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Efficiency of a microscopic heat engine subjected to stochastic resetting
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We explore the thermodynamics of stochastic heat engines in the presence of stochastic resetting. The
setup comprises an engine whose working substance is a Brownian particle undergoing overdamped Langevin
dynamics in a harmonic potential with a time-dependent stiffness, with the dynamics interrupted at random
times with a resetting to a fixed location. The effect of resetting to the potential minimum is shown to enhance
the efficiency of the engine, while the output work is shown to have a nonmonotonic dependence on the rate of
resetting. The resetting events are found to drive the system out of the linear response regime, even for small
differences in the bath temperatures. Shifting the reset point from the potential minimum is observed to reduce
the engine efficiency. The experimental setup for the realization of such an engine is briefly discussed.
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I. INTRODUCTION

The field of stochastic heat engines and refrigerators has
seen intense activity in recent years [1–9], largely owing to
their potential applicabilities, especially in the health industry
[10]. These engines are microscopic counterparts of heat en-
gines that are commonly encountered in daily life. The bane in
this microscopic world is the presence of appreciable amount
of thermal fluctuations significantly affecting the working of
these engines [11,12]. The challenge lies in constructing en-
gines at these scales that are comparable in efficiency to the
molecular motors at work within our body cells [13–16].

The presence of thermal fluctuations induces a stochas-
tic time evolution of dynamical variables characterizing the
stochastic heat engines. Stochastic processes have always
constituted a very active area of research in the domain of
statistical physics. Over the years, a variety of model stochas-
tic processes has been explored in the literature, the genesis
of all of which lies in the paradigmatic Brownian motion. A
satisfactory microscopic understanding of the Brownian mo-
tion was put forward by Einstein in one of his annus mirabilis
papers [17,18]. Subsequently, the basic setup of the Brownian
motion has been generalized in many different directions of
practical relevance, e.g., the Ornstein-Uhlenbeck process [19],
the Kramers problem [20], the phenomenological stochastic
model for line shapes in spectroscopy [21], and many others.

In recent times, stochastic resetting of the Brownian mo-
tion has emerged as an active area of study of stochastic
processes; for a review, see [22–25]. Here, the usual Brownian
dynamics is interspersed with an instantaneous reset of its
position to its initial location at random times [26]. Even
this apparently simple modification of the dynamics has a
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dramatic and nontrivial effect on the emergent properties of
the system. Indeed, in the absence of resetting, the motion
is unbounded and has a spatial probability distribution that
is a Gaussian with a time-dependent width, resulting in the
mean-squared displacement (MSD) of the particle from its ini-
tial location increasing forever linearly with time. Introducing
resetting into the dynamics leads to an effective confinement
of the Brownian particle in space, in the sense that the dy-
namics at long times relaxes to a stationary state characterized
by a time-independent spatial probability distribution. Con-
sequently, the MSD of the particle does not increase forever
as a function of time, but instead saturates at long times to
a time-independent value [27]. Remarkably, the mentioned
confinement takes place despite the fact that there are no ac-
tual physical boundaries in space confining the particle. It was
soon realized that the potential of such a dynamical scenario
in generating nontrivial static and dynamic properties may be
explored in more general setups, namely, those that involve
not one, but many particles interacting with one another, and
also the system of study could be undergoing bare evolution
in the absence of resetting according to any predefined dy-
namics of relevance, and not necessarily Brownian dynamics.
Indeed, the exploration of interesting and sometimes intrigu-
ing consequences of resetting has been pursued in a variety of
diverse dynamical scenarios. A panorama of the applications
of stochastic resetting in classical systems may be witnessed
in the representative references [28–59].

In the above backdrop, we address here an issue of rel-
evance: How does a stochastic heat engine perform when
subject to stochastic resetting? Can one make an engine more
efficient through the introduction of stochastic resetting or
does the latter prove to be detrimental and a nuisance? Since
the effects of stochastic resetting were first unveiled in the
context of Brownian motion, it behooves us to choose the
working system for our engine to be a Brownian particle mov-
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ing in one dimension in the presence of a harmonic potential
and in contact with two heat baths at a colder and a hotter
temperature. The expansion and the compression step of the
engine are implemented through a time-dependent manipu-
lation of the stiffness coefficient of the harmonic potential
[1,5,60,61]. The dynamics involves the Brownian particle
undergoing overdamped Langevin dynamics in the presence
of the harmonic potential with a time-varying stiffness co-
efficient and in contact with either the hotter or the colder
heat bath; the dynamics is interrupted at random times with
a stochastic resetting of the particle. The time intervals τ

between successive resetting are random variables that are
taken to be sampled independently from an exponential dis-
tribution p(τ ) = re−rτ , where r � 0 is the resetting rate, i.e.,
the probability per unit time for a resetting to take place. We
primarily consider the case where the resetting takes place
to the minimum of the harmonic potential, and later briefly
explore the case where the resetting is to locations other than
the minimum.

Our principal findings are as follows: We find that indeed
resetting does play a constructive role in rendering a stochastic
heat engine more efficient. The efficiency increases monotoni-
cally as a function of r for the case of resetting to the minimum
of the harmonic potential. Interestingly, the work output from
the engine is found to be a nonmonotonic function of the
resetting rate r for small values of the stiffness coefficient of
the harmonic potential. On the other hand, when the resetting
takes place to a location other than the potential minimum,
the efficiency still increases with r, but which for a fixed r
decreases with the distance of the reset point from the min-
imum of the harmonic potential. Along the way of pursuing
our analysis, we discover and clarify crucial technical issues
related to a correct thermodynamic interpretation of physical
quantities involved in characterizing the energetics and the
efficiency of an engine. Thus, our contributions are twofold:
on one hand, to study the working of a heat engine subject to
stochastic resetting, and on the other, to lay down the correct
framework for its theoretical analysis.

The paper is laid out as follows: In Sec. II, we discuss our
model of stochastic heat engine and present some preliminary
analytical results that form the core of the analysis of the
thermodynamics of the heat engine, which we take up in
Sec. III. Results of our analysis are presented in Sec. IV, while
the paper ends with conclusions in Sec. V.

