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Trade-offs between precision and fluctuations in charging finite-dimensional quantum batteries
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Within quantum thermodynamics, many tasks are modeled by processes that require work sources represented
by out-of-equilibrium quantum systems, often dubbed quantum batteries, in which work can be deposited or
from which work can be extracted. Here we consider quantum batteries modeled as finite-dimensional quantum
systems initially in thermal equilibrium that are charged via cyclic Hamiltonian processes. We present optimal
or near-optimal protocols for N identical two-level systems and individual d-level systems with equally spaced
energy gaps in terms of the charging precision and work fluctuations during the charging process. We analyze
the trade-off between these figures of merit as well as the performance of local and global operations.
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I. INTRODUCTION

The second quantum revolution [1] has brought about un-
precedented access to technologies at the nanoscale, which
are currently operating in what has been dubbed the noisy
intermediate-scale quantum (NISQ) regime (cf. Ref. [2]).
These advances go hand in hand with the desire to further
improve the control over quantum systems and to better under-
stand their potential and limitations for storing and processing
information. At the same time, residual heat and noise are
ever present adversaries in this endeavor, and moving sys-
tems away from thermal equilibrium with their surroundings
requires sufficient control as well as the investment of time
and energy. A framework that aims to address fundamental
questions regarding the dynamics, interactions, energetics,
and control of quantum systems in the presence of heat
baths presents itself in the form of quantum thermodynamics
[3,4]. Indeed, from a fundamental thermodynamic perspec-
tive, pure states can only be prepared approximately since
Nernst’s unattainability principle [5–7]—the third law of
thermodynamics—requires infinite resources to cool any sys-
tem to its ground state. To accurately assess the resources
required for a specific task, it must therefore in principle be
assumed that the respective system is initially in a thermal
state and that work must be invested to change this.
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Quantum thermodynamics offers a broad spectrum of dif-
ferent scenarios to model such state transformations and
corresponding work inputs, but two distinct paradigms can be
identified as the conceptual polar opposites of this spectrum
(cf. Refs. [7–9]): Work can be supplied to a target system (i)
via a heat flow generated by a temperature gradient between
two thermal baths, or (ii) via a direct supply from a coher-
ent work source. The former scenario can be understood as
the operation of a heat engine [10–15], where the heat flow
supplies work incoherently to a working substance and the
dynamics are globally energy-conserving. On the one hand,
this paradigm is appealing from a thermodynamic point of
view, since the system is overall closed and external control
can be minimal in the sense that an external agent operating
the machine is only needed to switch on (and off) interactions
between the target and the heat baths. On the other hand, only
a restricted class of state transformations is achievable within
this paradigm (cf. Ref. [7]) and practical laboratory situations
in which quantum technologies are employed are not typically
operated using heat engines.

An all-encompassing understanding of possible state trans-
formations and their resource costs must therefore include
coherent work sources as in (ii). Although the specific re-
alizations of these work sources are often not included
explicitly in modeling state transformations, doing exactly
this will ultimately be necessary to truly obtain fine-grained
descriptions that will lead to a better understanding of quan-
tum systems beyond thermal equilibrium. Such descriptions
can be envisioned to provide insights, e.g., regarding the
effects of finite-time transformations, finite-size reservoirs,
and fluctuations of relevant quantifiers. A starting point for
such a more general approach lies in modeling the work
sources—commonly dubbed quantum batteries [16,17]—on
their own, i.e., independently of the systems that they even-
tually supply work to. In other words, quantum batteries
are considered as quantum systems in which work can be
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temporarily deposited and from which it can subsequently be
extracted.

This approach has recently received a lot of attention (see,
e.g., Ref. [18] for a recent review), with main foci on the
charging speed or power [19–21], including different models
for batteries and charging systems and the interactions be-
tween them [22–31], such as, e.g., collision models [32–34].
Other approaches to quantum batteries have considered, for
instance, the stability of the charged battery [35,36], charging
assisted by strong interactions and thermalization [37] or by
feedback control [38], the roles of coherence [39] and dissipa-
tion [40,41], developed methods for describing fluctuations of
the stored work [42–44], and analyzed fluctuations as a means
of certifying high-dimensional entanglement [45].

Here, we follow the approach of Ref. [46], and consider
battery charging realized via cyclic Hamiltonian processes.
In this case, the system Hamiltonian returns to its original
form at the end of each cycle and the battery-system state,
initially assumed to be thermal as we have reasoned above,
can be modeled to lie within the unitary orbit of the initial
state [16]. This has the advantage that it allows us to consider
the charging process independently of the specifics of other
potentially involved auxiliary systems (e.g., the charger sys-
tems as in Refs. [24,27], or external classical power sources).
We can thus focus on the properties of the charging process
and of the charged battery, and study fundamental bounds on
the chosen figures of merit.

We further center our attention on two particular quantities:
the charging precision, quantified by the variance of the final
battery charge, and the work fluctuations arising during the
charging process. While the former concerns a property of the
final state of the battery, independently of how this state was
reached, the latter characterizes the particular charging pro-
cess, as illustrated in Fig. 1. Nevertheless, at fixed final battery
charge, both quantities cannot be simultaneously optimized by
the same charging procedure [46] except for certain special
cases.1 In other words, for nonzero-temperature initial states,
optimal precision generally implies nonoptimal fluctuations,
and vice versa. Consequently, it is of interest to derive optimal
protocols for both precision and fluctuations, and to determine
trade-offs between these figures of merit.

For quantum batteries realized by quantum harmonic
oscillators, such optimal protocols have been derived in
Ref. [46], but translating them to finite-dimensional quantum
systems frequently considered in pertinent literature (cf. Refs.
[19,20,23–30,35–37,42,47–50]) has proven to be a formidable
task [51]. Here, we present advances towards closing this
gap: we construct a general protocol that optimizes the charg-
ing precision as well as a protocol aiming to minimize the
work fluctuations for quantum batteries consisting of N iden-
tical two-level systems or of individual d-level systems with
equally spaced energy levels. We compare the performance of
these protocols in terms of both figures of merit, charging pre-
cision and work fluctuations, to investigate potential trade-offs
between them. Our results represent a first step towards more

1As noted in Ref. [46], the final energy variance and the work
fluctuations coincide when the initial battery state is an energy eigen-
state, which further motivates going beyond pure-state batteries [47].

FIG. 1. Charging processes. Illustration of a unitary charging
process for a battery in initial state τ and final state � = UτU †,
showing the distribution of probability weights in the energy eigen-
basis. The charging precision V (�) only depends on the final state
�, whereas the fluctuations �W depend on the particular evolution
from τ to �.

all-encompassing future analyzes of the performance of work-
storage strategies for quantum-thermodynamic systems that
take into account more complicated energy-level structures
as well as other relevant properties of the charging process
(power and fluctuations) and of the battery itself (charging
precision and stability of the charge).

This manuscript is structured as follows: in Sec. II, we
provide technical definitions for the systems under study and
the relevant figures of merit. In Sec. III, we then present the
protocol achieving the fundamental precision limit for the
considered systems, before turning to the problem of deter-
mining a similar protocol for fluctuations in Sec. IV. There,
we provide a protocol that is motivated by insights previ-
ously gained for harmonic oscillators, evaluate it numerically
and argue that it is a good approximation to the optimum.
We then explore the trade-off between the two quantities in
Sec. V. Finally, in Sec. VI, we study the role of local versus
nonlocal operations in charging N-qubit quantum batteries by
comparing the optimal global protocols to the worst-case local
protocols, before we present our conclusions in Sec. VII.

