

[57] N. Tishby, F. C. Pereira, and W. Bialek, The information bot-
tleneck method, in Proceedings of the 37th Annual Allerton
Conference on Communication, Control and Computing (Mon-
ticello, IL, USA, 1999), pp. 368–377.

[58] D. Strouse and D. J. Schwab, The deterministic information
bottleneck, Neural Comput. 29, 1611 (2017).

[59] M. Chalk, O. Marre, and G. Tkacik, Relevant sparse codes with
variational information bottleneck, in Advances in Neural Infor-
mation Processing Systems, edited by D. Lee, M. Sugiyama, U.
Luxburg, I. Guyon, and R. Garnett (Curran Associates, 2016),
Vol. 29.

[60] M. Baiesi and C. Maes, Life efficiency does not always increase
with the dissipation rate, J. Phys. Commun. 2, 045017 (2018).

[61] S. Bai, J. Z. Kolter, and V. Koltun, Deep equilibrium
models, in Advances in Neural Information Processing Sys-

tems, edited by H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’ Alché-Buc, E. Fox, and R. Garnett (Curran Associates,
2019), Vol. 32.

[62] S. Bai, V. Koltun, and J. Z. Kolter, Multiscale deep equilib-
rium models, in Advances in Neural Information Processing
Systems, edited by H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin (Curran Associates, 2020), Vol. 33,
pp. 5238–5250.

[63] J. C. Spall, An overview of the simultaneous perturbation
method for efficient optimization, Johns Hopkins APL Tech.
Dig. 19, 482 (1998).

[64] S. Greydanus, Scaling down deep learning, arXiv:2011.14439
(2020).

[65] E. Gardner and B. Derrida, Optimal storage properties of neural
network models, J. Phys. A: Math. Gen. 21, 271 (1988).

[66] E. Gardner and B. Derrida, Three unfinished works on the
optimal storage capacity of networks, J. Phys. A: Math. Gen.
22, 1983 (1989).

[67] A. Engel and C. Van den Broeck, Statistical Mechan-
ics of Learning (Cambridge University Press, Cambridge,
2001).

[68] T. Hatano and S.-I. Sasa, Steady-state thermodynamics of
Langevin systems, Phys. Rev. Lett. 86, 3463 (2001).

[69] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L.
Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, Atten-
tion is all you need, in Advances in Neural Information
Processing Systems 30 (NIPS 2017), edited by I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (NIPS, 2017).

[70] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert:
Pre-training of deep bidirectional transformers for language
understanding, arXiv:1810.04805 (2018).

[71] OpenAI: J. Achiam et al., GPT-4 technical report,
arXiv:2303.08774.

[72] J. J. Hopfield, Neural networks and physical systems with emer-
gent collective computational abilities., Proc. Natl. Acad. Sci.
USA 79, 2554 (1982).

[73] D. Krotov and J. J. Hopfield, Dense associative memory for pat-
tern recognition, in Advances in Neural Information Processing
Systems, edited by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett (Curran Associates, 2016), Vol. 29.

[74] D. Krotov and J. Hopfield, Large associative memory prob-
lem in neurobiology and machine learning, arXiv:2008.06996
(2021).

[75] H. Ramsauer, B. Schäfl, J. Lehner, P. Seidl, M. Widrich, T.
Adler, L. Gruber, M. Holzleitner, M. Pavlović, G. K. Sandve
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