II. MODEL

As mentioned in the introduction, our engine employs as
a system a single Brownian particle in one dimension. Let
the variable x(t ) denote its location at time t . The particle is
undergoing overdamped Langevin dynamics in the presence
of trapping due to a harmonic potential V (x, t ) with a period-
ically varying stiffness parameter k(t ),

V (x, t ) = 1
2 k(t )x2, (1)

and in the presence of a heat bath in equilibrium at
temperature T . The dynamics is repeatedly interrupted at
exponentially distributed random time intervals by a stochas-
tic reset of the current location of the particle to a given
location xr . Specifically, the dynamics of the location x(t )

of the particle, while starting at time t = 0 from an initial
location x0 ≡ x(t = 0), involves the following: in the small
interval [t, t + dt], with a probability of 1 − rdt , the particle
undergoes an evolution following the familiar Langevin
equation:

γ
dx

dt
= −k(t )x + ξ (t ), (2)

or resets to the location xr with the complementary probability
rdt . Here, γ > 0 is the damping coefficient, and ξ (t ) denotes a
Gaussian-distributed white noise with zero mean, 〈ξ (t )〉 = 0,
where angular brackets denote averaging over noise realiza-
tions. The temporal correlations of the noise are given by
〈ξ (t )ξ (t ′)〉 = 2Dδ(t − t ′), with D = γ kBT , and kB being the
Boltzmann constant. The parameter r � 0 is the resetting rate,
i.e., the probability per unit time for undergoing a reset. Set-
ting r to zero reduces the dynamics to the bare dynamics (2)
without resets. Using the definition of r, it is easily checked
that the random interval τ between two successive resets is
distributed as an exponential: p(τ ) = re−rτ . The dynamics of
the location of the particle may be summarized as follows:

x(t + dt ) =

⎧⎪⎨
⎪⎩

xr with probability rdt,
x(t )(1 − k(t )

γ
dt ) + 1

γ

∫ t+dt
t dt ′ ξ (t ′)

with probability 1 − rdt .
(3)

As has been emphasized, resetting serves as a protocol for
nonequilibrium drive in the sense that any steady state it
induces is a genuine nonequilibrium steady state [22], and that
the total entropy production rate under resetting is positive
[23,62]. We choose x0 = 0, namely, the initial location of the
particle coincides with the minimum of the potential V (x, t ).

Our heat engine works in a Stirling cycle [5,60,61,63,64].
Starting at time t = 0 with the Brownian particle at location
x0 = 0, the engine is run for several cycles, with each cycle
being of total duration T that comprises the four steps enu-
merated below.

(i) Isothermal expansion. During this step, the Brownian
particle undergoes evolution (2) interspersed with stochastic
resetting for a total duration of time T /2 during which the heat
bath that is in contact is in equilibrium at a fixed temperature
TH , while the stiffness parameter k decreases linearly with
time as follows:

k(t ) = kexp(t ) = k0(1 − t/T ); t ∈ [0, T /2], k0 > 0.

(4)

From the second cycle onwards, the time t (but not the posi-
tion x) is reset to zero at the beginning of each cycle, so as to
restrict its value for the isothermal expansion step to lie within
the range [0, T /2]. It is evident that the aforementioned de-
crease in the value of the stiffness coefficient (from k0 to k0/2
in time T /2) allows the particle the possibility to travel further
with respect to the potential minimum, thereby mimicking an
expansion process [1,60,61].

(ii) Isochoric cooling. During this step, the heat bath at
temperature TH is replaced with one in equilibrium at a lower
temperature, TC < TH , with the stiffness parameter held fixed
at the value k0/2. In our study, we assume this step to be
instantaneous, and so the particle location does not change
during this step.
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(iii) Isothermal compression. During this step that lasts
during the interval [T /2, T ], the dynamics of evolution (2)
interspersed with stochastic resetting proceeds in the presence
of the heat bath in equilibrium at temperature TC and with
the stiffness parameter k(t ) that increases linearly with time
(from k0/2 to k0 in time T /2) and, consequently, constrains
the motion of the particle,

k(t ) = kcom(t ) = k0t/T ; t ∈ [T /2, T ]. (5)

As mentioned following Eq. (4), we reset time to zero at the
beginning of every cycle, from the second cycle onwards;
this restricts its value for the isothermal compression step to
always lie within the range [T /2, T ].

(iv) Isochoric heating. During this step, which takes place
instantaneously in time, the heat bath at temperature TC is
replaced with one in equilibrium at temperature TH . The stiff-
ness coefficient is held fixed at the value k0. The location of
the particle does not undergo any change during this step.

In the aforementioned protocol, it is evident that work
is done on the system during the compression step while
increasing the value of the stiffness parameter. On the other
hand, work is done by the system (i.e., energy is extracted
from the system) during the expansion step. The net effect of
the above steps is extraction of an average work [averaged
over an ensemble of dynamical realizations, all involving
running the dynamics with the same protocol for change of
k(t ) applied periodically with period T ], and it is this feature
that endows the system with the possibility to be used as an
engine. It is evident that in a given dynamical realization,
we have x0 ≡ x(t = 0) = 0 for the first cycle, but which for
subsequent cycles has the value identical to the value of the
particle position reached at the end of the previous cycle.
This information may be encoded by defining a probability
distribution Pi(x0) for the location of the Brownian particle at
time t = 0. For the first cycle, we have Pi(x0) = δ(x0). For
the subsequent cycles, the distribution would have a finite
width. For instance, at the end of the first cycle, one records
the values of x for different realizations. These values, which
generally vary from one realization to another, generate the
distribution Pi(x0) �= δ(x0) for the second cycle.

Let us note that there are two sources of stochasticity in
the working of our heat engine. One is the presence of the
heat bath that induces noise into the dynamics of the particle,
while the other is the resetting of the location of the Brownian
particle taking place at random times.

Experimentally, stochastic heat engines (without resetting)
have been frequently prepared by generating harmonic traps
of temporally modulated stiffness parameter by means of op-
tical tweezers with tunable intensity [5,65,66]. The resetting
process can be effected by a separate laser of high intensity
[67], which forces the particle to quickly (compared to its
time of relaxation to equilibrium in the harmonic trap in the
absence of resets) locate to the location xr.

Variance in absence of resetting. It befits for later calcu-
lation to discuss here some salient features of the dynamics
of the Brownian particle in the absence of resetting and for
time-independent stiffness coefficient k(t ) = k. In this case,
the particle dynamics, given by Eq. (2), is easily solved to

obtain

x(t ) = 1

γ

∫ t

0
dt ′ e−(k/γ )(t−t ′ )ξ (t ′), (6)

where we have taken the particle to have the initial po-
sition x0 = 0. Noting that 〈x(t )〉 = 0, the mean-squared
displacement (MSD) is obtained as

σnr (t ) ≡ 〈x2(t )〉 − 〈x(t )〉2

= 〈x2(t )〉

= kBT

k
(1 − e−2kt/γ ), (7)

where the subscript “nr” implies that the no-reset case is being
considered.