II. FRAMEWORK

In this section, we first discuss the basic setup for the type
of charging processes we consider and provide definitions for
the relevant figures of merit, i.e., charging precision and work
fluctuations, in Sec. A, before establishing some preliminaries
and notation for the particular battery systems we will study in
Sec. B, i.e., batteries consisting of N noninteracting identical
two-level systems, here simply referred to as N-qubit batter-
ies, and what we call qudit batteries, where the system to be
charged consists of a single d-dimensional quantum system
with equally spaced energy levels.
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A. Precision and work fluctuations of charging processes

We consider a d-dimensional quantum system with associ-
ated Hamiltonian H = ∑d−1

n=0 En |n〉〈n| as a quantum battery,
where En and |n〉 represent the nth energy eigenvalue and its
corresponding energy eigenstate, respectively. Without loss of
generality, we assume these eigenvalues to be labeled such
that energies are nondecreasing with increasing n, i.e., the
En are ordered such that En′ � En for n′ > n ∀n, n′, and we
set E0 = 0. We further assume that the battery is initially
uncharged, i.e., contains no work that is extractable via cyclic
Hamiltonian processes. In such a process, the evolution of
the system is given by a time-dependent Hamiltonian H (t ) =
H + V (t ), where the cyclic potential V (t ) includes all time-
dependency of the Hamiltonian and satisfies the condition
V (tf ) = V (0) = 0, in which tf represents the duration of the
protocol. Such processes can be represented on the system
Hilbert space as unitary operations [16]. In general, systems
from which no work can be extracted by such operations are
in so-called passive states [52], that is, states whose average
energy cannot be lowered by unitary operations. Any passive
state must hence be diagonal with respect to the energy eigen-
basis and its eigenvalues must be ordered nonincreasingly
with increasing energy. The notion of passivity can even be
relaxed to restrict the operations used for work extraction, e.g.,
to Gaussian operations in continuous-variable systems [53].
Here, however, we wish to further restrict the class of initial
battery states to those that are completely passive: passive
states for which any number of identical copies also remains
passive. For a given Hamiltonian, the only completely passive
states are thermal states, and we hence consider initial battery
states in Gibbs form,

τ (β ) = e−βH

Z (β )
, (1)

where β = 1/T is the inverse ambient temperature, Z =
Tr[e−βH ] is the partition function of the canonical ensem-
ble, and we use units where h̄ = kB = 1 throughout the
manuscript. Besides being motivated by Nernst’s principle as
we have argued in Sec. I, this choice of initial state thus en-
sures that no work is extractable before the charging process.

We are then interested in charging procedures realized by
cyclic Hamiltonian processes and thus need to consider the
unitary orbit of the initial thermal state, i.e.,

τ (β ) → � = U τ (β )U †. (2)

Since the initial state is passive, all unitary operations increase
(or leave invariant) the average energy. We therefore consider
increasing the average energy of the battery by a fixed amount
�E = Tr[H (� − τ (β ))]. For any given charge �E , there ex-
ists a set of unitaries transforming a fixed initial state to final
states with the same average energy. This nonuniqueness of
the final state and of the unitaries leading to it provides an
opportunity for optimization of different quantities of inter-
est, such as the charging precision, energy fluctuations, and
charging speed, all of which may play important roles during
charging processes.

The first quantity that we will focus on here is the charging
precision. We describe this quantity by the energy variance of

the final state, given by

V (�) = Tr[H2 �] − (Tr[H �])2, (3)

such that a smaller variance corresponds to higher precision
and vice versa. We note that for any given unitary U , the
final-state variance V (�) is nonnegative but should be viewed
relative to the variance of the initial state τ (β ), and the for-
mer may be smaller or larger than the latter. The unitarily
achievable values of V (�) for any fixed energy input depend
on the temperature of the initial state [46]. Moreover, for
infinite-dimensional systems, the increase in variance is not
bounded from above for any nonzero energy increase �E .
Here, however, we wish to analyze the fundamental precision
limit for fixed values of �E for finite-dimensional systems
and all quantities of interest are hence bounded. In addition,
it is worth mentioning that the precision only depends on the
initial and the final states, and the type of dynamics relating
these states do not play any role in the characterization of the
precision. This means that the optimization of the precision
reduces to finding the state with the minimum variance for a
given energy input.

The second quantity that we analyze here can be viewed
as a figure of merit for the quality of the charging process:
specifically, we are interested in minimizing the work fluc-
tuations for a given energy increase. In general, there are a
number of inequivalent ways to define work in the quantum
domain2 Here, we focus on work quantified by two-point mea-
surement (TPM) scheme [61]. There, two ideal3 projective
measurements, one prior to and one after the action of the
transformation (here represented by U ), are used to estimate
the work performed on the system in terms of differences be-
tween the respective measurement outcomes Em and En. The
work value assigned to such a pair of outcomes is Wm→n =
En − Em and the work estimate is then obtained as the average

〈W 〉 =
d−1∑

m,n=0

pm→n(En − Em). (4)

Here, pm→n is the transition probability of the energy eigen-
state |m〉 to |n〉 starting from the initial state τ ,

pm→n = pm |〈n |U |m 〉|2, (5)

and pm = 〈m|τ |m〉 is the probability to find the initial state
in the eigenstate |m〉. For unitary processes such as those we
consider here one finds that the average work matches the
change in average energy, 〈W〉 = �E . The work fluctuations
(�W )2 of the charging process can then be quantified by the

2For a selection of different approaches, see, e.g., Refs. [54–60], or
the discussion in Ref. [3].

3Note that when taking the assumption of initially thermal states
seriously, projective measurements are not ideal because measure-
ment apparatuses cannot themselves be prepared in pure states to
begin with [62]. Consequently, correction terms apply in principal,
in particular to work estimation procedures [63]. But since we are
here interested in fundamental bounds independently of specifics of
the measurement devices, we will not include such corrections.
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average squared distance from the average energy increase,

(�W )2 =
d−1∑

m,n=0

pm→n(En − Em − �E )2. (6)

As such, (�W )2 represents the second statistical moment of
the work distribution obtained in the TPM scenario. Thus, if
one raises the TPM scheme to a definition of work, then the
work fluctuations provide a basis for confidence statements
about the estimated (average) work input required to charge
the battery, whereas the energy variance allows one to quantify
one’s confidence regarding the estimated charge itself.

However, the relation between the work fluctuations and
energy variances is generally complicated: in our case, the
quantities satisfy

(�W )2 = V (�) + V (τ ) − 2[Tr[H̃ Hτ ] − E (τ ) E (�)], (7)

where H̃ = U †H U and E (�) = Tr[H�].
Based on Eq. (7), one can easily see that if the battery

is initially in the ground state,4 i.e., T = 0, the work fluctu-
ations coincide with the final-state variance, i.e., (�W )2 =
(�σ )2 = V (�), but in general, these quantities do not coincide
and cannot be simultaneously minimized. Detailed compar-
isons of optimal protocols for precision and fluctuations have
so far only been available for harmonic-oscillator batteries.
Here, we therefore want to analyze and compare achievable
performances for finite-dimensional batteries, whose specific
compositions we will describe next.

B. N-qudit model: Single-qudit and N-qubit batteries

As a specific realization of a quantum battery, let us now
describe a multipartite system consisting of N identical non-
interacting d-dimensional subsystems with equidistant energy
levels (here referred to as “qudits”). We will then consider two
special cases of such a system more closely: N-qubit quantum
batteries (arbitrary N but d = 2) and single-qudit batteries
(N = 1 but arbitrary d).

The N-qudit system is described by a set of local Hamil-
tonians Hdi = 1⊗i−1

d ⊗ Hd ⊗ 1⊗N−i
d , where 1d denotes the

d-dimensional identity matrix, and Hd = ∑d−1
n=0 En |n〉〈n| is

the Hamiltonian of a d-dimensional system with equally
spaced energy levels, i.e., En = nω.

Since the individual battery systems are not interacting
with each other, the joint initial thermal state is an uncorre-
lated product state of the form τtot (β ) = τd (β )⊗N , where

τd (β ) =
d−1∑
n=0

pn|n〉〈n|, pn = 1 − e−βω

1 − e−βωd
e−βnω. (8)

Taking into account the degeneracy of the energy levels of the
joint system, the total Hamiltonian can be written as

Htot =
N (d−1)∑

m=0

gd (m)∑
im=1

mω |m, im 〉〈m, im |

=
N (d−1)∑

m=0

gd (m)∑
im=1

Em,im |m, im 〉〈m, im |, (9)

4Or, more generally, any eigenstate of the system Hamiltonian [46].

where m and im indicate the mth distinct energy level and ith
level with energy m, respectively, while gd (m) indicates the
degeneracy of the mth distinct energy eigenvalue, such that
Em,im = Em, jm for all im, jm = 1, . . . , gd (m) and Em,im �= En, jn
for all im, jn as long as m �= n. For instance, for an N-qubit
system, the degeneracy of energies is given by g2(m) = (N

m

)
.

In terms of this notation for the eigenstates of the joint Hamil-
tonian, one can rewrite the initial thermal state as

τtot (β ) =
N (d−1)∑

m=0

gd (m)∑
im=1

e−βmω

Zd (β )N
|m, im〉〈m, im |, (10)

where the initial probability distribution on the diagonal with
respect to the energy eigenbasis is independent of the index im,
i.e., pm,im := e−βmω/Zd (β )N where pm,im indicates the initial
probability weight of the eigenstate |m, im〉. Using Eqs. (9)
and (10), the initial average energy of the total system takes
the form

E (τtot (β )) = Tr[τtot (β ) Htot]

= Nω

(
1

eβω − 1
− d

eβωd − 1

)
, (11)

where we have made use of the fact that Tr[τd (β )⊗N Hdi ] =
Tr[τd (β ) Hd ].