We now include the effects of resetting, still with a time-
independent k. To address the situation at hand, we invoke
the renewal equation approach for the conditional probability
density P(x, t |x0, 0) to find the particle at location x at time t ,
conditioned on having been at x0 at time t = 0. For the case
x0 = 0 = xr, the renewal equation reads [22,23,26]

Pr (x, t |0, 0) = Pnr (x, t |0, 0)e−rt

+ r
∫ t

0
dτ e−r(t−τ )Pnr (x, t |0, τ ), (8)

where the subscript “r” is to emphasize that the corresponding
result holds in the presence of resetting, τ is the time instant
at which the last reset has taken place with respect to the time
instant t of observation, and Pnr (x, t |x0, 0) is the conditional
probability density in the absence of resetting. Equation (8)
has the following interpretation. To be at location x at time
t > 0, the particle must either (i) not have undergone a single
reset since the initial time instant or (ii) had the last reset
happen during the time interval [τ − dτ, τ ]; τ ∈ [0, t], and
thereafter the particle has undergone free evolution up to
time t . For case (i), the probability for no reset to take place
during time duration t is

∫ ∞
t dτ p(τ ) = e−rt . For case (ii), the

probability for the last reset to have happened during the time
interval [τ − dτ, τ ] is rdτ e−r(t−τ ). Using these results, one
obtains the first and the second term on the right-hand side of
Eq. (8).

Given that one has x0 = 0 = xr, it follows from Eqs. (2)
and (3) that 〈x(t )〉 = 0 even in the presence of resetting. Using∫ ∞

−∞
dx x2Pnr (x, t |0, 0) = σnr (t ), (9)

Eq. (8) yields

σr (t ) = e−rtσnr (t ) + r
∫ t

0
dτ e−r(t−τ )σnr (t − τ )

= 2(1 − e−rt−2kt/γ )kBT

2k + γ r
. (10)

It can be readily verified that on setting r = 0, we correctly
recover Eq. (7).

III. THERMODYNAMICS OF THE HEAT ENGINE

In this section, we take up the main objective of this
work, namely, analyzing the thermodynamics of our stochas-
tic heat engine described in the preceding section. To this
end, let us first define the relevant thermodynamic quantities
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of the engine in conformity with the prescription laid down
in stochastic thermodynamics [68,69], which is the branch of
thermodynamics that generalizes the thermodynamic laws to
take into account stochasticity or fluctuations in the dynamics
of the underlying system; for a review, see Refs. [70,71].
The quantities of interest are (a) work output and power, (b)
heat absorbed, and (c) efficiency. We choose the convention
that the work done by and the heat absorbed by the system
are positive, while the work done on the system and heat
dissipated by the system are negative. Let us now define these
quantities in turn.

(a) Work output. The stochastic work obtained as an output
from our engine may be defined as follows. In a small time �t ,
the Brownian particle resets with probability r�t , resulting
in an energy change of amount V (xr, t ) − V (x, t ), while it
does not reset with the complementary probability (1 − r�t ),
resulting in an amount of work −(∂V/∂t )(t ) �t done by the
system [68,69]. Then, if Wtot (t ) is the amount of work done by
the system for duration t , we have

Wtot (t + �t ) = Wtot (t ) + r�t[V (x, t ) − V (xr, t )]

+ (1 − r�t )

(
−∂V

∂t
(t ) �t

)
, (11)

yielding in the limit �t → 0 that
dWtot (t )

dt
= r[V (x, t ) − V (xr, t )] − ∂V

∂t
(t ). (12)

On integrating the above equation with respect to time, we get
the total work done by the system between times ti and t f , with
t f − ti = t , given by

Wtot (t ) = −
∫ t f

ti

dt
∂V

∂t
(t ) + r

∫ t f

ti

dt [V (x, t ) − V (xr, t )],

(13)

with
∂V

∂t
(t ) = 1

2
k̇(t )x2(t ), (14)

and the dot denoting the derivative with respect to time.
It may be noted that we need to use the definition in

Eq. (13) with caution. An example of a similar process in a
macroscopic system may help in further clarification. Con-
sider a cylinder, one of whose walls is a movable piston and
which contains an ideal gas of charged particles. When the
piston is pushed inwards so as to compress the gas, work
is done on the system, while work is done by the system
when the piston is pulled outwards [63]. These pull-push
moves constitute the usual protocol for operating an engine.
Additionally, in order to implement resetting events, one can
switch on a strong electric field at random times, such that
in its presence, the particles are forced to collect near one of
the walls. Every time such a reset event takes place, the gas
particles colliding with the piston suddenly undergo a change
in configuration (positions and momenta). This change is
brought about by the electric field and not by the motion of the
piston, while it is the manipulation of the latter that constitutes
the protocol for operating the engine. Therefore, the work
done by the field in carrying out the reset is to be excluded
in computing the work output from the engine. Nevertheless,
the work output over a period of time will have an implicit and

essential contribution from the fact that the system it is acting
upon undergoes sudden changes in configuration arising from
resetting at random times.

With the above example in mind, we return to our micro-
scopic system and, in particular, to Eq. (13). We note from
the equation that there are actually two sources of work done.
The work that is done as part of the engine protocol is repre-
sented by the first term on the right-hand side of the equation.
The second term is due to the phenomenon of resetting. As
discussed above, in computing the work extracted using the
engine protocol only, we should exclude the second term. We
then obtain the output work Wout (t ) from the engine, as given
by [72]

Wout (t ) = −
∫ t f

ti

dt
∂V

∂t
(t ). (15)

Power. The power output of the engine in a cycle of its run
is given by the average work extracted in the cycle divided by
the time period of the cycle, and is thus equal to the quantity
〈Wout (T )〉/T . Here and in the following, the angular brackets
denote, as usual, the process of ensemble averaging of the
otherwise stochastic quantities.

(b) Heat absorbed. The internal energy of the overdamped
Brownian particle is given by its potential energy V (x, t ). The
change in the internal energy is accordingly defined for the
evolution from time ti to time t f as

�E (t ) = V (x f , t f ) − V (xi, ti ), (16)

with xi = x(ti ) and x f = x(t f ). The average heat absorbed
by the particle from the surrounding heat bath can then be
obtained by using the first law of thermodynamics, as

〈Q(t )〉 = 〈Wout (t )〉 + 〈�E (t )〉. (17)

Computing these quantities for the expansion step of the en-
gine yields the average heat 〈QH (T /2)〉 absorbed during the
expansion step.

(c) Efficiency. The efficiency of the engine is defined in the
usual manner, namely, that it is the average work 〈Wout (T )〉
extracted per cycle, divided by the average heat 〈QH (T /2)〉
absorbed per cycle during the expansion step of the engine,

η ≡ 〈Wout (T )〉
〈QH (T /2)〉 . (18)

One may compute the efficiency after the engine has been run
for an integer number of cycles denoted by p. In particular,
one is interested in the efficiency in the time-periodic steady
state (TPSS) of the engine, achieved in the limit p → ∞, and
which may be implemented in practice in the following way.
Starting with x0 = 0, a dynamical realization corresponds to
running the engine for a very large number of cycles and then
one computes the quantities Wout (T ) and QH (T /2) for the last
cycle. The process is repeated over and over again, and this
allows one to obtain the aforementioned quantities averaged
over an ensemble of dynamical realizations, thereby yielding
the desired efficiency η in the TPSS.

We now turn to a discussion of the behavior of our model
engine.
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IV. RESULTS AND DISCUSSIONS

A. Calculation of variance

In this case, throughout the engine cycle, the reset location
xr has the value xr = 0, which is also the minimum of the
harmonic potential. As already discussed earlier, we have
x0 = 0 for the first cycle, while for subsequent cycles, x0 in
a given dynamical realization of the engine is the location
reached at the end of the previous cycle in the same dynamical
realization.

In order to obtain the efficiency, we start with the re-
newal equation (8), which in the present case reads, for the
expansion (exp) and the compression (com) step in a given
realization, as

Pexp
r (x, t |x0, 0)

= Pexp
nr (x, t |x0, 0)e−rt

+ r
∫ t

0
dτ e−r(t−τ )Pexp

nr (x, t |0, τ ); 0 � t � T /2,

Pcom
r (x, t |x(T +/2), T +/2)

= Pcom
nr (x, t |x(T +/2), T +/2)e−r(t−T +/2)

+ r
∫ t

T /2
dτ e−r(t−τ )Pcom

nr (x, t |0, τ ); T /2 � t � T .

(19)

Here, the conditional probability density Pexp
r (x, t |x0, 0) gives

the probability of the particle to be at position x at time t , given
that it was at position x0 at time t = 0, during the expansion
step (denoted by the superscript “exp”) and in the presence
of resetting (denoted by the subscript “r”). All the other con-
ditional probabilities are similarly defined. The symbols T −
and T + denote the time instants just before and just after the
time instant t = T .

We further stipulate that

Pcom
nr [x, T +/2|x(T −/2), T −/2] = δ[x − x(T −/2)], (20)

which implies that the initial value of the particle location for
the compression step is that reached at the end of the expan-
sion step corresponding to the same realization of the engine
cycle. Similarly, due to our convention regarding x0 mentioned
in the first paragraph of this section, we also stipulate that

Pexp
nr [x0, T +|x(T −), T −] = δ[x0 − x(T −)]. (21)

Let us now make some important remarks. In a given
dynamical realization, the particle in the first cycle starts from
x0 = 0, which is the minimum of the harmonic potential that
has the x → −x symmetry, and resets repeatedly to xr = 0.
Consequently, at any time t during the first cycle, the ensem-
ble average is 〈x(t )〉 = 0 and the random variable x(t ) has a
distribution that is symmetric about zero. In the second cycle,
the particle starts from x(T −) and resets repeatedly to xr = 0.
It is evident from the above that we have 〈x(T −)〉 = 0 and the
distribution of x(T −) is symmetric about zero. Consequently,
at any time t during the second cycle, one has the ensemble
average 〈x(t )〉 = 0 and the distribution of x(t ) is symmetric
about zero. Arguing in this manner, it readily follows that
similar features hold for every cycle. Given these facts, three
different MSDs can be defined as follows [which appear later

in Eq. (24)]:

σ exp
r (t ) =

∫ +∞

−∞
dx0

∫ +∞

−∞
dx x2Pexp

r (x, t |x0, 0)Pi(x0),

σ exp
nr (t ) =

∫ +∞

−∞
dx0

∫ +∞

−∞
dx x2Pexp

nr (x, t |x0, 0)Pi(x0),

σ̃ exp
nr (t − τ ) =

∫ +∞

−∞
dx x2Pexp

nr (x, t |0, τ ). (22)

The third definition is for the variance obtained after the
particle has been reset to x = 0 at time t = τ and is thereafter
allowed to evolve until time t . Similar expressions can be
readily written for σ com

r (t ), σ com
nr (t ), and σ̃ com

nr (t ), as

σ com
r (t ) =

∫ +∞

−∞
dx(T +/2)

∫ +∞

−∞
dx x2

× Pcom
r [x, t |x(T +/2], T +/2)P[x(T +/2)],

σ com
nr (t ) =

∫ +∞

−∞
dx(T +/2)

∫ +∞

−∞
dx x2

× Pcom
nr [x, t |x(T +/2), T +/2]P[x(T +/2)],

σ̃ com
nr (t − τ ) =

∫ +∞

−∞
dx x2Pcom

nr (x, t |0, τ ), (23)

where P[x(T +/2)] is the distribution of the random variable
x(T +/2), which, as argued above, is symmetric about zero.

From Eq. (19), on using the normalization of the distribu-
tions Pi(x0) and P[x(T +/2)], we then get

σ exp
r (t ) = σ exp

nr (t )e−rt + r
∫ t

0
dτ e−r(t−τ )σ̃ exp

nr (t − τ );

0 � t � T /2,

σ com
r (t ) = σ com

nr (t )e−r(t−T /2)+r
∫ t

T /2
dτ e−r(t−τ )σ̃ com

nr (t − τ );

T /2 � t � T , (24)

with

σ com
r (T +/2) = σ com

nr (T +/2) = σ exp
r (T −/2). (25)

Since σ
exp
r (T −/2) is the variance reached at the end of the

expansion step, it is also the initial variance for the compres-
sion step. This initial variance would be the initial condition
to evaluate both σ com

nr (t ) and σ com
r (t ), for t > T /2. This is

because the former quantity is the variance in the absence of
resetting only in the compression step, with the expansion step
having already been performed in the presence of resetting.