Due to the symmetry gd (n) = gd [N (d − 1) − n] with re-
gards to the sizes of the degenerate subspaces, identifying
the maximal average energy within the unitary orbit of the
initial state simply corresponds to rearranging the probability
weights in such a way that the populations of the eigenstates
|n〉 and |d − n〉 are exchanged, such that τd (β ) 	→ τd (−β ).
Using dimensionless quantities ε0 := E [τ (β )]/ω and ε :=
E (�)/ω to describe the initial and final energies, respectively,
we then have ε0 � ε � N (d − 1) − ε0. Since ε = ε0 + �ε,
this implies that the charge �ε of the battery satisfies

0 � �ε � N (d − 1) − 2ε0. (12)

In the following, we investigate the precision and work
fluctuations achievable with unitary charging processes for
two different special cases of the system described by this
model: single-qudit batteries (N = 1) and N-qubit batteries
(d = 2).

III. FUNDAMENTAL CHARGING PRECISION LIMITS
FOR ARBITRARY TEMPERATURES

We are now in the position to determine the optimal pro-
tocol minimizing the variance for a specific charge �ε. To
briefly reiterate, the (single-qudit or N-qubit) system is ini-
tially prepared in the state τ (β ) with energy ε0 = ε[τ (β )] .
Then the energy of the system is unitarily increased to reach
the target energy ε = ε0 + �ε. The goal is to choose the uni-
tary operation such that the energy variance V (�) of the final
state is minimized for fixed �ε and fixed inverse initial tem-
perature β. However, direct minimization of V (�) is generally
difficult even for fixed initial temperature and input energy,
owing to the number of parameters required to describe the
involved unitaries [64]. This problems is exacerbated by the
fact that the unitaries achieving the minimum variance are not
unique and our desire to specify the result as a function of both
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(a) (b)

(d) (e)

(c)

FIG. 2. Step I of the optimal-precision protocol. The four cases (i–iv) of reordering the initial probability weights (a) are illustrated in
panels (b–e), respectively, by varying the target energy ε (and hence k) for fixed N = 3. The vertical axes show the sizes of the respective
probability weights, labeled by s = 0, 1, . . . , 7, while the horizontal axes show the energy levels (degeneracies are indicated by groups of
vertical lines) as well as the initial energy ε0 in panel (a) and the different target energies ε in panels (b–e) as dashed lines.

�ε and β. We therefore employ an optimization protocol for
V (�) that makes use of an auxiliary quantity Ṽ , the average
squared distance (ASD) from the target energy, which we
define as

Ṽ (ε) =
∑

n

gd (n)∑
in=1

p̃n,in (En − ωε)2

= ω2
∑

n

gd (n)∑
in=1

p̃n,in (n − ε)2 (13)

for a given probability distribution { p̃n,in}n. In general, the
quantities Ṽ (ε) and V (�) do not coincide, but when the dis-
tribution { p̃n,in}n,in matches the probability distribution of the
final state � with respect to the energy eigenbasis, i.e., when
p̃n,in = 〈n, in|�|n, in〉 ∀ n, in, we have

∑
n,in

p̃n,in n = ε, such
that Ṽ (ε) = V (�). In this way, the optimization can be carried
out in terms of a protocol that aims to minimize the ASD with
respect to a fixed target energy in every step, while the average
energy changes throughout the protocol and only reaches the
target value at the end. The ASD thus allows us to obtain
the optimal protocol for the variance in a simple way. This
protocol can be divided into two distinct steps:

(1) In the first step, illustrated in Fig. 2, the initial proba-
bility distribution is rearranged such that the larger probability
weights are assigned to energy levels closer to the target
energy ε. That is, the resulting distribution { p̃(I)

n,in
}n,in satisfies

p̃(I)
m, jm

� p̃(I)
n,in

for all m, n with |m − ε| < |n − ε|, and hence
corresponds to the minimum ASD with respect to ε in the
unitary orbit of the initial state.

(2) In the second step, unitary two-level rotations that
minimally increase the ASD per unit of energy shift are used
to adjust the average energy to match the target energy ε.

In the following, we first describe these steps in more detail
for the N-qubit system. It is then straightforward to adapt
the N-qubit protocol to a single-qudit system of dimension
d by considering the former protocol for N = d − 1 with
the additional replacement g2(m) 	→ 1 for all m. For ease of
notation we will drop the subscript on the degeneracy factor
for qubits from now on and use g(m) instead of g2(m).

For the sake of notational simplicity, we further define the
new variable

s(m, im) :=
{

1 for m = 0,∑m−1
n=0 g(n) + im for m > 0,

(14)

to label the eigenstates of the joint system using only a sin-
gle index s = 1, 2, . . . , 2N . Since each value of s uniquely
identifies a pair of values {m(s), im(s)}, we use the notation
p(s) := pm(s),im (s) such that p(s) � p(s′) for all s � s′ with
s, s′ ∈ {1, 2, . . . , 2N }. This allows us to order the probability
weights with respect to the energy eigenstates in nonincreas-
ing order using only the parameter s.

A. Step I of the protocol

In the first step, we rearrange the initial-state probability
weights p(s) to form a new probability distribution { p̃(s)}s,
such that the largest value, p(1), is associated with the en-
ergy level closest to ε, the second-largest weight, p(2), is
associated with the second-closest level and so on, to reach
the minimal value of Ṽ (ε) in the unitary orbit of the initial
state. To do so, we first need to find the closest energy level
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(labeled k) to the desired target energy ε, which is given by

k =
{�ε� if ε − �ε� < ε� − ε,

ε� if ε − �ε� � ε� − ε,
(15)

where �ε� and ε� denote the floor and ceiling functions,
i.e., the closest integers to ε that are smaller or larger than
ε, respectively.

We can then identify four different cases, labeled (i–iv) in
the following, depending on the signs of the quantities ε − k
and �N

2 � − k, where the latter represents a constraint arising
from the finite system dimension. That is, the details of how
the probability weights are reordered depend upon whether k
is closer to the lowest or to the highest energy level. For all
four cases, the resulting density matrix after step I is diagonal
with respect to the energy eigenbasis, and the corresponding
diagonal probability weights are given by

Case (i): If k = �ε� and k � �N
2 �, then

p̃(s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p
( ∑2k−m

j=m

( j
N

) − im + 1
)

m < k,

p
((k

N

) − ik + 1
)

m = k,

p
( ∑m−1

j=2k−m+1

( j
N

) + im
)

k < m � 2k + 1,

p(s) m > 2k + 1.

(16)

Case (ii): If k = �ε� and k > �N
2 �, then

p̃(s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p
( ∑N

j=m

( j
N

) − im + 1
)

m � 2k − N,

p
( ∑2k−m

j=m

( j
N

) − ik + 1
)

2k − N < m < k,

p
(( k

N

) − im + 1
)

m = k,

p
( ∑m−1

j=2k−m+1

( j
N

) + im
)

m > k.

(17)

Case (iii): If k = ε� and k � �N
2 �, then

p̃(s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p
( ∑2k−m−1

j=m

( j
N

) − im + 1
)

m < k,

p(ik ) m = k,

p
( ∑m−1

j=2k−m

( j
N

) + im
)

k < m � 2k,

p(s) m > 2k + 1.

(18)

Case (iv): If k = ε� and k > �N
2 �, then

p̃(s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p
( ∑N

j=m

( j
N

) − im + 1
)

m � 2k − N − 1,

p
( ∑2k−m−1

j=m

( j
N

) − ik + 1
)

2k − N − 1 < m < k,

p(im) m = k,

p
( ∑m−1

j=2k−m+1

( j
N

) + im
)

m > k.

(19)

From the resulting probability distribution we obtain the
average energy

ε̃I =
2N∑

s=1

m(s) p̃(s) =
N∑

m=0

g(m)∑
im=1

m p̃m,im , (20)

which is generally not equal to the desired target energy,
ε̃I �= ε, but may be smaller or larger than ε in any of the

four cases (i–iv). Consequently, the ASD from the desired
energy is generally different from the energy variance for the
distribution arising from step I. Therefore, the energy of the
system must be changed to reach the target ε, which is the
purpose of step II.

B. Step II of the protocol

Now, we want to adjust the average energy by using a
sequence of unitary two-level rotations. Each of the transfor-
mations slightly alters the average energy to achieve ε, but
since the ASD was globally minimized (within the unitary
orbit of the initial state) by the first step of the protocol, step 2
will increase the ASD. We hence select the transformations
such that each of them increases the ASD only minimally
per unit of energy change. Here we need to find the optimal
sequence of these two-level rotations.