To proceed, we need the quantities σ
exp
nr (t ) and σ com

nr (t ),
with t lying in the appropriate ranges mentioned in Eq. (24).
To this end, we first solve Eq. (2) with the corresponding time
dependences given by Eqs. (4) and (5). The formal solution
reads

x(t ) = x0e−I (t,0) + e−I (t,0)

γ

∫ t

0
dt ′ ξ (t ′)eI (t ′,0), (26)
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FIG. 1. Plots for the quantity σr (t ) [with σr (t ) = σ exp
r (t ) and

σr (t ) = σ com
r (t ) in, respectively, the rising and the falling part of each

curve], evaluated using Eq. (24) and plotted as a function of time t
for different combinations of k0 and r. One may observe the initial
transient region and the subsequent settling into a time-periodic
steady state (TPSS). Other parameters are T = 1.0, γ = 1.0, TH =
1.0, TC = 0.5, xr = 0.

with I (t, t0) ≡ ∫ t
t0

dt k(t )/γ . The MSD is immediately ob-
tained as

σnr (t ) = σnr (0)e−2I (t,0)

+ 2D

γ 2
e−2I (t,0)

∫ t

0
dt ′ e2I (t ′,0). (27)

For instance, for the expansion step of the first cycle for which
we have x0 = 0, we obtain

σ exp
nr (t ) = DH

√
πT
k0γ 3

exp

[
−2k0t

γ

(
1 − t

2T

)
+ η2(0)

]

× {erf[η(0)] − erf[η(t )]}, (28)

where we have DH = γ kBTH and have defined the function

η(s) ≡
√

k0

γT (T − s), (29)

and erf (x) = (2/
√

π )
∫ ∞

x dy e−y2
is the error function. Sim-

ilar expressions can be written for σ com
nr (t ). Using Eq. (27)

in Eq. (24), one arrives at formal analytical expressions for
σ

exp
r (t ) and σ com

r (t ) that can be evaluated numerically. For the
subsequent cycles, we have σ

exp
nr (T +) = σ com

r (T −). In other
words, the variance in position retains its continuity with time
when the (n − 1)-th cycle gives way to the nth cycle.

As remarked earlier, we are interested in the output of the
engine in the TPSS, where the position distribution of the
overdamped particle becomes periodic in time, with the period
equaling T . In discussing our results, we will always leave out
the initial transients (where the distribution is yet to become
periodic in time) and focus on the performance of the engine
in its TPSS. The initial transient regime and the TPSS have
been shown in Fig. 1 for the quantities σ

exp
r (t ) and σ com

r (t ) and
for various combinations of k0 and r. The data are obtained

 0
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) 
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FIG. 2. Plots for the quantity σr (t ) [with σr (t ) = σ exp
r (t ) and

σr (t ) = σ com
r (t ) in, respectively, the rising and the falling part of each

curve] plotted as a function of time t in the TPSS. The solid lines
depict numerical results obtained using Eq. (24), while results from
simulations of the dynamics of our engine are depicted by symbols.
Here, k0 = 10, the r values are indicated in the figure, while the
values of the other parameters are the same as in Fig. 1.

from numerical evaluation of Eq. (24). It may be observed
that the engine almost always enters into its TPSS right from
the beginning of the second cycle. Nevertheless, in obtaining
and discussing our results on the performance of the engine,
we have always discarded the first three cycles and recorded
our observations from the fourth cycle. The figure also shows
that an increase in the value of k0 at a fixed r or an increase in
the value of r at a fixed k0 leads to a decrease in the variance,
in accordance with our expectations.

Numerical evaluation of σ
exp
r (t ) and σ com

r (t ) in the TPSS,
by using Eq. (24), has been carried out and compared with
the results obtained from our simulations of the engine dy-
namics in Fig. 2 for two different values of the resetting rate,
namely, r = 0 and r = 10. An excellent agreement between
theory (solid lines) and simulations (symbols) is observed,
thereby validating the accuracy of our simulations vis-à-vis
our analytical results.

B. Variation of output work and efficiency
with the resetting rate

Using Eq. (14) in Eq. (15), one obtains the average output
work as

〈Wout (T )〉 = −1

2

∫ T /2

0
dt k̇exp(t )σ exp

r (t )

− 1

2

∫ T

T /2
dt k̇com(t )σ com

r (t ). (30)

The heat absorbed during the expansion step can be readily
computed by using Eq. (17), as

〈QH (T /2)〉exp = 〈Wout (T /2)〉exp + 〈�E (T /2)〉exp, (31)

where the subscripts outside the angular brackets imply that
the corresponding quantities are to be calculated only for the
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FIG. 3. Numerical and simulation results for the variation of the
output work with r, for k0 = 10 and in the TPSS; the values of the
other parameters are the same as in Fig. 1. The numerical results
correspond to Eq. (33). The output work is taken to be 〈Wtot (T )〉.
Inset: Variation of engine efficiency η, given by Eq. (18), with r and
in the TPSS; in the equation, Wout has been replaced with Wtot . The
heat that is absorbed 〈QH (T /2)〉 has been obtained from numerical
evaluation of the expression in Eq. (31).

expansion step. Here, on using Eq. (16), we have

〈�E (T /2)〉exp = k0σexp(T /2)

4
− k0σexp(0)

2
. (32)

The above expressions may be evaluated to obtain the func-
tional dependency of the work output 〈Wout (T )〉 and the
efficiency η on the resetting rate.

We begin our discussion of the results obtained by
demonstrating that using Wtot (T ) instead of Wout (T ) while
computing the engine efficiency [see Eqs. (13) and (15)] leads
to unphysical results. We have

〈Wtot (T )〉 = 〈Wout (T )〉 + r

2

∫ T /2

0
dt

[
kexp(t )σ exp

r (t )

− k0σ
exp
r (0)

] + r

2

∫ T

T /2
dt

[
kcom(t )σ com

r (t )

− (k0/2)σ com
r (T /2)

]
. (33)

The quantity 〈Wtot (T )〉 is expected to increase as a function
of r due to the interplay between the two terms appearing on
the right-hand side of Eq. (13). Indeed, the second term on
the right-hand side clearly shows an explicit dependence on
r. The first term has an implicit dependence on r: The higher
the resetting rate r, the lower is the possibility of the particle
making large jumps in energy in small time steps (given that
it becomes more difficult for the particle to access the steeper
parts of the potential). This increases the contribution coming
from the first term as well, leading to a larger 〈Wout (T )〉 with
higher value of r.