To do so, we first consider a two-level rotation between
two arbitrary levels m and n with weights p̃m and p̃n and
energies Em and En, respectively, and parametrize the rotation
by an angle θ . Starting from a diagonal density matrix (with
respect to the energy eigenbasis), this transformation can be
represented as the map

( p̃m, p̃n) 	→ ( p̃m cos2 θ + p̃n sin2 θ, p̃n cos2 θ + p̃m sin2 θ ).

(21)

The associated energy change is given by

�ε̃II = ( p̃m − p̃n)
En − Em

ω
sin2 θ. (22)

Similarly, the change in the ASD is

�Ṽ

ω2
= ( p̃m − p̃n)

((
En

ω
− ε

)2

−
(

Em

ω
− ε

)2
)

sin2 θ

=
(

Em + En

ω
− 2ε

)
�ε̃II. (23)

From this expression we see that we have to apply a two-
level rotation between levels n and m, chosen such that
( Em+En

ω
− 2ε) is minimized while bringing the average energy

closer to ε, in order to obtain the minimum ASD increase per
unit energy. To identify these pairs of levels, it is convenient to
choose a relabeling relative to the value k from Eq. (15). That
is, instead of m and n, we introduce the variables l ∈ N0 and
j ∈ Z such that m = k − l and n = k + l + j. The average
energy change associated to the two-level rotation in Eq. (21)
can then be written as

�ε̃II = ( p̃m,im − p̃n,in ) (2l + j) sin2 θ. (24)

Using Eq. (23), we can also obtain the change of Ṽ per unit
energy change, i.e.,

1

ω

�Ṽ

�ε̃II
= [2(k − ε) + j]. (25)

We thus see that the variable j determines a hierarchy of
possible two-level rotations that increase Ṽ the least, while
ensuring that �ε̃II and �Ṽ

�ε̃II
have the desired sign. That is, when

ε̃I < ε, the average energy needs to be increased, suggesting
that we have to select index pairs such that p̃m,im > p̃n,in and
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(a) (b)

FIG. 3. Optimal precision protocol. The minimal energy variance V (in units of ω2) obtained via the optimal-precision protocol is shown
as a function of the energy input �ε for (a) a five-dimensional quantum system with equally spaced energy levels, and (b) a system of four
identical qubits for temperatures (in units of h̄ω/kB) from T = 0.1 (blue, bottom) to T = 1 (red, top) in steps of 0.1.

2l + j > 0 while minimizing j. In contrast, when ε̃I > ε, we
should select levels with p̃m,im < p̃n,in and 2l + j > 0, making
the maximal values of j desirable. According to these rules,
we can identify the optimal value jopt of j and the correspond-
ing set of admissible values lopt,i of l for any given probability
distribution p̃(s). Since the energy levels can be degenerate,
for any fixed pair ( jopt, lopt,i ), corresponding to some variables
(m, n), one can then find two sets of labels, {(n, in)}g(n)

in=1 and

{(m, im)}g(m)
im=1 with the desired properties. In contrast to the

nondegenerate case discussed in Appendix I of Ref. [46], this
means that there are now xmax,i := min{g(k − lopt,i ), g(k +
lopt,i + jopt )} possible pairs of levels between which one may
rotate for any fixed choice of ( jopt, lopt,i ), and we label these
pairs by a subscript x, i.e., ( jopt, lopt,i )x with x = 1, . . . , xmax,i.
For a given probability distribution p̃(s) we can thus generate
a set Popt given by

Popt =
⋃

i

{( jopt, lopt,i )x|x = 1, . . . , xmax,i}. (26)

For each pair of levels in Popt, we can then perform a
two-level rotation. In principle, one has the freedom to adjust
the angles of all possible rotations specified by the pairs in
Popt individually to approach the desired target energy. For
instance, one may perform individual operations one after the
other with maximal angles θ = π

2 until one is close enough
to the target energy so that the adjustment of a single rota-
tion angle to a suitable value 0 < θ < π

2 reaches the value ε

exactly. Irrespective of the order or particular distributions of
these angles, the resulting energy variance is always the same,
as long as the target average energy is reached. However, we
note that different choices of these angles may lead to different
results as far as other figures of merit for the charging process
are concerned. In particular, adjusting the angles individually
can result in discontinuities of the work fluctuations associ-
ated with the protocol as a function of ε at the transition points
between the cases (i–iv) above.

Here, we therefore choose a common rotation angle θ for
all pairs of levels in Popt. If the target energy can be reached
by a suitable choice of θ , then one selects this value, performs
the operations, updates the probability distribution and the
protocol is concluded. If the chosen rotation does not reach

the target energy, then one carries out the rotations with θ = π
2

for all pairs in Popt, updates the probability distribution and
generates the corresponding new set P′

opt. This procedure is
continued until the target energy is reached.

Not only can we obtain the optimal-precision protocol in
this way, we also observe that the final probability distri-
butions change continuously at the transition points at the
values ε = (n + 1) 1

2 for n ∈ N. As described, this approach
for obtaining the optimal-precision protocol is independent
of the degeneracy of the energy levels. Therefore, it can be
applied for any system whose Hamiltonian can be written in
the form of Eq. (9), for instance, N identical qudit systems
with equally spaced Hamiltonians.

In Figs. 3(a) and 3(b), the results of the protocol are il-
lustrated for a five-dimensional system (d = 5, N = 1) and
a four-qubit system (d = 2, N = 4, same ω), respectively,
showing the minimal unitarily achievable energy variance V
(in units of ω2) as a function of the energy input �ε. In both
case, the systems are initially in thermal states with respect to
their local Hamiltonians with temperatures (in units h̄ω/kB)
from 0.1 to 1 in steps of 0.1. From Ref. [46], it can easily be
seen that the fundamental variance limit for pure initial states
(zero temperature, ground state) is

V = ω2(�ε − ��ε�) (�ε� − �ε). (27)

From this formula we conclude that if the energy input is an
integer multiple of ω, the variance vanishes and its maximum
value is an integer multiple of ω

2 . In both plots, we see that
for temperatures close to zero (in our case for T = 0.1), the
minimum variance is well approximated by Eq. (27). When
the initial temperature is raised, the exact periodic behavior
of the minimal variance for the harmonic oscillator discussed
in Ref. [46] disappears. Instead, one now observes that the
finite system dimension leads to a symmetric behavior with
respect to the point where the input energy �ε is exactly half-
way between its minimal and maximal values as specified in
Eq. (12). The positions of the local minima and local maxima
of the minimal variance V (�ε) for each fixed Hamiltonian
depend on the initial temperature.

Here, it is interesting to observe two competing effects
when comparing panels (a) and (b): For zero initial temper-
atures, the d-dimensional system and a (d − 1)-qubit system
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appear as equivalently useful work-storage devices as far
as the maximally achievable charge �εmax and the mini-
mal achievable variance V (�ε) are concerned. However, for
higher temperatures, certain trade-offs become evident. On
the one hand, the degeneracy in the energy-level structure of
the multiqubit system means that �εmax is decreased more
strongly with increasing T than for a single d-level system.
On the other hand, the degeneracy also means that the global
minimum, min�ε V (�ε), remains at smaller values as com-
pared with the d-level system.

IV. FUNDAMENTAL WORK FLUCTUATION LIMIT
FOR ARBITRARY TEMPERATURE

We now turn our attention to the work fluctuations during
the charging process of a general finite-dimensional system.
For ease of presentation in this section we write the system
Hamiltonian as H = ∑d

n=1 En |n〉〈n|, where En are sorted
in increasing order. The work fluctuations �W are obtained
from Eq. (6), and we again focus on two particular cases
(cf. Sec. II): a qudit with equally spaced Hamiltonian, and a
system consisting of N identical qubits, each with the same
local Hamiltonian.

A. Qudit protocol

For this scenario, we first make an ansatz for increasing
the system’s energy by formulating a protocol that consists of
a sequence of permutations of populations of pairs of energy
levels, as illustrated in Fig. 4. The sequence is specified by a
free parameter, m. The parameter is a nonnegative integer and
the energy differences that can be achieved by all sequences
labeled by m hence form a discrete set (for fixed initial tem-
perature). As a consequence, this ansatz cannot reach arbitrary
final energies, and so further fine-tuning is required in subse-
quent modifications of the protocol.