In Fig. 3, we plot the extracted work versus the rate of
resetting, by (incorrectly) replacing Wout with Wtot. In ac-
cordance with our aforementioned expectations, 〈Wtot (T )〉
is observed to increase with the resetting rate. As may be
observed from the inset, the corresponding efficiency also
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FIG. 4. (a) Numerical (symbols) and simulation (lines) results
for the variation of 〈Wout〉 with r and in the TPSS, for k0 = 2 (black),
5 (red), 10 (blue), and 15 (magenta); the other parameters have the
same values as in Fig. 1. The numerical results are obtained using
Eq. (30). (b) Variation of engine efficiency η, given by Eq. (18), with
r and in the TPSS. The heat that is absorbed 〈QH (T /2)〉 has been
obtained by using Eq. (31). The inset shows the saturation of the
engine efficiency η at large r for k0 = 2, for TC = 0.1 (purple) and
0.8 (green); the other parameters have the same values as in Fig. 1.

increases as the resetting rate is increased and begins to sat-
urate to a value higher than unity, which we now show to be
leading to mathematical inconsistency. We have

1 − |〈QC〉|
|〈QH 〉| > 1 ⇒ |〈QC〉|

|〈QH 〉| < 0, (34)

where QC is the heat released into the cold bath in the com-
pression step, while QH ≡ QH (T /2) is the heat absorbed from
the hot bath in the expansion step. The relation (34) is clearly
mathematically inconsistent. Evidently, it was incorrect to
naively assume Wtot to be the extracted work while computing
the efficiency of the engine.

Next, we use the correct definition of the extracted work,
namely, Wout, in order to compute the efficiency of the engine.
In Fig. 4(a), the variation of 〈Wout (T )〉 with the resetting rate r
has been shown for different values of the stiffness parameter
k0. The average work output 〈Wout (T )〉 is observed to show a
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FIG. 5. Density plots showing variation of (a) 〈Wout〉 and (b) η

with r and k0 in the TPSS. The white lines show contours with con-
stant values along them as indicated. Other parameters are TH = 1
and TC = 0.5. The data are generated using the analytical results
discussed in the text.

clear nonmonotonic dependence on r for k0 = 2 and k0 = 5
for the chosen set of parameter values. The nonmonotonic-
ity becomes less prominent for k0 = 10, while it completely
disappears for k0 = 15. Figure 4(b) shows the corresponding
variations in the efficiency, computed using Eq. (18), with the
absorbed heat given by Eq. (31). The efficiency is found to
increase with r, but the values are much lower, even for higher
values of r, as compared to the plot in Fig. 3. The value of η

tends to saturate to a value � 0.5 asymptotically with r [see
inset of Fig. 3(b)]. On the basis of our results, we infer that
〈Wout (T )〉 is the correct definition for the extracted work.

Density plot for efficiency. In Fig. 5(a), we show the den-
sity plot for the variation of the output work 〈Wout (T )〉 with
r and k0, while in Fig. 5(b), the variation in efficiency η with
respect to the same parameter values is shown. In both figures,
we have used the analytical results developed in Sec. IV A. It
goes without saying that for the parameter range where the
efficiency is negative, the system does not act in the engine
mode. In fact, to run in the engine mode, the system must be
able to provide work as output and take heat as input from
the hot bath. Thus, we need to have both mean work output

and mean heat absorbed (during the expansion step) to be
positive. If any of these quantities switches sign, the efficiency
becomes negative, thereby indicating that the system is no
longer working as an engine. Both density plots have been
augmented by means of contour lines, which help in easier
resolution of the values in conjunction with the color bar.

Feasibility of defining effective temperatures. With our
setup containing a Brownian particle trapped in a harmonic
potential with a stiffness that is time independent and equal to
k0, one is tempted to compute the effective temperature from
the steady-state distribution. From Eq. (10), it is easy to see
that the steady-state variance is given by

σ ss
r ≡ lim

t→∞ σr (t ) = 2kBT

2k0 + γ r
. (35)

The steady-state variance in the absence of resetting equals
kBT/k, as may be seen from Eq. (7). We may then equate the
expression in Eq. (35) to kBTeff/k0, where Teff is the effective
temperature, to obtain

Teff = 2k0T

2k0 + γ r
. (36)

It can be readily seen from Eq. (36) that the ratios TC,eff/TH,eff

and TC/TH are the same. Now, if a quasistatic engine cycle is
carried out, one can replace k0 in the above expression by k(t ).
This makes the effective temperatures time dependent, but
their ratio still remains equal to TC/TH . Comparing this value
with Fig. 4, we infer that the values of (1 − TC,eff/TH,eff ) are
inconsistent with the obtained efficiency values of our engine.

Efficiency at maximum power. We next proceed to find the
efficiency at maximum power, ηMP, which is defined as the
efficiency of the engine when the output work or power is
maximum. We have performed this maximization with respect
to the resetting rate r. As an example, in Fig. 4(a), the value
of η computed at the value of r that yields the peak in the
curve will be the value of ηMP. A heat engine working in the
linear response regime yields the value of ηMP given by the
Curzon-Ahlborn efficiency [1,73],

ηCA = 1 −
√

TC

TH
. (37)

The underlying assumption lies in considering the heat flux to
be proportional to the difference in temperature between the
heat bath and the system [73]. In the current scenario, the sys-
tem does not have a well-defined temperature in the presence
of the nonequilibrium drive due to resetting. However, the
analytical techniques developed in [1] can be used in this case,
where it has been shown that the ensuing leading-order correc-
tions to Eq. (37) are ∼O([�T/TC]3), with �T ≡ TH − TC 
TC , i.e., TC/TH � 1/2. In Fig. 6, we have plotted the values
of ηMP for our system as a function of TC/TH . We have con-
sidered only the cases where the nonmonotonicity has been
observed within the range r ∈ [1, 20]. Nevertheless, the curve
clearly shows that even in the range where TC/TH > 1/2, there
is a significant deviation from ηCA, the latter being shown as
the black solid line in the figure. It can thus be inferred that
resetting events drive the engine out of the linear response
regime.
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FIG. 6. Plot showing the efficiency at maximum power, ηMP, as a
function of TC/TH on a semilogarithmic scale, for k0 = 2 and k0 = 5.
The other parameters have the same values as in Fig. 1. The values
of ηCA, the so-called Curzon-Ahlborn efficiency, have been provided
(black solid line) for reference.