B. Qudit protocol—Phase one

To increase the system’s energy starting from an initial
thermal state we start with a sequence of permutations that
move the populations of the m energy levels with the largest
energies to the m levels with the lowest energy. The starting
point for this sequence is to exchange the smallest population
pd of any energy level (which initially corresponds to the
largest eigenvalue Ed of the Hamiltonian) with the population
of the adjacent energy level with lower energy Ed−1. Taking
the new population of this, now second largest energy level,
as a new starting point, we exchange it with the population
of its adjacent lower-energy neighbor Ed−2 and repeat this
procedure, step-by-step, until we reach the lowest energy level
E1. In the process, all other populations are shifted upwards by
one energy level.

Before we proceed with the remaining m − 1 levels, let
us motivate this procedure by considering the limiting case
where Ed → ∞, i.e., a harmonic oscillator (since we assume
equally spaced energy levels). In this limit, the result of the
first sequence of pairwise permutations is a shift of the average
energy by exactly one unit. At the same time, the original
population pd of the only energy level experiencing a shift dif-
ferent from one unit vanishes in this limit, limEd →∞ pd = 0.

FIG. 4. Ansatz for minimizing work fluctuations. To illustrate the
working principle of the proposed protocol to suppress work fluctua-
tions during the charging process as much as possible, the initial and
final probability distributions corresponding to the diagonal of the
battery-system density operator with respect to the energy eigenbasis
are shown for increasing the energy of the system by �ε̃(m, k).

As a result the work fluctuations associated to this limiting-
case process vanish. For a finite-dimensional system with
finite energy gaps we have pd > 0 and so the overall shift
in average energy will be less than one, and the fluctuations
will not vanish but will be proportional to the smallest pop-
ulation pd . For a harmonic oscillator, the procedure can be
repeated any number of times to raise the average energy by
any nonnegative integer number of units with vanishing work
fluctuations [46].

For finite dimensions and energy gaps we can also repeat
the procedure carried out above for pd , now for the second-
smallest population pd−1 but stop when it has reached the
second-smallest energy level E2, and similarly for all of the
remaining m − 2 populations among the smallest m popula-
tions. As a result, the smallest m populations end up as the
populations, in increasing order, of the smallest m energy
levels. It is clear that the resulting density matrix at the end of
this step is diagonal with respect to the energy eigenbasis. The
new probability weights with respect to this basis are given by

p̃n =
{

pd−n+1 n � m,

pn+m n � m.
(28)
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Here, m remains as a free parameter that allows us to adjust
the average energy of the final state. At this point, the total
energy ε̃(m) of the system reads

ε̃(m) ω =
k∑

n=1

En pd−n+1 +
d−m∑
n=1

En+m pn, (29)

where m ∈ {0, 1, . . . , d − 1}. Note that if m = 0, the first sum
in Eq. (29) does not contribute to the average energy.

To better understand the proposed protocol, let us now
again make a comparison with the optimal protocol for a
harmonic oscillator from Ref. [46] by considering the simple
case of a qudit system with equally spaced energy levels. In
this case, by considering En = (n − 1) ω, one can rewrite the
corresponding energy increase of the system for given m in
Eq. (29) as

ε̃(m) = ε0 + m +
d∑

n=d−m+1

(d − 2n − m)pn. (30)

In general, we know that �ε̃(m) = ε̃(m) − ε0 is a mono-
tonically increasing function of m that takes discrete values.
Therefore, we are not able to cover all possible energy in-
creases �ε using this approach. To remedy this, we first
need to find a parameter m for a given �ε which min-
imizes �ε̃I(m) := �ε − �ε̃(m) under the constraint that
�ε̃I(m) � 0, such that

�ε̃I(m̃) = min
m

{�ε̃I(m) | �ε̃I(m) � 0}. (31)

That is, we find the parameter for the protocol described above
for which the energy that is reached is as close as possible but
still smaller than the desired target energy.

C. Qudit protocol—Phase Two

During the second phase of the protocol we then com-
pensate for the missing energy �ε̃I(m̃) by transforming
the probability weights associated with the levels n = m̃ +
1, m̃ + 2, ..., d according to

( p̃m̃+1, p̃m̃+2, . . . , p̃d−1, p̃d ) = (p1, p2, . . . , pd−m̃−1, pd−m̃)

	→ (p1 cos2 θ + pd−m̃ sin2 θ, p2 cos2 θ + p1 sin2 θ, . . . ,

pd−m̃−1 cos2 θ + pd−m̃−2 sin2 θ, pd−m̃ cos2 θ

+ pd−m̃−1 sin2 θ ). (32)

These pairwise rotations (of the largest and smallest, second-
largest and second smallest, etc.) of the probabilities in the
considered subset about a common angle θ result in an energy
change with respect to the first phase of the protocol given by

�ε̃I(m̃) = (ε̃(m̃ + 1) − ε̃(m̃)) sin2 θ. (33)

Due to the minimization in Eq. (31) the rotation between
these levels must be sufficient to reach the desired energy.
Using Eqs. (31) and (33), the required angle for the rotation to
compensate for the rest of the energy is obtained from

θI(m̃) = arcsin

√
�ε̃I(m̃)

(ε̃(m̃ + 1) − ε̃(m̃))
. (34)

Finally, the work fluctuations of the charging process can be
written in terms of the contributions for different populations
and energy levels as

(�W )2 = (�W )2
�d−m̃−1 + (�W )2

d−m̃ + (�W )2
�d−m̃+1

=
d−m̃−1∑

n=1

pn [cos2 θ (En+m̃ − En − ω �ε)2

+ sin2 θ (En+m̃+1 − En − ω �ε)2]

+ pd−m̃ [cos2 θ (Ed − Ed−m̃ − ω �ε)2

+ sin2 θ (Em̃+1 − Ed−m̃ − ω �ε)2]

+
d∑

n=d−m̃+1

pn (Ed−n+1 − En − ω �ε)2. (35)

D. Performance of the protocol

We now wish to examine how well, in particular, how close
to the optimum, the proposed protocol performs. To do this,
we once again consult the case of the harmonic oscillator.
Here this corresponds to the limit d → ∞ of a d-dimensional
system with equally spaced energy levels. For such a situation,
the protocol described above reduces to the protocol from
Ref. [46] which was shown to minimize the work fluctuations
for fixed energy input: There, m̃ is fully determined by ��ε�
which leads to a minimization of all terms except for the last
sum in Eq. (35). One therefore only needs to investigate the
contribution from last term in the work fluctuation on its own.
The crucial step of the protocol from Ref. [46] is then to
realize that the probability weights in the mentioned sum have
all been shifted from some level with label n to another level
with label m < n, whose energy gap Em − En might diverge.
In particular, (Em − En − ω �ε)2 can diverge, but the associ-
ated probabilities go to zero much faster (exponentially with
Em − En), limn→∞ pn = 0. So the last sum containing the
probability weights pn for n = d − m̃ + 1, . . . , d in Eq. (35)
vanishes in the case of the harmonic oscillator.

In the finite-dimensional case we consider here, however,
all energy gaps and all weights pn remain finite and give a
nonzero contribution to the last sum in the work fluctuation in
Eq. (35). In this case, it is generally complicated to confirm the
optimality of the constructed protocol. However, in the regime
of small temperatures (with respect to the maximum energy
gap) it can be argued that the last sum in Eq. (35) is negligible
for sufficiently small input energy and the protocol thus (at
least) approximates the true optimal protocol. Furthermore, it
is obvious that the optimal fluctuation protocol for pure states
of any qudit or N-qubit system consist of partial shifts of the
ground-state population to levels ��ε� and �ε� such that
the corresponding energy is equal to �ε, which is compatible
with the optimal precision protocol.

To check our approach quantitatively we have numerically
calculated the work fluctuations arising from the proposed
protocol for a qudit system with varying input energy and
for different initial temperatures, and compared them with
a brute-force numerical search for the corresponding opti-
mal protocol, as illustrated in Fig. 5(a) for d = 5. For the
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(a) (b)

FIG. 5. Proposed protocol for minimizing work fluctuation. The curves show the work fluctuations (�W )2 (in units of ω2) obtained from
the protocol proposed in Sec. IV as a function of the input energy �ε (in units of ω) for (a) a five-dimensional quantum system, and (b) for
a four-qubit system, for temperatures (in units of h̄ω/kB) from T = 0.2 (blue) to T = 1 (red) in steps 0.2. For the chosen parameters (input
energies, temperatures, and system dimension/qubit number) results from a numerical optimization of the work fluctuations are included but
cannot be distinguished by the naked eye from the curves resulting from our proposed protocol, supporting the conclusion that the latter is at
least a close approximation of the true optimum.

parameters we have considered the numerical differences be-
tween our protocol and the optimum are nonzero but invisible
to the naked eye. We therefore now continue with an analysis
of the properties of our proposed near-optimal protocol. In
the regime where the input energy is small compared to the
inverse temperature of the initial state or compared with the
system dimension, one can observe almost periodic behavior
of the fluctuations as functions of the input energy, approxi-
mating the periodic behavior of the harmonic-oscillator case
[46]. In particular, if the system is infinite-dimensional or in a
pure state, then one may reach arbitrary input energies while
keeping the fluctuations bounded from above by �W � ω

2 ,
and for all input energies that are integer multiples of ω one
can reach �W = 0. However, in finite-dimensional systems
with finite temperatures, the periodic behavior and local min-
ima and maxima gradually disappears with increasing input
energy. The fluctuation becomes a monotonically increasing
function of �ε as one approaches the maximum of the energy
that can be transferred to the system unitarily.

E. Protocol for N qubits

So far, we have discussed fluctuations for a single-qudit
system with equally spaced energy levels. But, as illustrated
in Fig. 5(b), one can also observe the same qualitative fea-
tures when applying the proposed protocol to a system of N
noninteracting qubits. To this end, we relabel the eigenvalues
and eigenstates of the N-qubit Hamiltonian via a variable
that we have already encountered in the description presented
at the end of Sec. IV B, i.e., Htot = ∑2N

s=1 Es|s〉〈s|, where
s ≡ s(m, im) = ∑m−1

i=0 g(i) + im − δm,0. With this, we can eas-
ily apply the protocol derived for qudit systems above. In
Fig. 5 we showcase the performance of this protocol for a
five-dimensional system and for a four-qubit system in terms
of the work fluctuations as functions of the input energy for
different temperatures. These plots illustrate that for small
input energies one observes the discussed approximately pe-
riodic behavior (as one encounters for the harmonic oscillator
[46]) in finite-dimensional systems. It is clear that the periodic

behavior is a result of transferring probability weights close
to zero from high-energy levels to low-energy level with a
negligible fluctuation cost. It tells us that the number of pe-
riodic cycles is given by the number of energy levels with
negligible probability weights. However, in contrast to the
harmonic-oscillator case, the work fluctuations observed in
finite-dimensional systems strongly increase for larger energy
inputs and any residual periodicity is gradually lost.

V. COMPARISON OF THE PROTOCOLS

After introducing the protocols that minimize the variance
and work fluctuations in Secs. III and IV, respectively, we now
wish to investigate the trade-offs between the two quantities
by checking how well the protocols designed for minimizing
one of them perform in terms of the respective other quantity.
For pure initial states, it is known [46] that the protocols
coincide, and so both the variance and the fluctuations can be
minimized simultaneously. For finite temperatures, the proto-
cols generally do not coincide. In Fig. 6 we therefore show
the energy variance and the work fluctuations associated to
the optimal-precision and the fluctuation protocol as functions
of the invested energy �ε for both systems of interest and
for different initial temperatures. However, we note that no
further optimization of either protocol is carried out here to
further adapt it to the respective second figure of merit.

As expected, the protocols coincide for small temperatures
(e.g., as can be seen from the blue curves on the very bot-
tom of all panels in Fig. 6), but the differences between the
protocols become apparent for increasing temperatures. For
the example shown in Fig. 6, the differences between the
variances obtained from the fluctuation protocol and from the
optimal-precision protocol [Figs. 6(a) and 6(b)] are smaller
on average than the differences in the work fluctuations from
using the optimal-precision protocol as opposed to the fluctu-
ations protocol [Figs. 6(c) and 6(d)] when taking into account
the different units on the vertical axes of Figs. 6(a) and 6(b)
with respect to Figs. 6(c) and 6(d).
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(a) (b)

(c) (d)

FIG. 6. Comparison of precision and work fluctuations in both protocols. We compare the protocol that minimizes the variance (dashed
lines) and the proposed protocol aiming to minimize the work fluctuations (solid curves) by calculating both the variance [upper panels, (a) and
(b)] and the work fluctuations [lower panels, (c) and (d)] in units of ω2, for both protocols, for both a five-dimensional [panels (a) and (c)] and
for a 4-qubit [panels (b) and (d)] system as functions of the energy input �ε (in units of ω) for temperatures (in units of h̄ω/kB) for T = 0.1
(blue), T = 0.5 (purple), and T = 1 (red).

For example, for the highest shown temperature (T = 1,
red curves), the ratio dV

max/d�W
max of the maximum difference

dV
max := max�ε (Vopt.�W − Vopt.V ) between the function val-

ues in (a) and the difference d�W
max := max�ε[(�Wopt.V )2 −

(�Wopt.�W )2] between the function values in Fig. 6(c) is
dV

max/d�W
max = 0.48 < 1, and the ratio of the areas enclosed

between the respective curves [shaded red areas in Figs. 6(a)
and 6(c)] is AV /A�W = 0.51 < 1.

From the examples we have considered it thus appears that
it is better on average to employ the optimal-precision proto-
col if one wishes to keep both the variance and fluctuations
low with equal priority. At the same time, we observe that
the differences between the protocols become less pronounced
when the system under consideration offers more degeneracy
in its energy levels: The ratios for the highest-temperature
curves for the four-qubit system in Figs. 6(b) and 6(d) evaluate
to dV

max/d�W
max = 0.35 and AV /A�W = 0.34, respectively.

However, for both figures of merit we see that the differ-
ences between the two protocols become less pronounced,
and partially even vanish altogether, when the input energy
reaches sufficiently large values. Therefore, if we want to
almost fully charge the quantum battery, then there is no
apparent priority to use one of the mentioned protocols rather
than the other. We attribute the latter convergence of the pro-
tocols to the fact that the finite system dimension severely

limits the possible options for protocols to differ when the
input energy is large.

In our discussion up to this point, we have considered
unitary operations that act globally on the entire Hilbert space
for both types of considered systems. However, in particular
for the N-qubit case, one might argue that nonlocal operations,
i.e., operations that act jointly on several (or all) qubits and
may entangle them, might be considerably more difficult to
implement. We therefore briefly want to examine the role of
local operations for the task at hand in the next section.

VI. LOCAL VERSUS NONLOCAL OPERATIONS

Here we are interested in investigating the role of nonlocal
operations in charging multipartite quantum batteries. In par-
ticular, we focus on the work fluctuations and the charging
precision when unitarily transferring energy into a system
comprising N noninteracting qubits with equal energy gaps.
To do so, we compare the generically nonlocal processes that
arise from applying the protocols considered in Secs. III and
IV to N-qubits with two alternatives: first, with a specific
local process that we refer to as symmetric local charging, and
second, with the numerically obtained optimal local processes
for work fluctuations and the charging precision.
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The motivation for this comparison are twofold: Apart
from the observation that local operations might be easier to
implement than nonlocal ones, the fact that local operations
do not create any correlations between the qubits can help
us to better understand the role of correlations in charging
processes. Meanwhile, it is expected that, much like in the
reverse process of (unitary) work extraction [65], the increase
of the average energy via local unitaries performs worse than
the corresponding global protocols.

A. Local charging processes

To study the charging process in terms of local operations,
we consider the N-qubit system as a many-body quantum bat-
tery whose energy increase is brought about via local unitary
operations Uloc, i.e., Uloc = ⊗N

i=1 Ui, where Ui acts unitarily
on the Hilbert space of the ith qubit. If we assume that the
initial state of the total system is an uncorrelated thermal state
at inverse temperature β, then there also is no correlation in
the final state. We then have

�tot = Uloc τ (β )⊗NU †
loc =

N⊗
i=1

�i, (36)

where �i = Ui τ (β )U †
i . Due to the identical local Hamiltoni-

ans, the work deposited in the single-qubit batteries through
these operations can be obtained as

�εloc =
N∑

i=1

Tr[�i H] − NTr[τ (β )H]. (37)

In this case, since there are neither classical nor quantum
correlations present, one can easily show that the variance
with respect to the local Hamiltonians is given by the sum
of the local variances,

V (�tot ) =
N∑

i=1

Tr[�i H2] −
N∑

i=1

Tr[�i H]2. (38)

Similarly, it is straightforward to show in this case that the
work fluctuation of the total system can be written as a sum of
the local work fluctuations,

(�Wtot )
2 =

N∑
i=1

(�Wi )
2 = V (�i) + V [τ (β )]

− 2{Tr[U †
i H UiHτ (β )]

− Tr[Hτ (β )] Tr[H�i]}. (39)

B. Symmetric local charging

Now we specialize our discussion to a specific type of
local charging process that we call symmetric local charging
process (SLCP). In such a process, for a given total energy
increase �ε, the energy of each of the N qubits increases by
a fixed amount �ε

N via some fixed local unitary, i.e., Ui = U
for all i. For general systems, e.g., harmonic oscillators, such
an SLCP can result in variances and fluctuations that can be
larger or smaller than those of other local charging processes
at the same energy input; see, e.g., Ref. [46, Fig. 4]. Here,

however, we show that SLCPs for N qubits generate the max-
imal amount of work fluctuations and variance for a given
energy increase among all local unitary charging processes.
We thus find that the worst-case local scenarios for both
quantities of interest are realized by the same protocol; see
the Appendix.