C. Reset point not being at the minimum of the potential

Until now, we have set the reset point to be at the minimum
of the potential, namely, xr = 0. However, in general, the reset
point can be chosen to have a different value that does not
correspond to the minimum of the potential. In this case, we
generate our results by means of simulations. In Fig. 7, we
have shown the different plots of efficiency as a function of the
resetting rate for different values of xr . The symbols are the
data obtained from simulations, while the solid lines are the
quadratic fits. As may be observed, the higher the value of xr ,
the less efficient is the engine at a fixed r. The reason is easy to
comprehend. When the reset point is fixed at the minimum of
the potential (xr = 0), the value of ∂V/∂t is smaller in general.
This is because the particle stays close to the minimum of the
potential, close to which the variations in the value of V (x, t )

FIG. 7. Plots showing the variation of η with r, for different
values of the reset point xr , for k0 = 2. The results of the simulations
are depicted by symbols, while the solid lines are the corresponding
quadratic fits. Values of the parameters are the same as in Fig. 1.

with time are smaller as compared to the steeper parts. This
increases the average extracted work 〈Wout〉 [see Eq. (15)].
However, for xr �= 0, the value of 〈Wout〉 will be smaller since
∂V/∂t is now larger around the reset point. Thus, we indeed
expect a decrease in efficiency with an increase in xr.

V. CONCLUSIONS

In this work, we addressed a relatively unexplored theme
in the respective fields of stochastic resetting and stochastic
heat engines, namely, how the efficiency of the engine im-
proves on incorporating resetting in the dynamical evolution
of the working substance. To this end, we incorporated the
effect of stochastic resetting into the dynamics of a stochastic
engine. The working system consists of a Brownian parti-
cle in a harmonic trapping potential with a time-dependent
stiffness coefficient, which undergoes repeated resetting at ex-
ponentially distributed random time intervals to a predefined
location. An analysis of the working of the engine allowed
us to clarify subtle issues related to the identification of
suitable thermodynamic quantities quantifying the efficiency
of the engine, thereby providing valuable insight into the
thermodynamics of systems undergoing resetting. Using a
renewal equation formalism, we provided formal analytical
expressions for the variance of the location of the Brownian
particle, which led to an exact formal expression for the work.
A nonmonotonic variation of output work with the rate of
resetting was observed for smaller values of trap stiffness,
allowing the provision for one to adjust the parameters so as
to make the engine run at maximum power. The efficiency,
however, exhibited a monotonic growth with r. Density plots
showing the dependence of the output work and the efficiency
on the resetting rate and trap stiffness have been provided.
We unveiled that a description of the system in terms of an
effective temperature is untenable. The effects of resetting
are shown to drive the system away from the linear response
regime, by comparing the efficiency at maximum power with
the well-known form of the Curzon-Ahlborn efficiency. Fi-
nally, the consequences of shifting the reset point away from
the trap minimum have been explored. In accordance with our
expectations, the efficiency decreases with an increase in the
distance between the reset point and the trap minimum. Our
main conclusion is that the introduction of resetting does play
a desirable role in enhancing the performance of the engine
when the reset point is close to the minimum of the confining
potential of the working substance. As mentioned earlier, such
a system can be realized using the techniques of Refs. [66,67],
where a second flashing optical trap can be used for the reset
operation, provided the intensity of the associated laser is
high enough. Consequently, our observations are amenable to
experimental verifications.
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[40] A. Pal, Ł. Kuśmierz, and S. Reuveni, Time-dependent density
of diffusion with stochastic resetting is invariant to return speed,
Phys. Rev. E 100, 040101(R) (2019).

[41] F. den Hollander, S. N. Majumdar, J. M. Meylahn, and H.
Touchette, Properties of additive functionals of Brownian mo-

014129-10

https://doi.org/10.1209/0295-5075/81/20003
https://doi.org/10.1103/PhysRevE.90.042146
https://doi.org/10.1103/PhysRevLett.112.030602
https://doi.org/10.1038/ncomms5721
https://doi.org/10.1038/nphys2163
https://doi.org/10.1073/pnas.1406966111
https://doi.org/10.1126/science.aad6320
https://doi.org/10.1103/PhysRevLett.123.080602
https://doi.org/10.1038/nphys3518
https://doi.org/10.1166/ajrs.2014.1010
https://doi.org/10.1063/1.2012462
https://doi.org/10.1088/0953-8984/18/32/R01
https://doi.org/10.1038/scientificamerican0701-56
https://doi.org/10.1063/1.1535005
https://doi.org/10.1016/j.bpj.2010.02.040
https://doi.org/10.1385/CBB:38:2:191
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1002/9780470143605.ch6
https://doi.org/10.1088/1751-8121/ab7cfe
https://doi.org/10.3389/fphy.2022.789097
https://doi.org/10.1088/1751-8121/acda6c
https://doi.org/10.1088/1751-8121/ac3cdf
https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1088/1751-8113/44/43/435001
https://doi.org/10.1088/1751-8113/47/4/045002
https://doi.org/10.1103/PhysRevLett.113.220602
https://doi.org/10.1103/PhysRevLett.112.220601
https://doi.org/10.1103/PhysRevE.93.060102
https://doi.org/10.1088/1751-8113/49/22/225001
https://doi.org/10.1088/1367-2630/18/3/033006
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1103/PhysRevE.96.022130
https://doi.org/10.1103/PhysRevE.96.012126
https://doi.org/10.1103/PhysRevE.99.012121
https://doi.org/10.1103/PhysRevE.100.042103
https://doi.org/10.1016/j.tpb.2005.09.001
https://doi.org/10.1103/PhysRevE.100.040101


EFFICIENCY OF A MICROSCOPIC HEAT ENGINE … PHYSICAL REVIEW E 109, 014129 (2024)

tion with resetting, J. Phys. A: Math. Theor. 52, 175001
(2019).

[42] M. Magoni, S. N. Majumdar, and G. Schehr, Ising model with
stochastic resetting, Phys. Rev. Res. 2, 033182 (2020).

[43] S. Belan, Restart could optimize the probability of success in a
Bernoulli trial, Phys. Rev. Lett. 120, 080601 (2018).

[44] B. De Bruyne, J. Randon-Furling, and S. Redner, Optimiza-
tion in first-passage resetting, Phys. Rev. Lett. 125, 050602
(2020).

[45] S. Karthika and A. Nagar, Totally asymmetric simple exclusion
process with resetting, J. Phys. A: Math. Theor. 53, 115003
(2020).

[46] O. Sadekar and U. Basu, Zero-current nonequilibrium state
in symmetric exclusion process with dichotomous stochastic
resetting, J. Stat. Mech. (2020) 073209.