However, this worst-case local process needs to be com-
pared to two different optimal (local/global) protocols. As
optimal global procedures we consider the protocols intro-
duced in the previous sections of this article. For the optimal
local strategies, we numerically determine the minimum vari-
ances and work fluctuations. As shown in Figs. 7(a) and 7(b)
for a four-qubit system, SLCPs generally do not coincide with
either the global or local optimal protocols, even when the
initial state is an energy eigenstate (the ground state, in the
scenario we consider). The exceptions we observe are only
the trivial cases of zero charge and maximal charge. In the
considered temperature range, both the variance and work
fluctuations obtained from SLCPs therefore maximize the
difference to the respective quantities from both the optimal
local and the optimal global processes.

For low initial temperatures, there does not appear to be
a discernible difference between applying the optimal local
or global operations, with perfect matching for the ground
state. However, for increasing temperatures we observe that
the gap between the optimal local strategy and the optimal
global strategy increases, while the gap between the optimal
local process and the SLCP decreases.

Regarding the correlation in the final state, we note that
there can be many global unitaries generating the same prob-
ability distribution (on the diagonal of the density operator)
for a given initial state. In particular, this distribution can arise
from correlated or uncorrelated states, and which is the case
depends both on the unitary and on the initial state. In addi-
tion, degeneracy in the energy basis results in a set of different
optimal distributions for a given energy input. All of these
factor suggest that relation between the specific correlations
of the final state and achieved figure of merit are both difficult
to determine and likely of no practical concern. Nevertheless,
it is clear that the advantage of the nonlocal operations comes
from the fact that the set of probability distributions in the
energy basis that is are reachable via such unitary operations
is larger than the corresponding set for local operations.

Finally, let us remark that we do not know if the local worst
case also represents the overall worst case among all (also
global unitary) processes. For the case of harmonic oscillators
this is trivially the case because the variances and fluctuations
can diverge for both the local and global processes due to
the infinite Hilbert-space dimensions of each individual oscil-
lators. At the same time we do not know the optimal local
strategies for N qubits for either precision or fluctuations.
Determining such strategies would require an optimization
over all ways of splitting the energy contributions among the
considered qubits. We leave both of these questions as open
problems for future work.

VII. CONCLUSION

In this article we have investigated the process of bat-
tery charging, i.e., depositing work, for finite-dimensional
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(a) (b)

FIG. 7. Local vs nonlocal operations. The variance V and work fluctuations (�W )2 (both in units of ω2) obtained from the protocols
(conjectured to) minimize the respective quantities are plotted as solid lines in panels (a) and (b), respectively, as functions of the energy
input �ε (in units of ω) of a four-qubit system for temperatures (in units of h̄ω/kB) from T = 0.2 (blue) to T = 1 (red) in steps 0.2. The
dot-dashed and dashed lines represent the respective quantities obtained from the local charging processes, and are the analytically worst-case
and numerically best-case local processes for both of the quantities, respectively.

quantum systems. Starting from thermal states with no ex-
tractable work, we have considered processes that raise the
average energy unitarily so that all deposited energy can be
extracted again in principle, and we have focused our discus-
sion on two figures of merit that characterise such a process:
charging precision and work fluctuations. We have further
centered our investigation on two exemplary systems of in-
terest: d-dimensional quantum systems with equally spaced
Hamiltonians, and systems of N noninteracting qubits with
identical energy gaps.

For these systems we designed protocols with the purpose
of optimizing the charging precision, that is, minimizing the
variance of the final average energy, and minimizing the work
fluctuations during the charging process, respectively. While
we show that our protocol for minimizing the precision is
indeed optimal, a similar proof of optimality of the competing
protocol for the work fluctuations remains elusive. Yet, all
evidence we have gathered seems to suggest that the protocol
is indeed optimal, in particular, it reduces to the optimal proto-
col known for harmonic oscillators [46] in the limit d → ∞.
However, except for the notable case of initial zero temper-
ature or the special case where the dimension of the qudit
diverges, the two protocols generally differ and so optimizing
with respect to one figure of merit comes at the expense
of suboptimal performance in the other. We have therefore
compared the performance of the two protocols with respect to
both figures of merit. Based on the evidence we have currently
available, we see no fundamental reason to generally pick one
of these protocols over the other. Although there are some iso-
lated parameter regimes (see Fig. 6) where the two protocols
give the same performance for one of the two quantities (but
not the other), in general one of the protocols outperforms
the other. Consequently, there is a trade-off between these
quantities: Optimizing performance with respect to precision
means sub-optimal fluctuations and vice versa. The choice of
optimal protocol therefore strongly depends on the weighting
one assigns to the two figures of merit, the specific system
(dimension, composition, Hamiltonian) under consideration,
and on the choice of input energy.

Another question that comes into play in the N-qubit sce-
nario concerns the potential added complication of requiring
nonlocal operations acting jointly on all qubits to achieve opti-
mal performance. To illustrate this problem we have compared
our protocols to a simple local charging scenario that requires
only identical unitary operations to be performed individually
on all N qubits. We show that such an approach results in the
worst possible performance, which highlights that access and
control over global unitary transformations is another resource
that needs to be considered in this context (see, e.g., the dis-
cussion in Ref. [7]). We have also numerically compared both
protocols with the optimal local protocol. We numerically
show the advantage of nonlocal operations in the charging
process when the system is initially in a state far from the
ground state.

Meanwhile, the energetic correspondence between the two
systems considered, N qubits versus a single qudit of di-
mension N + 1 with matching energy-level spacing, provides
an opportunity to examine the role of the internal structure
and the system dimension, 2N versus N + 1, in determining
advantageous charging strategies. We show that for given ini-
tial energy and energy input, accessing higher Hilbert-space
dimensions (N qubits) allows us to achieve smaller fluctua-
tions and higher precision as compared to lower Hilbert-space
dimensions (N + 1-dimensional qudit).

For future work we envisage an even more all-
encompassing approach towards studying the trade-offs
between the identified resources in achieving optimal or
near-optimal performance in terms of the figures of merit
considered here, but also beyond, taking into account such
aspects as the charging speed and stabilisation of the charge.
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APPENDIX: MAXIMAL ENERGY VARIANCE AND WORK
FLUCTUATIONS VIA LOCAL UNITARY OPERATIONS

1. Maximal variance for local operations

In this Appendix, we are concerned with finding the opti-
mal or worst process for the variance and the work fluctuation
when we are restricting ourselves to apply only local unitary
operations to increase the energy of N-qubit systems that are
initially in a thermal state with inverse temperature β. To do
this, we particularly focus on the Lagrange-multiplier method
to find the local minima and maxima of a function subject
to one or more conditions that should be exactly satisfied. In
charging processes, one can consider the work fluctuations
or the charging precision as cost functions subject to the
constraint of fixed energy increase.

We first focus on the energy variance when charging mul-
tiqubit batteries by local unitary operations. If we start from
an (uncorrelated) thermal state, no correlation can be created
via local operations and the variance of the final state with
respect to the local Hamiltonian can be written as the sum
of the local variances [cf. Eq. (38)]. Thus, we can describe
the optimization problem at hand in terms of local variables
describing the local unitary operations. In general, we may
characterize any 2 × 2 unitary operation by two real variables,
θ and φ, as

U (θ, φ) =
[

cos θ −e−iφ sin θ

eiφ sin θ cos θ

]
. (A1)

In the present case, since off-diagonal elements of the den-
sity matrix do not play any role in the calculation of our
quantities of interest and the variable φ only appears in these
elements, we choose to set φ to zero and optimize the process
with respect to θ . Thus, the energy of any one qubit can be

increased by a continuous rotation with an angle θ . This
rotation corresponds to a mapping of the diagonal elements
given by (

p̃0

p̃1

)
	→

(
p0 cos2 θ + p1 sin2 θ

p0 sin2 θ + p1 cos2 θ

)
, (A2)

where the pis are the energy populations of the initial thermal
state. Employing this map, it is straightforward to calculate
the energy variance of a single qubit:

V (�̃) = ω2 p̃1(1 − p̃1), (A3)

where the corresponding average energy is ε̃ = ω p̃1. For the
sake of simplicity, one may choose the variable p̃1 instead of
θ , following the simple relationship in Eq. (A2).

As already noted, if the N identical thermal qubits evolve
via local unitary operations, i.e., �̃tot = ⊗N

i=1 Uiτ (β )U †
i , then

the total energy variance of the final state is the sum of the
local variances. Making use of Eqs. (38) and (A3) we thus
have

V (�̃tot ) =
N∑

i=1

V (�̃i) =
N∑

i=1

ω2 p̃1i (1 − p̃1i ), (A4)

where p1i = 〈1i|Uiτ (β )U †
i |1i〉, and |1i〉 is the second eigen-

state of the Hamiltonian of the ith qubit. In a similar way,
we may define the total average energy as ε̃tot = ∑N

i=1 ω p̃1i .
We are now ready to optimize the variance subject to a given
value of the average energy ε̃tot = c, where c is a constant. We
can solve this problem by using the Lagrange multiplier λV as
follows:

LV = V (�̃tot ) − λV (ε̃tot − c)

=
N∑

i=1

ω2 p̃1i (1 − p̃1i ) − λV

(
N∑

i=1

ω p̃1i − c

)
, (A5)

where LV is a Lagrange function. To find the stationary point
of the function subject to the energy constraint, we need to
solve the following N equations:

∂LV

∂ p̃1i

= ω2(1 − p̃1i ) − λV ω p̃1i = 0, ∀ i ∈ {1, 2, . . . , N}.
(A6)

It is obvious that our problem reduces to N independent linear
equations, each of them related to the state transformation of
one of the qubits. Due to the symmetry of the equations, we
can show that the stationary point is characterized by the same
value for all variables,

p̃1i = ω

λV − ω
∀ i, (A7)

where λV is determined by the energy constraint. Since the
total system is initially uncorrelated and thermal, with inverse
temperature β, the obtained result already implies that all
qubits should be symmetrically transformed to the state that
has the required energy, i.e., Uloc = U (θ, 0)⊗N . This transfor-
mation then raises the energy of each qubit by �εtot/N if we
want to invest the target energy �εtot. So far, we have shown
that, for fixed energy input, the SLCP represents an extremal
point among the local unitary charging processes. We now
proceed to show that this extremal point indeed corresponds
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to the maximal variance achievable by a local unitary process
subject to the energy constraint, and that SLCPs thus describe
the worst-case local scenario for minimizing the variance. To
do so, we consider a local unitary transformation leading us to
the same final energy but a smaller variance compared to the
SLCP.

Let us first assume that the energy of the N − qubit system
is increased via an SLCP to reach a total energy ε̃tot by trans-
forming p1i → p̃1i ∀i. For such a process, the energy variance
of the final state is given by VSLCP = N ω2 p̃1(1 − p̃1). In the
next step, we use an asymmetric charging process in which
the final populations of the excited states of two of the qubits
(w.l.o.g., the first two qubits, labeled 1 and 2) are chosen
to be p̃11 = p̃1 + δ and p̃12 = p̃1 − δ, respectively, where δ

is chosen to be a small but nonzero, positive real number.
The populations of the remaining qubits are transformed in the
same way as in the original SLCP, which leads us to the same
total energy, thus satisfying the energy constraint. In such a
process, the energy variance is

Vδ = ω2(( p̃1 + δ)(1 − p̃1 − δ) + ( p̃1 − δ)(1 − p̃1 + δ))

+ (N − 2) ω2 p̃1(1 − p̃1)

= N ω2 p̃1(1 − p̃1) − 2 ω2δ2 � VSLCP. (A8)

We thus see that the extreme point represented by the SLCP
describes the maximal energy variance among all local unitary
charging processes.

With this knowledge and using Eq. (23), one can easily
obtain the energy variance as a function of the average energy
ε̃tot for such a process,

V (ε̃tot ) = ε̃tot

(
ω − ε̃tot

N

)
, (A9)

which is the maximum amount of energy variance that can be
created through local unitary transformations when increasing
the energy of the multipartite system from ε0 to ε̃tot. Em-
ploying the Lagrange-multiplier method, we therefore obtain
the worst-case scenario for minimizing the variance when
charging an N-qubit system via local operations.

2. Maximal work fluctuations for local operations

In a similar way we would like to explore the stationary
points of the work-fluctuation function constrained by a fixed
energy input via local unitary operations. From Ref. [46], we
already know that the fluctuations do not only depend on the
initial and final states but also on the dynamics of the system.
In our case, due to the commutation of the initial thermal state
with the Hamiltonian, the fluctuations can be rewritten in a
simplified operational form as

(�Wtot )
2 = V (�̃tot ) + V (τ (β )⊗N ) − 2(Tr[H̃totHtotτ (β )⊗N ]

− Tr[Htotτ (β )⊗N ] Tr[Htot�̃tot]), (A10)

where H̃tot = U †
locHtot Uloc = ∑N

i=1 H̃i. Using the fact that all
the operations contributing to the fluctuations are local opera-
tions, the initial and final variances are given by the sum of the
respective local variances. However, we still need to express

the last term in Eq. (A10) in terms of local quantities, i.e.,

Tr[H̃totHtotτ (β )⊗N ] =
N∑

i, j=1

Tr[H̃iHjτ (β )⊗N ]

=
N∑

i �= j

Tr[H̃iτ (β )] Tr[Hjτ (β )]

+
N∑

i=1

Tr[H̃iHiτ (β )]

=
N∑

i �= j

Tr[Hi�̃i] Tr[Hjτ (β )]

+
N∑

i=1

Tr[H̃iHiτ (β )], (A11)

where have made use of the cyclicity of the trace (i.e.,
Tr[XY ] = Tr[Y X ]) in the last line. For the second term, we
have

Tr[Hτ (β )] Tr[Htot�̃tot]

=
N∑

i �= j

Tr[Hi�̃i] Tr[Hjτ (β )] +
N∑

i=1

Tr[Hi�̃i] Tr[Hiτ (β )].

(A12)

Combining Eqs. (A10), (A11), and (A12), the work fluctua-
tions of the process may be described as a function of local
quantities,

(�Wtot )
2 =

N∑
i=1

[V (�̃i) + V (τ (β )) − 2(Tr[H̃iHiτ (β )]

− Tr[Hτ (β )] Tr[Hi�̃i])]. (A13)

In this case, one can obtain (�Wtot )2 as a function of
({ p̃1i}i, p1, p0) in similar way to the variance function by
using Eqs. (A1) and (A2),

(�Wtot )
2 =

N∑
i=1

[
ω2 p̃1i (1 − p̃1i ) + ω2 p1(1 − p1)

− 2

(
ω2 p1

p̃1i − p0

p1 − p0
− ω2 p1 p̃1i ]

)]
. (A14)

In this way Eq. (A14) provides an opportunity to find station-
ary points of the fluctuation function under the constraint of
fixed energy input for such processes. To proceed, we can
write the corresponding Lagrange function as

LF = (�Wtot )
2 − λF (ε̃tot − c)

=
N∑

i=1

[
ω2 p̃1i (1 − p̃1i ) + ω2 p1(1 − p1)

− 2

(
ω2 p1

p̃1i − p0

p1 − p0
− ω2 p1 p̃1i

)
−λF

(
ω2 p̃1i − c

N

)]
.

(A15)
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To determine the stationary points which are related to the
best-case or worst-case scenario, we calculate the first partial
derivatives of LF with respect to the variables p̃1i ,

∂LF

∂ p̃1i

= ω2

(
1 − p̃1i − p1

p1 − p0

)

− λF ω p̃1i ∀ i ∈ {1, 2, . . . , N}. (A16)

The condition of vanishing first derivative at the extremal
points yields

p̃1i = ω p0

(λF − ω)(p0 − p1)
∀ i, (A17)

which tells us that to reach the extremal point, the energy
of the system should be increased via symmetric local uni-
tary operations. By comparing the symmetric and asymmetric

local transformations described in the Appendix, one then
arrives at the same conclusion as before, that is, the obtained
extremal point represents the local unitary process achieving
maximal work fluctuations at fixed energy input. Thus, if we
want to locally raise the energy of the N-qubit system by
the amount �εtot, then the largest fluctuations are obtained
when each of the qubits reaches a state with equal energy
ε̃ = ε0 + �εtot/N . We thus see that for a given energy ε̃,
the obtained unique extremal point is given by p̃1i = ε̃/ω

which results in the maximal possible work fluctuations for
locally charging an N-qubit system. Consequently, we have
obtained the local-unitary charging protocol with the largest
fluctuations and hence with the worst performance. Moreover,
the local unitary worst-case scenarios of work fluctuation and
variance are compatible and match for any initial temperature
in such a process.
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