[47] P. Singh, Random acceleration process under stochastic reset-
ting, J. Phys. A: Math. Theor. 53, 405005 (2020).

[48] P. C. Bressloff, Diffusive search for a stochastically-gated target
with resetting, J. Phys. A: Math. Theor. 53, 425001 (2020).

[49] P. Grange, Susceptibility to disorder of the optimal resetting rate
in the Larkin model of directed polymers, J. Phys. Commun. 4,
095018 (2020).

[50] G. Tucci, A. Gambassi, S. Gupta, and É. Roldán, Controlling
particle currents with evaporation and resetting from an interval,
Phys. Rev. Res. 2, 043138 (2020).

[51] C. A. Plata, D. Gupta, and S. Azaele, Asymmetric stochastic re-
setting: Modeling catastrophic events, Phys. Rev. E 102, 052116
(2020).

[52] G. Mercado-Vásquez and D. Boyer, Search of stochastically
gated targets with diffusive particles under resetting, J. Phys.
A: Math. Theor. 54, 444002 (2021).

[53] M. Dahlenburg, A. V. Chechkin, R. Schumer, and R. Metzler,
Stochastic resetting by a random amplitude, Phys. Rev. E 103,
052123 (2021).

[54] P. Singh and A. Pal, Extremal statistics for stochastic resetting
systems, Phys. Rev. E 103, 052119 (2021).

[55] W. Wang, A. G. Cherstvy, H. Kantz, R. Metzler, and I. M.
Sokolov, Time averaging and emerging nonergodicity upon
resetting of fractional Brownian motion and heterogeneous dif-
fusion processes, Phys. Rev. E 104, 024105 (2021).

[56] R. K. Singh and S. Singh, Capture of a diffusing lamb by a
diffusing lion when both return home, Phys. Rev. E 106, 064118
(2022).

[57] M. Sarkar and S. Gupta, Biased random walk on random net-
works in presence of stochastic resetting: Exact results, J. Phys.
A: Math. Theor. 55, 42LT01 (2022).

[58] M. Sarkar and S. Gupta, Synchronization in the Kuramoto
model in presence of stochastic resetting, Chaos: Interdisc. J.
Nonlin. Sci. 32, 073109 (2022).

[59] D. Das and L. Giuggioli, Discrete space-time resetting model:
Application to first-passage and transmission statistics, J. Phys.
A: Math. Theor. 55, 424004 (2022).

[60] A. Saha and R. Marathe, Stochastic work extraction in a col-
loidal heat engine in the presence of colored noise, J. Stat. Mech
(2019) 094012.

[61] A. Kumari, P. S. Pal, A. Saha, and S. Lahiri, Stochastic heat en-
gine using an active particle, Phys. Rev. E 101, 032109 (2020).

[62] J. Fuchs, S. Goldt, and U. Seifert, Stochastic thermodynamics
of resetting, Europhys. Lett. 113, 60009 (2016).

[63] M. W. Zemansky, Heat and Thermodynamics, (McGraw-Hill,
New York City, 1968).

[64] A. Kumari and S. Lahiri, Microscopic thermal machines using
run-and-tumble particles, Pramana 95, 205 (2021).

[65] S. Krishnamurthy, S. Ghosh, D. Chatterji, R. Ganapathy, and
A. K. Sood, A micrometre-sized heat engine operating between
bacterial reservoirs, Nat. Phys. 12, 1134 (2016).

[66] N. Roy, N. Leroux, A. K. Sood, and R. Ganapathy, Tuning
the performance of a micrometer-sized Stirling engine through
reservoir engineering, Nat. Commun. 12, 4927 (2021).

[67] O. Tal-Friedman, A. Pal, A. Sekhon, S. Reuveni, and Y.
Roichman, Experimental realization of diffusion with stochastic
resetting, J. Phys. Chem. Lett. 11, 7350 (2020).

[68] K. Sekimoto, Kinetic characterization of heat bath and the ener-
getics of thermal ratchet models, Prog. Theor. Phys. Supp. 130,
17 (1998).

[69] K. Sekimoto, Stochastic Energetics (Springer, New York,
2010).

[70] U. Seifert, Stochastic thermodynamics, fluctuation theorems
and molecular machines, Rep. Prog. Phys. 75, 126001 (2012).

[71] L. Peliti and S. Pigolotti, Stochastic Thermodynamics: An Intro-
duction, (Princeton University Press, Princeton, NJ, 2021).

[72] D. Gupta, C. A. Plata, and A. Pal, Work fluctuations and Jarzyn-
ski equality in stochastic resetting, Phys. Rev. Lett. 124, 110608
(2020).

[73] F. L. Curzon and B. Ahlborn, Efficiency of a Carnot engine at
maximum power output, Am. J. Phys. 43, 22 (1975).

014129-11

https://doi.org/10.1088/1751-8121/ab0efd
https://doi.org/10.1103/PhysRevResearch.2.033182
https://doi.org/10.1103/PhysRevLett.120.080601
https://doi.org/10.1103/PhysRevLett.125.050602
https://doi.org/10.1088/1751-8121/ab6aef
https://doi.org/10.1088/1742-5468/ab9e5e
https://doi.org/10.1088/1751-8121/abaf2d
https://doi.org/10.1088/1751-8121/abb844
https://doi.org/10.1088/2399-6528/abb752
https://doi.org/10.1103/PhysRevResearch.2.043138
https://doi.org/10.1103/PhysRevE.102.052116
https://doi.org/10.1088/1751-8121/ac27e5
https://doi.org/10.1103/PhysRevE.103.052123
https://doi.org/10.1103/PhysRevE.103.052119
https://doi.org/10.1103/PhysRevE.104.024105
https://doi.org/10.1103/PhysRevE.106.064118
https://doi.org/10.1088/1751-8121/ac9656
https://doi.org/10.1063/5.0090861
https://doi.org/10.1088/1751-8121/ac9765
https://doi.org/10.1088/1742-5468/ab39d4
https://doi.org/10.1103/PhysRevE.101.032109
https://doi.org/10.1209/0295-5075/113/60009
https://doi.org/10.1007/s12043-021-02225-7
https://doi.org/10.1038/nphys3870
https://doi.org/10.1038/s41467-021-25230-1
https://doi.org/10.1021/acs.jpclett.0c02122
https://doi.org/10.1143/PTPS.130.17
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1103/PhysRevLett.124.110608
https://doi.org/10.1119/1.10023

